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We write a configurational potential for SrTi03 which depends on strain and the, soft optic-mode co-
ordinates whose wave vector lies at the corner of the Brillouin zone. Minimizing this potential gives the
static response of the crystal to applied stress. Below the cubic-to-tetragonal transition temperature at
106'K, uniaxial stress applied in the [111]direction induces a transition from the natural tetragonal to
a trigonal phase, but transitions for [100] and [110]stresses are not found. A crystal-field calculation
gives the R-line emission energy of Cr'+ impurities. The results fit the temperature-dependence anomaly
found by Stokowsky and Schawlow and, within limits, the pressure dependence found by Burke and
Pressley. However, pronounced discrepancies appear at stresses along the [100]and [110]directions which
exceed critical values of 10 and 57 kg/mm', respectively, suggesting that new phases of unknown character
appear. The crystal-field parameter values inferred from the comparison with experiment support the
nearest-neighbor approximation for the cubic component of the crystal-field, but not for lower-symmetry
components. Our calculations disagree with a reported measurement of the stress dependence of the transi-
tion temperature.

I. INTRODUCTION

This work continues earlier calculations of properties
ef strontium titanate related to the structural transition
at 106'K.' We refer the reader to the Introduction of
the earlier paper (which we refer to as ST), and refer-
ences given there, for a general orientation to the sub-
ject. In ST, we derived relations connecting spontaneous
distortion, frequencies of zone-corner modes, and elastic
constants of the tetragonal low-temperature phase. The
available data were suKcient to determine the model
parameters and to show some degree of consistency.
I auberau has made similar calculations, including also
acoustic damping eRects. '

Feder and Pytte have given a more fundamental
theory of strontium titanate, based on statistical
mechanics of anharmonic vibrations, which covers much
of the same experimental ground. ' Their theory is an
extension of their earlier work which had neglected
strain effects, ' and is related to Pytte's calculation of
ultrasonic attenuation. ' Our phenomenological Devon-
shire, or configurational potential, theory has been
justified to some degree by lattice statistics. ' The ques-
tion of its validity merits more attention, however,
because of Pytte and Feder's finding" that the lower
soft-mode frequency is not exactly proportional to the
square of the order parameter as predicted by the
phenomenological theory employing only one tempera-
ture-dependent coeKcient. We use the phenomenologi-
cal theory, in spite of this and other defects of principle,
because of its success up to this date and because it is
easily extended to include new e8ects.

In this work we analyze the dependence of chromium-
impurity Ruorescence on temperatures' and applied
stress. ' In particular, Burke and Pressley's proposal of a
transition to a trigonal phase induced by L111) stress'
is confirmed quantitatively by our analysis. However,
certain discrepancies, which can in no way be reconciled
with the present theory, arise at critical L100j and
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L110j stresses. Their natures suggest the existence of
new stress-induced phases, but the characters of these
phases are not established.

Section II is devoted to the form of the configura-
tional potential. Section III describes the responses of
the crystal to applied stresses for linear cases. Section
IV presents a numerical computation of the nonlinear
response and phase transition that occur under L111$
stress. Section V gives a crystal-field theory of chro-
mium-impurity emission energies. Section VI describes
the stress dependence of the emission lines. Section VII
compares the theory with experiment. Section VIII
discusses implications of the numerical values of the
crystal-6eld parameters. An Appendix connects our
work with recent studies of stress dependence of transi-
tion temperature.

II. ENERGY EXPRESSION

We extend our earlier work (ST) to include the
effects of applied stresses. The configurational potential
U (in units of energy per unit reference volume)
depends on the soft-mode lattice coordinates Q =
(Qi, Qr, Qs), the strain coordinates e,, or e& defined by
the equations

eii—=ei rfki/rfx~=—

egs —e4 =8$$/Bxs+ 8/3/Bxs

(i=1, 2, 3), (21)

esi=—es, etc. , (2.2)

where $, and x; are displacement and position co-
ordinates, respectively, and the applied stress-tensor
components T;=T,; (i = 1, 2, 3), —T4= Tss, etc. The-
vector Q describes linear oxygen displacements which
correspond, in first order, to a simultaneous rotation of
oxygen octahedra about titanium centers as described
fully in ST. The Cartesian components Qs (k=1, 2, 3)
are normalized to be numerically equal to the oxygen
displacements.

Symmetry arguments show easily that the leading
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terms in a series expansion of U have the form

U= Uo+-', Zg'+Ag'+ A„(g 'g '+g 'g, '+g,sg ')
—B,L (2ei—es—es)QP+ (2es —es—ei)Qs'

+ (2es—ei—e.)Qs'] —B,(e4gsgs+ esQsQi+ esgigs)

+—',C» (ei'+ eP+ es )+Cis (eies+ eses+ esei)

+ssC44(e4s+ess+ess) —P e;T;. (2.3)

This expression without the last term is equivalent to
Eqs. (1}and (2) of ST. As before we have simplified
the energy expansion by omitting the coupling between

Q and the isotropic strain (Ai representation) which
would be embodied in a term proportional to
(ei+es+es)Q'. The term —p se~T; in (2.3) represents
the interaction with applied stress. Of all the parameters
in this equation only Uo and E are usually assumed to
depend on entropy if U is internal energy, or on tem-
perature if U is the Helmholtz free energy. In principle,
we make the former choice to calculate correctly
adiabatic elastic constants, although in application
to SrTi03 we believe it makes little quantitative
difference, ' In any case, the condition E&0 charac-
terizes the noncubic phase and E&0 the cubic phase.

The equilibriu'm configuration is found by minimizing
U with respect to Q and all e;. It is convenient now,
as in ST, to proceed half-way by varying e; for arbitrary
Q. Letting BU/Be, =0, for alii, in (2.3), we find

e;=C, '[B,(3Q s—Qs}+T,]—8 (i=1, 2, 3), (2.4)

e4 (B,gsgs+ T4)Ci ——', es ——etc. , (2.5)

where our elastic constants are

minimizing U with respect to Q, and then substituting
the equilibrium Q into (2.4) and (2.5).

The analysis by Pietrass and Hegenbarth" of the
stress dependence of the transition temperature, as
measured by Sorge et ul. ,"is based on a configurational
potential similar to our (2.8). They assumed an inter-
action term for the special case Qi=gs=0 equivalent
to the expression

[&iTs+fs(Ti+Ts)]gs'

(with new coefTicients bi and bs) embracing both Ai
and E, representations.

Neglecting the isotropic A1 interaction is equivalent
to setting bs/b& (=g»/g» in the notation of Ref. 10)
equal to —~. This expression reduces to the correspond-
ing term in (2.8) with B.=C.bs. The analysis of SrTiOs
data by Pietrass and Hegenbarth" results in the value
g»/g»= —0.54, which makes our neglect of the Ai
interaction appear reasonable. As pointed out in ST, the
absence of a significant discontinuity in the thermal
coeKcient of expansion of SrTi03 at the transition
temperature" also supports this simplifying assumption.
Although we agree with Pietrass and Hegenbarth in
this qualitative consideration, we disagree quantita-
tively with respect to the magnitude of the E, inter-
action (see Appendix).

III. LINEAR DISTORTIONS

Here we carry out the minimization program insofar
as we can by analytic means. Suppose a normal pressure

p with direction cosines ni, ns, as is applied. Then the
applied-stress tensor is

Ce= C11 C12y C, =C44 (2.6)
Tij = p&i&j (3 1)

A' =A —3B,'yC„

A„'=A„+9B,'/C, —BP/2Cs.

(2.9)

(2.10)

Finding the equilibrium values of Q and e, reduces to

in the usual notation, and

"p =C» (Ti+ Ts+ Ts) (Ci P+C»Cis —2C»')-'. (2.7)

Upon substitution of (2.4)-(2.7) into (2.3), one 6nds
that U reduces to U, where

U= Up{T I+-'Res+A'Q4+A '(QPgss+Qssgss+QssgP)

—B,C, 'P(2Ti —Ts—Ts)QP+ (2Ts—Ts—Ti)gs'

+(2T —T —T )Q']
-B,C; (T.e,g.+T.g.e,+T Q Q ). (2.8)

Here the form of the function Uo is of no consequence
since it does not depend on Q. The subscripts e and t

on B and C correspond to the irreducible representations
E, and T2g of the cubic point group. The coefficients A'
and A„' are, as in ST, given by

Even with this substitution, (2.8) cannot be minimized
in general by analytical means. However, there are
special cases in which the unit vector QQ ' does not
vary with p so that (2.8) reduces to the form

U= Up+'sXgs+tsg4+bPgs, (3.2)

where u and b are constants, and an extremum is given
by

Q'= —(4~) '(&+2&p). (3.3)

From this, together with (2.4) and (2.5), we see that e;
and the products Q;Q; are linear in p for all i and j.
As we shall see presently, the crystal-field matrix ele-
ments of the electronic Hamiltonian for the chromium
impurity are linear forms in e, and Q,Q;, so that these
particular distortions are appropriately called linear.

The results for three linear cases relevant to Burke
and Pressley's piezoQuorescence experiments on stron-
tium titanate~ are given below, together with remarks
about stability, but proofs are omitted. The parameters
C., C&, and A' are positive for a stable crystal. We
assume, also, that —E, A„', and B, are positive, as we
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know to be the case in SrTi03 below the transition
temperature of 106 K, but the sign of 8& is not specified.

L100j case: p= p(1, 0, 0).
An equilibrium state is described by Q =Q(0, 0, &1)

or Q(0, &1,0), together with the equation

(3 4)
—K—2B,p/C, '~s

Exhaustive analysis shows that this state is absolutely
stable for all parameter values consistent with the
algebraic signs assumed above. We interpret this result
to mean that stress in the $100j direction cannot induce
a phase transition in our model.

L110j case: p= (1/N)p(1, 1, 0).
One finds that the state Q=+Q(0, 0, 1) with Q

given by (3.4) above provides equilibrium in this case,
too. Although we failed to analyze this ca.'se exhaustively,
we did find additional stable states with di6'erent
orientations of Q. We omit the details and merely
remark that we did not succeed in finding states with
lower energy than the one described for pressures in the
range studied by Burke and Pressley and the parameter
values used later in this report. Thus we have no reason
to expect $1101 stress to induce a transition in SrTiOS
although we have no proof of its impossibility.

L1111case: p= (1/K3) p(1, 1, 1).
A locally stable state is given by the equation

K+2Bgp/3Ci 'is
1, I, 1 3.5

under the conditions p) pr, and B,(0, where

pi, =3C,A„'K/Bg(9A'+A„'). (3.6)
When p(pr, , this state is unstable with respect to a
rotation of Q. Although we failed to find an analytic
expression for the low-stress state in this case, we know
that a phase transition must occur.

IV. STRESS-INDUCED TRANSITION

In the previous section we found by analytic means
that application of stress along t 100$ and $110j direc-
tions in SrTi03 should produce linear distortions and we
found no indication of changes that could be regarded
as phase changes. In the case of a L111j stress, we found
a locally stable linear response under the conditions that
B,(0 and p)'pc. More complete analysis of the L111j
case requires numerical computations, which we
present here.

Taking again p=(1/v3)p(1, 1, 1) we assume the
equation

~ =Qi (4.1)
and that Qs may differ from Qi. It is plausible that such

a state is intermediate to the tetragonal state Q=
(0, 0, Q) for p =0 and the trigonal state

Q = (1/~~)Q(1 1, 1)

which is locally stable for p) pI„. We neglect the pos-
sibility of a completely general orientation for Q,
although it cannot be logically excluded.

We eliminate Qi from (2.8) by means of (4.1), then
set BU/BQi ——BU/8Qs ——0 to find the equations

0=3KQi+12A'(2Qi'+Qs')Qi+6A 'Qi(QP+Qs')

+Bop(Q +iQs)/C , i(4.2)

0=3EQg+ 12A ' (2Qp+ Qii) Q,+ 12A„'Q,Qi2+ 2B,pQ, /Ci.

(4.3)
Rather than solve this pair of cubics in Qi and Q3, we
eliminate p between them to find the equation

4A'Q, 4+4A'Q, Q,'+EQ, '+ (E'Q,+8A'Q, '+4A„'Q, ')Q

—2KQP —16A'Qi' —4A„'Qi4= 0. (4.4)

It is convenient to assume a value for Qi, solve the
quartic (4.4) for Qs numerically, and then find p from
(4.3).

Generally, several solutions are found and one
selects the one with lowest U, checking for local
stability in three dimensions by investigating second-
order diGerentials of U in the usual way. We present
here results of numerical computations carried out on a
remote computer terminal.

We choose parameter values which are appropriate
to SrTiOi at 4.2'K. Thus, 3f=0.897 g/cm' is the mass
of two oxygen atoms per chemical formula unit;
p=5.13 g/cm'; C,=C„—C»=2.29X10» C =C„+
2C»=5.5X10» and Ci ——C44 ——1.27X10» erg/cm' are
elastic constants of the cubic phase extrapolated to
4.2 K from empirical formulas of Bell and Rupprecht, "
neglecting

~
T—T,

~

' terms.
The five remaining parameters E, A, A„, B„and 8,

are derived, by inverting formulas of ST, from the
following five quantities measured at 78'K: Raman
frequencies (2ir) 'coi ——3.5X10" and (2m. ) 'co& ——1.05X
10"Hz, i4 spontaneous oxygen displacement Q, =S.X
10 "cm Lmeasured: (4.7+1.2)X10 "cmj" AVi=
3.9X10'cm/sec, and o.=5.5X10—4. The first three of
these quantities are essentially experimental values
obtained from the references quoted. The fourth, 3 V~,
is the step change in the $111j-longitudinal ultrasonic
sound velocity at the transition temperature, " as
extracted from the published data by the present author
Lsee Zqs. (29), (30), and (34) of STj. The fifth, the
spontaneous tetragonal strain o;, lies between the
neutron backscattering value of Alefeld (4.0X10 '),"
and the x-ray value of I,ytle (6.7X10 4).i6 Our choice
of a numerical value for 0; is a compromise between a
fit of our theory to the critical stress to be discussed and
to plezo-Raman measurements. '
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FIG. 1. (110) section of soft-mode-coordinate space. The curve
is a locus of calculated stable points Q as a function of stress p
applied parallel to the D11]axis at 1' =4.2'K. The critical stress
p, =23.0 kg/mm' separates trigonal and pseudotetragonal phases.

The value of E (78 K) thus determined is adjusted
to 4.2'K by direct proportionality (factor=1.94) to the
rhombic splitting of the EPR spectrum of Fe'+—Vp —&

centers. ' ' The sign of 8& is not determined by the data
presented. We choose B&(0 because this is the only
possibility for a trigonal phase (Sec. III) and therefore
for explaining Burke and Pressley's [111]data. ' Thus
the parameter values are (in cgs units) E (4.2'K) =
—3 08X10", A =1.95X10", ~ =—2 41X10", 8,=
1.68)&10" and 8,= 2.51)&—10" (We remark, however,
that this set of values is not consistent with a recent
report of stress dependence of the transition tempera-
ture, as discussed in the Appendix. ) We note paren-
thetically that our value of A„ is negative, tending to
favor trigonal distortion. This tendency is counteracted
by the strain coupling which reverses the sign of the
anisotropy (A„' =6.19&(104').

The results of our computation are illustrated in the
(110) section of Q space shown in Fig. 1. Initially, for

P =0, Q lies parallel to the [001]axis. With increasing
stress p applied parallel to the [111]axis in the range
0&p& p„Q progresses continuously in the (110)plane,
with a slight (&1%) decrease in magnitude as shown

by the solid curve. This curve represents an intermediate
phase which is neither tetragonal nor trigonal. At a
critical value p=p, =23.0 kg/mm', a first-order transi-
tion occurs and the perfectly trigonal state Q =
(1/v3)Q(1, 1, 1) becomes stable. Further increases in

p cause Q to increase in magnitude without deviating
from the [111]axis, as shown by the solid line.

From (3.6) one finds that the trigonal phase is
locally stable down to 19.8 kg/mm', at a Q value 0.1%
smaller than that for p=p, . Also, numerical analysis
shows that the pseudotetragonal phase is stable a
fraction of 1 kg/mm' above p, . Thus, in principle,

cm-1

2-

pc = 23.0 Sr Ti 03: Cr3' 4.2'K

Burke and Pressley

0
0

I I I I I I I I

10 20 30 40 50 60 70 80

p (kg/mme)

FIG. 2. Splitting 6 of R lines in SrTiO&.'Cr'+ versus stress p
applied parallel to principal axes. Curves calculated with four
adjusted parameters.

cycling of p could give rise to hysteresis involving
metastable states of either kind. Indeed the energy
differences are slight [&1% of

~
U(0)—U(p, ) ~],

suggesting that something of this kind could happen.
Since small adjustments to the theory or small experi-
mental disturbances could overwhelm this small diGer-

ence, it may be well to consider the critical stress as
being undetermined by this amount (~3 kg/mm').

In summary, parameter values consistent with
independent experimental data for SrTi03 give rise to a
nonlinear behavior and a distinct phase transition when
stress is exerted along the [111]axis. The predicted
transition stress at 4.2 K is in the range 20-23 kg/mm'
as compared to the critical stress of 24-25.4 kg/mm'
apparent in the chromium-Quorescence data of Burke
and Pressley' (see data points along curve [111]of our
Fig. 2). Theory permits no transition in SrTiOs for
stresses parallel to [100] directions, and we have not
found any for [11,0] directions, as explained in Sec. III.

V. EMISSION ENERGIES

The initial states of the R doublet of Cr'+ in octa-
hedral coordination belong to the excited (3ds)s sE level,
and the final states belong to the ground (3de)' 'A&

level. Shawlow et al. pointed out, in their work on
piezoQuorescence of MgO: Cr'+, that the splitting of the
ground level by noncubic crystal fields should be
negligible because it is an orbital singlet. "This assump-
tion is justified by Muller's EPR observation of 4.0X
10 4 cm ' for the D parameter in the spin Hamiltonian
for SrTi03'. Cr'+ at 80'K,." From this value and the
temperature dependence of the tetragonal crystal field
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discussed in ST one infers that the spontaneous splitting
of 422 is less than 2.0)&10 ' cm ' at all temperatures, or
in the order of 10 ' as large as the observed E-line
splitting (see Fig. 2).

We let P represent the set of configurational variables

Ie, , Q;) and define an effective electronic Hamiltonian
V'(P) with the equations

H =HO+ V(f),

(5 1)

(5.2)

where 6 means complex conjugate, and x is a spin
operator with the properties

xf =l, ~l =—t. (5.3)

Also let p= p(exi/6i)r, and consider the four linear

Here IIO is the electronic Hamiltonian which includes
the cubic-field energy for /=0, and whose eigenstates
include

I
'E) and

I 'A2); V($) is the crystal-field energy
due to the lattice distortion, with V(0) =0. Since we
have subtracted the degenerate ground-level perturba-
tion ('A~

I
V ($) I

'A2) in the definition of V', diagonal-
ization of V in the initial-state manifold yields the
first-order change of emitted photon energy directly.

Since we are not especially concerned here with de-
tails of electron structure, we derive the matrix repre-
sentation of V' from symmetry properties of the excited-
state wave functions. By selecting a basis for the double-
group representation I's of the cubic point group 0 (in
the notation of Koster et al.2i) which corresponds to 'E
we take formal account of spin-orbit e6'ects. Spin-orbit
coupling is important because it mixes the 'E with other
F8 states, some of which lie close in energy according to
calculatlolls.

Since the antisymmetric product [1's'I equals P,+
E+Tg, crystal-field components transforming according
to these representations will interact with the I"

8 level. "
To derive the matrix of this interaction we follow a
procedure partly suggested by Kane's theory of silicon
valence bands. " We consider 6rst a six-dimensional
basis I;s; consisting of products of the real orbital states
uj, N~, N3, which transform according to the single-valued
representation &i (=&,), and the spin states si—- l,
s& ——f . The "effective-p" states ui, ~, N3 are assumed to
transform among themselves under proper rotations
just like the corresponding Cartesian coordinates X~, X~,
X~ (referred to the pseudocubic axes of the crystal)
Spin quantization is assumed parallel to the X3 axis.
Since the spin states belong to I'6, the product manifold
(&4X1'6=&6+&8)2i contains the twofold 1'q as well
as the fourfold I'8 representation of interest.

Let us define X to be the time-reversal operator'5

Ii' =0) LyN2 =SQ3~ Iie3 ———s~,
and others obtained by cyclic permutations of the
indices. Also let cr be the Pauli spin operator. One can
verify directly that the state vectors (5.4) have the
eigenvalue -'P for the operator J J= (L+-,'o)', or
equivalently, the eigenvalue ], for the operator

L rr= 2(1.,+iI2)o-+,'(I., i12)o-++I—boa. (5.5)

This set has total pseudomomentum J=-,' and is known
to transform according to Fs.

The particular linear combinations (5.4) were chosen
u posteriori to yield a simple expression for the matrix
representation of V' to be derived. Using the fact that
V' is real and spin independent one can show that its
representation in a Kramers basis has the form"

V'(k) = (5.6)

where 6 is a Hermitian submatrix with G;;= (i I
V'

I j)
and A. is an antisymmetric submatrix with A.;;=
(i I

V'X
I j). The asterisk means complex conjugate.

We adopt the notation

3I;;(()=3 '(I,
I V'($) I I;), (5.7)

M;y, (p) =—(1/V3)(N; I
V'(p)

I I;). (5.8)

Using the fact that V' commutes with r, one finds by
direct calculation from (5.4) the formulas

1 0 3IIig
G= pm, , I

Eo 1) Eilf»+i~»

M» i'»'1—
—Mi2 )

(5.9)
('o

A. = (yMii+y*3f2g+3E33)
I I, (5.10)
(—1 0)

where y=a' '~'. From the symmetry properties of M,"
one can verify that all of the representations contained
in the aritisymmetric product IF8'I =Ai+E+Tm"

combinations of N, s; defined by the equations

I1&=(1/~3)(p4N l+p 'I l+I 5)
I 2) = (1/&3) (p4li t' +p'N2 f —N3 l ),

X I
1&= (1/%3) (p'Ni t'+p '~ 1'+Is l ), (5.4)

x
I
2)= (1/v3) (p~gil+p 'N2l+Nsf ).

An orthonormal basis, such as this one, in which half the
vectors are Kramers conjugates of the other half is
known as a Kramers basis. One can verify that the
vectors (5.4) form a basis for F8. To show this, let L
be the pseudo-orbital-momentum operator which
operates according to equations of the form
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where the constants V„R"., V», and S'» remain to be
determined. Since f does not depend on i, A as given by
(5.13) is independent of f. Therefore, we shall not write
explicitly any additive term common to all 3f;;
{i=1,2, 3) in the following discussion. Substituting
(2.4) and (2.5} into (6.3) and (6.4), respectively, we
find the relations

M;, = U,Q,2+W, (C„C) '—T;;

U. = V+3 WB.(C22—Ci2) '
with

(66)
(5 11) and2X=ey+22,

(6.7)M,y;= U Q;Q, +W C 'T;;
The shift is simply with

contribute to our matrix for V'. Thus we know that our
Eqs. (5.6), (5.9), and (5.10), with (5.7) and (5.8)
used only to determine the symmetry properties of M;;,
are general, even though the manifold (5.4) inaccurately
represents the true wave functions.

In this system with an odd number of electrons and
no applied magnetic 6eld, the twofold Kramers de-

generacy is not lifted. The 4&4 matrix V' thus has two
unequal eigenvalues e~ and e~. We use the Schawlow et

c/. notations" for mean line shift ) and sphtting 6
given by

X=4—' TrV'= Q M;;. (5.12)

The splitting is found, by expanding the secular deter-
minant of V'—X, to be

5=2( Q M;P—Q M, ;Mtt)'t2. (5.13)
i&j ~&j

The symmetry properties described by the subscripts
of M'... together with (5.12) and (5.13), express the
dependence of the emission lines on an arbitrary per-
turbation of the original cubic crystal field.

VI. EQUATIONS FOR PIEZOFLUORESCENCE

To complete the theory we need to relate the matrix
element M;, to the distortion described by P= IQ;, e;;}.
The formal results of the integrations indicated in (5.7)
and (5.8) can be obtained by symmetry arguments. We
recall that e,; is a symmetric tensor and that Q repre-
sents, 1n first order, a I'otatlon of thc oxygcIl octahcdI'on
surrounding a Cr'+ impurity. The components Q; trans-
form according to T~, which is not among the representa-
tions (Ai+E+ T2) subtended by the set IM;;I.

However, the set IQ,Q;} of products and also the set
&e;; have precisely the same transformation properties
as M;;} with respect to cubic symmetry operations.
Therefore we propose to approximate M;; with linear
functions of e22 and Q2Qt (all h, l).

First consider the shift ), which is proportional to the
change in cubic 6eld. We approximate it with the
lowest-order cubic invariant

X= V,Q'+W, P e;; (6.1)

in which the constants V and 8', remain to be deter-
mined. Making use of (2.4) and (2.7), we eliminate e;;
to find

U, = V,+W,B,C44 (6.8)

123'+43 ' C, (6A'+2A„') C„+2C, )
(6.10)

Splittings:

B.C.)' 2W.B.U, , p'

Supposing Q, (T) to be known from the results of
Secs. III and IV X (T) ls given by (6.2) and A{T)
is given by (5.13), (6.5), and (6.7), and thus the varia-
tion of emission energy with applied stress is known.
The terms U,Q;2 and U,Q,Q, (i=j) in (6.5) and (6.7)
combine the direct crystal field due to Q with the in-

direct contribution through e;; arising from internal
stresses associated with coupling to Q. Only the direct
coupling term V,Q' is present in (6.2) because we
neglected coupling of Q to volume strain in (2.3). The
remaining terms (linear in T,;) of (6.2), (6.5), and
(6.7) represent the crystal-field distortion due to stress
in a linear medium, as in the work of Schawlow et cl. on
MgO: Cr'+."

The results for the linear distortions considered in
Sec. III are given below, with the subscripts on ) and 6
specifying the direction of p.

Shifts:

—EV, V 8, 8',
4a' + 2c,w' c„+2c„p'

:= ', ::)'-".:("")
+p(U jp gl-1+W )2C —2+W 2C -2jp2 (6 12)

—VMU, 2 UB,
6A'+2A„' v3C, 6A'+23„'

M*'= V Q"+W.e" f(Q' Z er~)— (6.3)
~au=

X = V Q2+ W, (Cii+ 2C22) ' Q T,,

To find the splitting 6 we note that considerations of
symmetry dictate first-order relations of the form

M;q, = VQ,Q,+W(eg, (64) (6.13}
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10 kg/mm' in the case of P &oo and up to 57 kg/mm' in
the case of Xy]p. At stresses exceeding these values, ~ypp

and Xyyp make positive deviations from a common line.
Second, according to our discussion in Sec. IV, (111]
stress increasing from zero causes a transitional non-
linear behavior and, for p&pr, , linear dependences of
X~» and 5»& given in (6.10) and (6.13).These features
are consistent with the data in Figs. 2 and 3.

In view of these facts we will restrict quantitative
comparisons to the regions p(10 and p&57 kg/mm'
for [100] and L110] stresses, respectively. We pro-
visionally ascribe the anomalies at higher stresses to
the appearance of new phases. The entire experimental
range of p will be considered in the [111]case.

Our computations require values for the six crystal-
field coeKcients V, lV, U„S;, U~, 8'~ which appear
in (6.9)—(6.13). LWe recall that V; (or U, ) and W,
refer to optic-mode and strain coupling, respectively,
while the subscripts u, e, and t refer to the representa-
tions A &, E, a.nd T2, respectively. ]The remaining model
parameters were already determined in Sec. IV.

Shifts

0 10 20 30 40 50 60 70 80

FIG. 3. Relative shift X of mean R line in SrTiO8.'Cr'+ versus
stress p applied parallel to principal axes. Curves calculated with
one adjusted parameter.

Here it should be remembered that (6.10) and (6.13)
are subject to the condition p& pr, with pr. given by
(3.6), which describes local stability of the trigonal
phase. We note that even when the crystal distortion
as measured by Q,Q, and eI, & is linear in p, in two cases
(Aypo and 6»0) the emission energy is not linear because
the matrix eigenvalues are not linear in 3f;;.

In the nonlinear case of L111]stress with Q~ ——Q2/Q8,
we compute Qa and p as functions of Q& numerically, as
described in Sec. IV. These values are substituted into
the equation

The only crystal-field parameters which influence
the shifts are V and O' . We estimate V from the
temperature dependence of the E-line shift P' in the
absence of applied stress, observed by Stokowski and
Shawlow and exhibited in Fig. 4 (X =Av in their nota-
tion). ' In the cubic phase above the transition tem-
perature T, = 106 K, X' varies with temperature
because of (1) thermal expansion and (2) thermal
dependence of vibronic interactions, as discussed by
Stokowski and Schawlow. ' But our X takes into account
only effects of the static distortion which comes into
play for temperatures 7&T,. Assuming these effects are
additive, the discontinuous change in dX'/dT at T= 7'.
may be attributed to our dh/dT (p=0). Extrapolating

24

&»& ——V,Q'—lV~(C»+2C») 'p, (6.14)

which follows from (6.2), and the equation

d»g' ——4L (U(Qp —Wgp/3Cg)'+ 2 (UgQgQg —Wgp/3Cg)'

+U'(Qa' —Q ')'»
obtained f" m (5.13), (6.5), and (6.7).

VII. COMPAMSON WITH EXPERIMENT

Before launching into a numerical comparison of the
shifts (X) and splittings (6) calculated in Sec. VI with
the piezoQuorescence experiment's of Burke and Press-
ley, it is helpful to make some qualitative observations.
First we note that X&pp and 'A»p are exactly equal and
linear in p, according to (6.9). The data for X, shown in
Fig. 3, are compatible with these predictions only up to

20

12

01
0 20 40 60 80 100 120 140

'K

FIG 4 Shift X' of mean R line versus absolute temperature
in SrTi08.'Cr'+, for vanishing applied stress. Graphical deter-
mination of the parameter P (78'K), used in calculating the curves
in Fig. 3, is indicated.
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TABLE I. Crystal-field parameters for SrTiO3.Cr'+ and MgO:Cr'+.

SrTiO3
W;(cm ') U;(cm 'A. ') V;(cm 'A. ~) y;(cm 'A. ')

MgO
W; (Cm ')

6400
—320
—380

1600'
300b

57b

1600
370

—19

—80
330

—120

1300
+660
&360

a By assumPtion Uts =Vt . By assumption U, &0 and Ut &0.

the high-temperature curve down to T=78 K as
indicated in Fig. 4, and subtracting the ordinate from
V (78'K), we find X(p=0, T=780K) =4.Oem '. Sub-
stituting this and our assumed Q, =5X10 io cm into
the equation V =XQ, ', we find V, =1.6&(10' cm '.

Then we equate the coeflicient of p in (6.9) to the
experimental slope of X»0 to 6nd TV, =6.4)(10' cm-'.
Without further adjustment of parameters we calculate
the curve Xui(p) —X(0) which agrees substantially
with the data, as shown in Fig. 3.

Splittings

According to (6.11) or (6.12), the splitting at
vanishing stress is given by

The fact that the experimentaP splitting for zero stress
varies with temperature in proportion to E, as pre-
dicted by (6.9), was noted in ST.

Computation of 6 as a function of p requires four
parameters. The signs of U, and U& may be chosen
arbitrarily because simultaneous reversal of U, and
TV„or of U& and TV~, does not change d. We let U, and U&

be positive. Fitting these parameters to the data in
Fig. 2, with emphasis on hi~~, we 6nd the values for
U„W„U&, 8"& shown in Table I.

We find that the calculated curve for A»~ in the
transitional region agrees well with the data. The
agreement for AMO and Aim is limited to lower stresses,
with marked deviations for stresses above 10 kg/mm'
in the case of 6ipp, and 57 kg/mm' in the case of 6110.
These are the same critical stresses at which XMO and
)~~0, respectively, begin to deviate from theory.

VIII. DISCUSSION

Our account of the emission spectrum in SrTi03'.Cr'+
is based on the same configurational potential and
essentially the same parameter values with which
ST accounted for certain independent data. We find
good agreement with the emission data except for pro-
nounced discrepancies which appear when the pressure
exceeds critical values in the [100]and [110]directions.
In particular, we confirm Burke and Pressley's proposal
of a transition to a trigonal phase to explain the
"anomalous" [111]data. '" This phase has the same
trigonal pseudoperovskite structure possessed by the

compounds NdA103, PrA103, and LtaA103 in the absence
of applied stress. ~ Indeed, the sign of the trigonal
strain is the same, i.e., the sign of 8, ((0) we were
required to choose in Sec. IV in order to explain the
transition is the same as would be required to account,
in these aluminates, for their spontaneous contraction
along the trigonal axis relative to orthogonal direc-
tions. "

In independent work, Rehwald'~ recently gave an
account of the stress-induced transition to the trigonal
phase. His con6gurational potential is precisely equiv-
alent to ours. The principal difference in the analysis is
that he neglects the departure of Q from the [001)
axis in the low-stress region. We find, however, that
Qiio attains large values in the low-stress phase before
the transition sets in (see Fig. 1).

Since the [100] and [110]anomalies are associated
with apparently critical stresses, one is inclined to
account for them also by phase transitions. The new
phases might well be ferroelectric" because the ferro-
electric mode is already quite soft at 4.2 K in the ab-
sence of applied stress, as indicated by a variety of
measurements, including dielectric constant, " Raman
scattering with applied electric fields, ' ' chromium
fluorescence with applied electric 6elds, " and. EPR in
electric fields. '4 Theoretical investigation of this
possibility would require additional terms in the con-
figurational potential and is beyond the scope of this
paper.

We turn our attention now to implications of our
crystal-6eld parameter values. In qualitative terms,
the crystal-field coefficients U;, V, , and 8'; (i=a, e, t)
as defined in Sec. VI have the following meanings:
S'; measures the crystal field due to strain e alone;
V; measures the crysta, l field due to optic-mode dis-
placement Q alone; U; is the sum of V, and an indirect
strain contribution through internal stress caused by
interaction of Q and e. The subscripts a, e, t identify the
irreducible representations involved.

We now refer to the numerical values for SrTi03
shown in Table I. (We have U, = V, by virtue of our
neglect of the Q-e interaction for this symmetry. ) The
fact that U, and V, are nearly equal, but U& and V& are
not, indicates that in the former case the indirect
contribution is small, whereas in the latter it is greater
than the direct effect of Q.

Since Q and e are mathematically independent
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variables, we can test, in this system, the plausible
assumption that the crystal field acting on a given
impurity is determined principally by the positions of
the nearest-neighbor ligands. Consider a pure rotation of
a perfectly regular octahedron. It is true that, in first-
order, Q represents a rotation through an angle with
components 2a 'Q;, where a is the lattice parameter.
In second order, strains may be combined with the
linear displacement Q in order to preserve the octa-
hedral form, although of course more distant ions will
execute nonrotational displacements. One finds the
required strain components to be

and
e,, =2a o(Q,o—Q'

e;~;=4a-'Q;Q;.

(8.1)

(8 2)

Substituting these values into (6.1), (6.3), and (6.4)
one finds the equations

K=X,Q' with g, = V,—4a 'W„(8.3)

M, ;=y,Q;o—f with g, = V.+2a 'W„(8.4)

M;y; =xiQ;Q; with x,= V,+4a—'W, . (8.5)

The constants x, p„and p& represent the crystal-field
coefFicients for displacements which only rotate each
octahedron about its center. Numerical values for
SrTiOo (a=3.9 A) are given in Table I.

In the case of strontium titanate,
I x, I

is quite small
(y,/V, =—0.05); therefore the A component of the
crystal field is predominantly caused by nearest
neighbors. However, both

I z, I
and

I x& I
are quite large

(x,/V, =0.90, xi/V~=6. 3), showing that more distant
ionic displacements do contribute appreciably to the
E and T components of the crystal field.

We note that the leading term for a potential in a
sourceless region of A&, symmetry is a fourth-degree
spherical harmonic, rather than second degree as in
the case of E, and T». Thus the magnitudes of y; accord
with the principle thai lattice sums converge more
rapidly for higher-order multipoles. This concrete
evidence of long-range E, and T» crystal-field contribu-
tions has important consequences for ligand-field"
and local Jahn-Teller" theories, which are often based
on nearest-neighbor assumptions. The Jahn-Teller
coupling parameter found in EPR experiments on
SrTi03'. Ni'+ could not be reconciled with its value in
Al203'. Xi'+ on a local-strain basis. '~

It is worth remarking that in the absence of spin-
orbit coupling the splitting of an E, level by a crystal
field of T» symmetry should vanish exactly. The fact
that the coeScients relating to T» symmetry are not
consistently smaller than the other indicates that the
2E, level of Cr'+ is close to other F8 levels, in qualitative
accord with the level diagram calculated by Tanabe
and Sugano"

We may relate our crystal-field coeS.cients to piezo-
fluorescence studies in MgO:Cr'+ by Schawlow et al."

Since in this case there is no structural transition we set
A'=oo in our equations (6.9)-(6.13). The shift for
any direction of applied pressure is

X= —W, (Cii+2C») 'p.

The splittings become, from (6.11)-(6.13),

hioo= I 2W.C, '
I p,

~»i=
I (2/~3) W~C~ '

I p,
and

(8.6)

(8.7)

(8 8)

4~»o =~ioo+3~444 (8.9)
The point-charge crystal-field calculations of Schawlow
et al. satisfy the relation (8.9). Substitution of their
data makes the right-hand side of (8.9) exceed the left
by 20%, which is a little more than the stated experi-
mental error. Substituting their data into (8.6)—(8.8),
we find the

I
W, I-values of the last column in Table

I."Although they are comparable in order of magnitude
to the corresponding SrTi03 parameters they do not
agree quantitatively. From our arguments given about
the range of the crystalline-field interaction we would
expect 8' to agree better than 5', and W&, whereas the
reverse may be true if the algebraic signs of 8', and U&

are consistent.

ACKNOWLEDGMENTS

The author is indebted to W. J. Burke and R. J.
Pressley, and to W. Rehwald, for access to their works
before publication, to Dr. Burke for helpful discussions,
and to K. A. Muller for a critical reading of the manu-
script.

APPENDIX

In a recent paper Pietrass and Hegenbarth' have
discussed the tension dependence of T, in strontium
titanate, as measured by Sorge et a/. "They point out
that tension ro applied along the L001j axis makes the
state Q = (0, 0, Q) stable because of the sign of the
strain interaction (our B,)0). In our notation, the
configurational energy (2.8) becomes

U= PK (T)—2B,C 'ro]Q'+A'Q4 (A1)

The transition temperature T= T, is found by setting
the coefficient of Q' equal to zero. DiA'erentiating this
coefficient with respect to temperature we find for the
tension dependence of T,

dT, 48.
dro C,EdK(T, )/dT j (A2)

This is equivalent to the result of Pietrass and Hegen-
barth if we assume the relation g»/g» ————,

' in their
equations, which is close to the value —0.54 that they
find from the data.

According to soft-mode theory we have

K(T) =47rMv'(T) T)T, (A3)

where M is the mass density of the soft corner mode
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and v is its frequency for T) T„and

3B,Q, s =o,C„ (A4)

where the spontaneous distortion parameters Q, and o;
are evaluated at any temperature in the tetragonal
phase (8, and C, are assumed to be temperature in-

dependent). ' Equation (A2) now becomes

dT /drs o[3r—red s(dr s/dT) j r (AS)

which relates only experimental quantities. The quan-

tity dvs/dT= 1.125X 10"Hz'/K has been measured in
the cubic phase, using inelastic scattering, by Cowley
et al.39 Substituting values taken from Sec. IV for the
other parameters in (AS), we find dT,/drs 7.S——X 1,0 '
K/at. , to be compared with the value (18&2)X10 '
observed by Sorge et al. ," according to Pietrass and
Hegenbarth. ' This discrepancy appears to be outside
the bounds of experimental error. We note also that our
(AS) above is equivalent to Eqs. (6) and (7) of Reh-
wald. "
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