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The derivation of lour-temperature series for the Ising model is simplihed by a high-temperature sym-
metry condition, a general proof of which does not exist in the open literature. The magnetic linked-duster
expansion provides an elementary and general proof.

BACKGROUND

We present the proof in detail for the free energy Ii
ef the nearest-neighbor 5= ~ Ising model. The straight-
forward generalization to 5& ~, longer-range inter-
actions, and physical quantities other than F is indicated
in conclusion. The Hamiltonian of the model is

—PX=v g v;~,+hg~;, (1)
(ij)

where o,=1 (—1) for spin up (down), the indices
range over lattice sites, and the sum in the first term is
over nearest-neighbor pairs. The free energy is given by—pF=ln Tre &~.

At low temperatures (1) can usefully be rewritten in
terms of operators measuring the deviation from com-
plete alignment, e,—=~(1—v,),

—PX=S(-,'qv+h)+4v Q e;e;—2(h+qv) Q e;, (2)
(ij') 's

where q is the number of nearest neighbors. The low-
temperature (high-field) series for F is' just the
Yvon-Mayer expansion with chemical potential—2(h+qv). The free energy can be written as

pF 00——=-',qv+h+ Q p" 1.„(N), (3)Ã 0=1

where p=e '", N=v 4", and the L„(N) are finite poly-
nomials' in e,

@(~—1)

I.„(N) =I"«' g Le, rjN,

The coeflicients [e, rj may be determined from the
Mayer graphs. The quantity (1—u) is a high-tempera-
ture variable, so high-temperature series can be derived
from (3),

OP 00 00——=2qv+h+ Z Z (—1)"u"
Ã n=l x=0

STMMETRY CONDITION AND ITS USE

1t is easy to see from (1) that the free energy F has
the symmetry F(v, h) =F(v, —h). This symmetry,
which is explicit in the high-temperature series, is lost
at low temperatures, where series converge only for
p& j.. The high-temperature symmetry condition is

——=-',qv+h+ln(1+@, )+ g (1—I)" ",, (5)
pF ~.(~)
cV (1+~)'"'

with the specification that
2f'—1

v. (~) —= Z v. '"'~"

is a finite polynomial having the symmetry y„(ii) =
p'"y„(1/ii) . Note that this incorporates invariance
under h~ —h. Equation (5) was 6rst conjectured by
Bomb' and has subsequently been proved for various
cases.' To our knowledge there is no proof in the open
literature which is applicable to close-packed lattices
and, spins greater than —,'.
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Equation (5) allows information about the symmetry
to be incorporated into the low-temperature series:
Knowledge of the first (s—1) L„'s determines the
y„'s through y, i. This information [via (4)j puts s
conditions on L, (p), thus reducing the number of
coefTicients [s, r] which must be independently com-
puted, a labor-saving device of considerable practical
importance. '

PROOF

The linked-cluster theorem allows the free energy to
be expanded at high temperatures,

D(F Fo)——= Q C„(h)t", (6)S
where the eth-order coefficient C„(h) is the sum of
contributions from all n-line graphs. F0 is the free
energy when n=—0,

where

2u—1

@.(~) = Z C' '"'~"=~'"C' (1/t ) (10)

Finally, N=e 4" can be inverted, giving v as a power
series in (1—u), so (9) implies (5).'

The proof depended only on the graph weights [via
the simple properties (8) of the semi-invariants] and
not on their embeddings. It is therefore lattice inde-
pendent.

GENERALIZATIONS

Generalization to higher-spin and longer-range inter-
actions is straightforward. To treat a spin variable
ranging 0 = 2S, 2S—2, . . . , —2S, one must in (7)—(9)
replace the combination (1+@,) by

2S

~o(S)= Zu"
DFO/N=—1 (ny"'+p "') =h+ln(1+ p)

and it is useful to introduce the semi-invariants

M„'(ti) =—((f"/dh") ( PFo/N)—

n=o
(7)

Equation (9) then becomes

PF/N =—(2S) '-'qv+2Sh+ lnZO(S)

where

= ( —1)"M '(1/~)

—=p (~)/(1+t )",
n=l 0

(g)
where the polynomial

4nS—1

s@.(t ) = Z sc' '"'t '=~'"' sC' (1/~).

and

p ~~=p &"&=0 for e)1.
Each graph G„ in the expansion for C„(h) carries' a
factor

X[G„,p]= g M,'
t"n

consisting of one factor of M, for each vertex in G„
with s impinging lines, which expresses the entire
magnetic field dependence of G„.There are 2e line ends
in G„, so it is clear that X[G„, pj and, therefore,
C„(h) have (1+p)'" as denominator and the sym-
metrical numerator required. The term -,'qn appearing
in (4) and (5) comes from the contribution to Ci(h)
of the graph consisting of a single bond. We have now
shown that

gp c' (t)——=-,'qv+h+ln(1+ted)+ g r", , (9)7 (1++)2e '

The corresponding generalization of (5) is immediate.
The semi-invariants M„are interaction independent,

so, when longer-range interactions are present (e.g. , a
second-neighbor interaction w), the generalization of
(9) is

where

2(n+m) —1

(+) — g @ (r)+r +2(n+m)@ (]/+)

and ql and q2 are the number of nearest and next
nearest neighbors, respectively.

Equivalent expressions for other thermodynamic
and correlation functions may be written down by
inspection from the linked-cluster expansion.
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