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We have made a theoretical study of the transitions induced by a magnetic fjeld for the two-sublattice
canted antiferromagnet at 0 K. The Hamiltonian for the system includes isotropic and anisotropic ex-
change, uniaxial single-ion anisotropy, and Dzyaloshinsky-Moriya D.S»(S& antisymmetric exchange. The
problem is solved in the molecular-6eld approximation with D perpendicular to the antiferromagnetic
easy axis. The equations of equilibrium and stability are solved numerically by computer. The antiferro-
magnetic to spin-Qop transition occurs when the net moment reaches a critical angle a,h(h~) . The paramag-
netic transition is destroyed by the Dyzaloshinsky-Moriya (DM) interaction unless the Geld is applied
parallel to D. For H not parallel to D, me observe a quasiparamagnetic transition which manifests itself
as an inflection point in the susceptibility.

I. INTRODUCTIOÃ

Studies of the phase transitions of the uniaxial anti-
ferromagnet have been made in the molecular-field
Rppl oximation~ ' ln the spin-wRve Rpploxlmation) Rnd
in the Green's-function random phase approximation
(RPA), and Callen decoupling approximations. ' More
recently, the canted antiferromagnet with a Dzyaloshin-
sky-Moriya (DM) antisymmetric exchange interaction'
has been considered in the small-D approximation. '
However, three important questions remain unresolved:
(1) Does the antiferromagnetic axis undergo a true
spin-flop discontinuity? (2) What are the eRects of a
large DM interaction? (3) What happens to the para-
magnetic boundaries'

Following the formalism of Rohrer and Thomas, ' we
rewrite the Hamiltonian Rs a free energy in molecular
fields:

c'= E/1V = 5'L Jg cos(ng —np)

—
2 (I K2) (cos~ag+—cos (x2) +Kg cosAy cosu2

+D cosH sill(&y a2)+ Jm sL]
—gpss/H (slntxy+ sinn2) cos8+H" (sinnq+ sinu2) sin8

+H*(cosa~+ cosn2) ]. {4)

The angles are defined according to Fig. 1. X is the
number of spins per sublattice, nj denotes the A sub-
lattice, a&A. 0.2 denotes the 8 sublattice, bg8,

II. HAMILTONIAN

H= H,„+H,rr+H, l,+H~+H„
where

H.„=-,' Q J,,S,'S;

H,rr= ~~Q K,,S,'S;*

H.~= —lL' Z L(5,*) —kS(5+i) j

(2a)(isotropic exchange),

(anisotropic exchange), (2b)

The magnetic 6eld dependence of the phase bound-
aries has been studied using a Heisenberg Hamiltonian,
retaining all types of second-order interaction9:

Jg= Q J.|,= Q J.s,
aeA beB

J2= Q J."= Q Av,

K,= g K.,= gK...
aeA bcB

K,= gK...= gKb, ,
acA beB

D= g D.t,= g D.g. ,
aeA bcB

I.= I.'{1—1/25).

We can define the molecular fields

(Sa)

(Sb)

(Sd)

(Se)

(uniaxial anisotropy), (2c)
HD = N Q D "(5*5 5'5 *)—

(DM antisymmetric exchange, D= Dj), (2d)
H, = —gpsH g 8; (Zeeman interaction) . (2e)

The total Hamiltonian is

H= ,'Q J;,S; 8,+-,'g-K, ;S,*S,*
u

—kL' Z E(s'*)'—35(s+&) ]
+-,' Q D,"(5,*5 '—5;*5*)—gp~H Q S,. (3)

H~ Jgs/gpg, —— (6a)

Hr = (L—K2) 5/gag (6b)

Hx= Kgs/gps,

HD =Ds/gIJ~.

(6c)

We then transform the angles to a more convenient
set and rewrite the energy as a dimensionless quantity,

~= E/ÃP J,= —cos2$—hr, (cos2$ cos'a+ sin'Q)

—hlr(cos o;—sm p) —hD cos8 sm2$

—2h* sing cosa cos8—2h" sing costa sin8

+2h sinn sing, (7)
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where
hg H——r,/H~, etc. , 80-

I I $ l f I I I I
1

0!y=Ex+P,

CLp =7I'+ CX
—Q.

(9a)

(9b)

70

Our problem is now reduced to solving the equilibrium
and stability equations. The equilibrium equations are

Bp/Bg, = 0

The stability equations are

S(g;, rl ) = (8'p/87)') (pj'p/8g') —[8'p/&g, BY/ j'&0, (11)

where q= (tt, e, n) .

III. ZERO-TEMPERATURE PHASES

We wish to solve for the phase boundaries of a
uniaxial antiferromagnet, with the s axis being the easy
axis, whose xy-plane symmetry has been broken by a
DM interaction with D vector in the Y direction. The
zero-field equilibrium configuration has both spin sub-
lattices lying in the xs plane, "antiferromagnetically"
aligned but each canted toward the x axis an angle Pp,

producing a net moment in the x direction.
(a) h = (0, 0, h) shall be referred to as the parallel or

easy axis case. From symmetry we can see that 0=0.
The first-order transition is characterized by discon-
tinuities in the energy or magnetization and a magnetic
hysteresis. There is no unique spin-fop critical field but
a region in which both the antiferromagnetic and spin-

flop states are stable. The upper boundary of this re-

gion is h, h and the lower boundary is h„. If one in-

creases the applied field from zero, the AF state re-
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1 IG. 2. Critical angle cx,h(hD) for h~ ——0 and hl. ——O. i versus h~.

niains stable up to h,,h, analogous to the superheated
liquid-gas transition. If one then reverses the process,
reducing the field, the SF state remains stable down to
h,,„analogous to the supercooled gas-liquid transition.
The energies of the AF and SF states are equal at the
thermodynamic critical field It th, implying that if hti, &
h&h.,h, the AF state is metastable, and if h,„&h&hth,
the SF state is metastable.

The equilibrium conditions are

Bp/8$= (2+bra+k~ cos2n) sin2$

2hD cos2$+2h sinn cosp=0, (12)

Bp/Be= (hlr+hl, cos2&) sin2n+2h sing cosn=0. (13)

The stability function is

5(u, p) =
I (2+hrr+hI. cos2n) cos2&

+2hD sin2& —h sinn sing} I (hlr+h~ cos2$) cos2a

—h sina sing} —Ih~ sin2u sin2& —h cosn cos$}')0.

The canting of the system in zero field is given by
h=0, and +=0 as

tan2&p= 2kn/(2+hlr+hl. ) .

When cosn/0, @ and a are related by Eq. 13:

FIG. 1. Spin array with angles defined in Eq. (4). sinn= —h sing/(hlr+hl, cos2qh). (16)
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I I I I I I I I l The spin-flop state is stable, 5(——,'ir, g) &0, when

h„(0) &h&h„~~(0).
The equations with hD/0 were solved numerically

(Fig. 3). The paramagnetic transition, which corre-
sponds to p=-,'x or a spin saturation, does not exist
because the DM interaction will lower the energy if the
spins cant slightly. To see this, examine the energy
when Is is large and P=-,'s.—fI, 5~hn/h&(1:

40 e 1+k—lr hl. —2h —hn8— (19)

.30 I s s s I s s s s I

.02 .04 .06 .08 .10 .12 .I4 .I6 .IS .20
hp

Xo matter how large h is, 840 will give a lower energy.
Experimentally, one almost always observes the

thermodynamic transition defined by fgF=6sF. One
usually argues that "nucleation centers" prevent passing
of the equal energy point. "The procedure for finding
h~i, is to define

6—OAF 6SFp

and solve for 6=0. When h~ ——0, the solution is

h, h(0) = L(2+Itic —hl. ) (hlr+hr. ) ]'" (20)

The hnWO equations were solved numerically (Fig. 3).
As one would expect, the critical angle at, h is less than
cx,i,. The critical fields obey h„&h&h&h», but

FIG. 3. Critical fields hth(h~), h.h(h~), and hso(h~) versus hD
for h~ ——0 and hL, ——0.1.

The transition from the antiferromagnetic state to the
spin-flop state, called the superheated transition, is
defined by l,he requirement that S(cr, |I) =0. The solu-
tion with hD=O is well known and is given by

h, h(0) = [(2+hx+lgl) (hlc+hl) ]'~'

The h&= 0 case is characterized by n=0 and &=0 for
h&h, s(0) and cr= —sin for h&h, h(0). When hD&0
there exists a net moment which is in the x direction in
zero field but moves towards the s axis as the field is
increased. Therefore, when 0&k&k, h(hn), n and P are
not zero. As h approaches h, h(hD),

~

rr.
~

becomes larger
and approaches a critical angle cr,h(hn). When h ex-
ceeds h, h(hD), then n= ——,'vr and a discontinuity in
magnetization has taken place. The hD/0 equations
were solved numerically by computer using Newton's
method for three unknowns (Figs. 2 and 3).

The spin-flop state is defined by letting n= —2m.
The boundaries for this phase occur when 5(——,'s, P) =
0. When hD=O, there are two phase boundaries, a spin
flop to antiferromagnetic, or supercooled, boundary
and a spin flop to paramagnetic boundary. The A'D

solutions are

h„(hD) -',
I hn+ [hD'+4—h '(0) ]'"I (21)

Figure 4 compares Eq. (21) with the numerical results
for h~ =0 and h1,=0.1.

(b) We now consider the case where h= (h, 0, 0) is
perpendicular to the easy axis and the D vector. We
use Eqs. (10) and (11) with cr=0 and 8=0. When
k~ =0 the paramagnetic transition occurs at

h„(0)= 2+hx+hL, . (22)

,50-

.40

hlc NUMERICAL CALCULATION

as .50

.20

.IO-

h, s= (h„h, h)'"

only when ha=0.
Taking proper care to include all second-order terms,

one can obtain an approximation for h„(hD) where
Igg)((1:

h„(0)= (2+hz —hr) I (hie+br)/(2+hir+4) ]' ',

(18a)

s a i s s i I s I s & s s I ~
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h0

h„~~(0) =2+&»—hr. .
Fio. 4. Comparison of numerical value of h„(hnl and Eq. (21l

18b for h~ ——0 and hL, =0.1.
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As in the previous case, h~/0 destroys the second-
order paramagnetic transition.

(c) When h = (0, h, 0) we are able to obtain an exact
solution. For h~ =0 the problem is equivalent to
(b). For hn/0,

Be/Bp= (2+hie+hz) sln2$

—2' cos2at cos8—2h cosP sin8=0, (23)

2,0-
l.5-
I.o-

I.5-

~ ~ ~ a $ ~ ~ a ~
$

~

Be/88= —2h sing cos8+2hD sin8 sing cos$= 0,

5(8, P) = [(2+hie+hz) cos2&+2hn sin2& cos8

+k sing sin8](k sinata sin8+hn cos8 sing cosg)

(24)
I.o-
5-

a a a ~ I a a ~ a a a I a

.R 4 .6 .8 l.o I.R 14 l.6 I.8 2.0 2.2 24 2.6 2.8 5.0 5.2
h

—(kn sin8 cos2ata —h cosP cos8)»0. (25)

From Eq. 24,

cos8= (hn/h) cosat sin8.

a a a a /
~ a ~ ~ i a

VIG. 6. Numerical calculations of y versus h for h~ ——0, hI, ——0.1,
and hD ——0.05.

of k (Fig. 6). The zero-field susceptibility is given by

«'= (cos'Pp) /(h„& (0) cos2&p+2hn sin2&p), (28a)

soo - XIQ-4

400-
E

O

'~ ROO-

MnCIR 4HRO
T=D.26O K

H//c' axis
Xc'

«"=2/(kn (k~)+km (o)),

Xp siil afp/(kK+kL cos2$p}.

(28b)

(28c)

The inAection point in the susceptibility corresponding
to a quasiparamagnetic transition was examined by
numerically calculating dx/dh (Fig. 7) as a function of
h. The x and s susceptibilities can be expressed as

x= [h„(0)+hi& sinata(4 —cos2&/ cosqg) ] ', (29)

where we are assuming h) h, h(hz&):

h„(0)=h~~(0) =2+hx+hi, ,

=h„~~(0) =2+hie hz—a 1 ~ a a a I a ~ a
a 1 a a a a I a a ~ a I a a

!5
H(kOe)

-Ioo foI' g*'

foI' x .

Io

FIG. 5. yII versus H for MnC12 4H20. T=0.26 K, H&h ——7.5 kG,
and H~I I =20.0 kG (Ref. 11). The quasiparamagnetic boundaI'y ls given by

d'x'/dh"= 0

h„~=-,'Ih„~(0)+[(h,~(0) )'+4'']'"I (26)

IV. SUSCEPTIBILITY
hq„h„(0)+3(h„(0)hnq/100) "'.

The solution to Eq. 23 and S(8, Q) =0 is 8=&=-',qr at a
critical field: For ho&(1 the approximate solution is

cos etaq„ (4/5)[kn/h—y(0) ], (3o)

(31)

One method of experimentally determining the criti-
cal fields is to measure the susceptibility x as a function
of H. Rives's" data for y versus II for MnCl2 4820
(hx 0, hei 0, hz 0.2) show anomalies at the spin-
flop and paramagnetic boundaries (Fig. 5). For our
system we can define a magnetization

I.O

.8-

~ ~ ~ ~ a a q ~ a a a

M*= sin@ cosa cose,

M"= sin@ coso, sin0,

M'= —Sin@ Sino, .

(2'I)

I.o-
.8-

.2-
The susceptibility is

g'= dM'/dh'.

Ke have calculated p and x' numerically as functions

a q a a ~ ~ I a ~ ~ ~ I ~

.2 4,6 .8 l.o l,2 l4 I.6 l.8 R,o 2.2 24 2.5 2.8 5.0 5.R
h

I Ia. 7. Numerical calculation of dx/dh versus h for h~ =0,
hl. =0.1, and hD ——0.05.
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For the case illustrated in Fig. 7, the numerically com-

puted inRection points occur at

h,„'=. 1.990,

h,„-=2.i95,

p,~'= 74.44',

pq„*——74.97',

h,„=2.009,

h 2+2 12

@,„*=74.0',

s f45

where hrr
——0, hr, ——0.1, hn ——0.05. Equations (30) and

(31) give

V. CONCLUSION

The addition of .a DM interaction to the uniaxial
antiferromagnet with anisotropic exchange yields a
Heisenberg isotropic exchange Hamiltonian with gen-
eral second-order anisotropy. The hysteresis of the first-
order spin-Aop transition is reduced as D is increased
and the paramagnetic transition only occurs when the
Geld is applied parallel to D. Experimentally, a quasi-
paramagnetic transition would be observed as an in-
Qcction point in the susceptibibty for 6elds not parallel
to D.
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The 6rst-order transitions at T1=40'K and T~——87'K in RbFeF3 have been measured as a function of
hydrostatic pressure and applied magnetic Geld. It was not possible to observe the T~=102'K transition
with a magnetic-susceptibility measurement. It was found that (ATI/AP )„=0.35'/kOe, (ATg/hP )„=
0.19'/kOe, (AT1/AI') II——0.18'/kbar and (AT&/AI'} ~= —0.81'/kbar. These results correspond to latent
heats of 0.006 and 0.04 cal/g at T7 and T2, respectively, and relative volume changes AV1/VI=1. 5&(10 ',
hV~/V2= —22&10 '. It is pointed out that a Jahn-Teller distortion to tetragonal (c/a&1} symmetry
in the interval T2& T& T& introduces a strong magnetoelastic coupling. This causes the heavy twinning
that has been observed below T~, and the resulting twinned structure is retained in the entire tem-
peratureinterval 0&T&T~. In the temperature interval TI& T&T2, Rb+-F interactions induce distor-
tions to orthorhombic or tetragonal symmetries that are superimposed on the Jahn-Teller distortion.
The orthorhombic distortion is cooperative across twin boundaries caused by the Jahn-Teller distortion
and also permits spin canting, which introduces a f'erromagnetic component below T2. It is shown how
the interplay of these distortions plus strong magnetoelastic coupling can explain the appearance of two
sets of Mossbauer peaks below T2 and results in macroscopic ferromagnetic components having cubic
symmetry even though the microscopic crystallographic symmetry is "orthorhombic" (T1&T&T~).
The Jahn-Teller distortion changes to rhombohedral (n &60 } for T& T1, in combination with the existing
orthorhombic structure, this produces monoclinic symmetry on a microscopic scale. Nevertheless, it is
shown that the macroscopic magnetization retains its cubic symmetry, that the easy magnetization direc-
tion changes from (100) to the (110), that the apparent moment increases, and that there may still be
two sets of Mossbauer peaks.

I. INTRODUCTION

Above its Keel temperature TED=102'K, ' RbFeF3
has the cubic perovskite structure, but it becomes tet-
ragonal (c/u) 1) in the interval T2( T& TN. ' It under-
goes 6rst-order transitions at T~= 40'K and T~=
87'K; it exhibits weak ferromagnetism at all T&87'K.'
In the interval Tq& T& T2, the structure appears to be

orthorhombic, and below Tg it has lower symmetry,
pI'obably monocllnlc. Thc fcrrolrlagnctlc moment has a
preferred direction along the pseudocubic (100) axes
in the interval T~( T& T2, along the pseudocubic (110)
axes below T~.4 It is remarkable that these noncubic
crystals exhibit a cubic macroscopic anisotropy of the
weak ferromagnetism. A neutron-di8raction study on a
polycrystalline sample shows the dominant magnetic


