
MAGNETIC ORDERING IN Pr36

» The internal energy of a magnetic system may be written
in terms of the static spin-spin correlation function F(R„T) as
U(T) = —g,v,g(R,)F(R„T), where v, is the number of spins
in the shell of radius R, surrounding a local-moment site, and
g~(R) is the Heisenberg exchange energy fsee, e.g. , Ref. 5j. In
the case of nearest-neighbor interactions the sum reduces to
U(T) =—zgF(T'), with s the number of neighboring magnetic
moments, so that the heat capacity is c,=—sgdF/dT. Thus a
sharp heat-capacity peak implies that I" is falling steeply toward
zero at the ordering temperature. While this argument is correct
only for nearest-neighbor coupling of constant local moments,
the qualitative conclusion that short-range order is suppressed

above a sharp specific-heat peak is more generally applicable."T.Moriya, Phys. Rev. Letters 24, 1433 (1970).
"W. Stutius, Physik kondens. Materie 9, 341 {1969), has

investigated the specific heat of Tb,YI,Sb. TbSb is also a singlet
ground-state antiferromagnet. Sample imperfections rounded all
the heat-capacity peaks he measured, although he traversed the
range 0(kT~/D(0. 13 as x went from 0 to 1."F.C. Zumsteg and R. D. Parks, Phys. Rev. Letters 24, 520
{1970).

2'R. Bachmann, K. N. Lee, T. H, Geballe, and A. Menth, j.
Appl. Phys, 41, 1431 (1970).
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We use linearized micromagnetic theory to calculate the nucleation field and the form of the nucleation
mode for finite-thickness platelets of uniaxial ferromagnets in arbitrarily oriented uniform external magnetic
fields. To carry out this calculation, we use the results of the theory in the limit of very thick platelets,
a generalization of the switching theory of Stoner and Wohlfarth. The nucleation field and mode for smaller
specimens are then found as first-order deviations from the corresponding quantities of thick platelets.
The nucleation mode has the form of incipient strip domains parallel to the field component in the platelet
plane.

I. INTRODUCTION

The domain structures formed in thin platelets of
hexagonal ferrites and rare-earth orthoferrites
have been observed in a variety of external-field
geometries and demagnetization cycles. ' ' Under
many conditions, the patterns exhibit a striking
regularity. Attempts to interpret the observations on
the basis of micromagnetics have been con6ned to
an analysis of domain nucleation in a 6eld lying in
the plane of the platelet"" or in a 6eld lying along
the easy axis of magnetization, ""and to a qualitative
discussion of domain nucleation in a field inclined at
a small angle to this plane. "

In the present work, we extend the theory to de-
magnetization in an arbitrarily oriented field. The
theory is based on the line arized micromagnetic
equations which treat deviations from uniform mag-
netization as small quantities. This micromagnetic
problem is a self-consistent-field problem in the sense
that the linearized equations contain the unknown
orientations of the uniform magnetization at nuclea-
tion, and thus, in eGect, require their own solution
in order to be formulated. " The calculation uses, as
a starting point, the recently obtained solution for
the nucleation field in the limit of thick specimens. "
Using these results as the zeroth-order approximation,
the nucleation field and mode for smaller samples
may be found as 6rst-order deviations by treating
the free-energy minimization as an eigenvalue problem.

In Sec. II, we summarize the procedure (given in

detail in Ref. 16) for obtaining the nucleation field
function or switching threshold curves in the limit
of thick specimens. This is done both for the con-
venience of reference and to provide a basis for showing,
in a later section, the equivalence of this approach
to the linearized micromagnetic equations under the
appropriate limiting assumptions. Section III contains
the solution of the micromagnetic problem of the
uniaxial plate in an arbitrarily oriented uniform ex-
ternal magnetic field. It is shown that the nucleation
mode has the form of incipient strip domains parallel
to the component of held in the platelet plane. This
invalidates the conjecture" that a checkerboard
pattern may be nucleated. The micromagnetic solution
also provides the switching threshold curve for thinner
specimens.

II. SWITCHING THRESHOLD CURVE FOR THICK
UNIAXIAL FERROMAGNETS

We use a coordinate system whose axes coincide
with the principal axes of an ellipsoidal specimen. "
The easy direction of magnetization is assumed to
coincide with the x axis, the applied field lies in the
x-s' plane at an angle P from the s axis, and the uniform
magnetization lies in the x-s plane at an angle 8 from
the s axis (Fig. 1)."

The domain nucleation curve is obtained by equating
to zero both the first and second variations of the
free energy with respect to the magnetization vector
M. The calculation differs from the usual switching-
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acting on the magnetization vanishes everywhere:

MyH„, =O,
where

M= (M„M„,M, )', H=H(sing, 0, cos4),

(3 1)

M, =M(no+a), M, =M (go+ y),

FIG. 1. Field and magnetization geometry.

curve calculation" in that bM is an arbitrary function
of position rather than a constant, It can be shown
that the exchange energy density and part of the
dipolar energy density decrease with specimen size
and may be neglected for large enough specimens.
In this limit, the nucleation threshold is given by

—,'Ll —(D,—D,)/kj sin28= k sin(8 —P), (2.1)

11—(D,—D,)/2kj cos28+ (D,+D,)/2k

= k cos(8—P), (2.2)

where the effective 6eld is given by

Ml. rg= C(V'M, z+V'Mj+PM, z)+(2KM, /M)i

BU „BU„BV„—M —i+ —j+—z
Bx 8$ 88

+M(II singz+H cosPz) (3.2)

and C is the exchange constant and V is that portion
of the magnetostatic potential arising from the mag-
netization. One may identify each term of H, qf with
the exchange, anisotropy, dipolar, and applied 6eld,
respectively. Note speci6cally that the exchange
energy and the size-dependent. part of the dipolar
energy are not excluded in this calculation, in contrast
to the calculation in Sec. II. Here the anisotropy
constant E is positive.

The x and y components of Eq. (3.1) are then

+M„H co@=0, (3.3)
k= MH/2K,

k =K/2vrM2.

(2.3)

(2.4)
C 2—,(M,V'M M,V'M, )—+ —,KM,M,

B is the applied 6eld, E&0 is the magnetocrystalhne
anistropy constant, and D, and D, are the demag-
netizing factors (D +D„+D,= 1). It is assumed that
the anisotropy energy F~ is given by

(2 3)

and that the magnetostrictive energy is negligible or
else can be incorporated in the magnetocrystalline
anisotropy. Equations (2.1) and (2.2) furnish a relation
between h and P which constitutes the domain nuclea-
tion or switching curve for thick. samples.

III. NUCLEATIGN FIELD AND MGDE GF
UNIAXIAL PLATE IN ARBITRARILY

GRIENTED MAGNETIC FIELD

+H(M'. sing —M, cosP) =0,

and U satls6es Poisson s equation

V2U=4&g M.

We linearize Eqs. (3.3) and (3.4) by

M, =M/1 (M,/M) ' (M„/M) ']—'~' y—o (ao/yo) a, ——

so that
V"M.= M(no/yo) P~—,

We consider a ferromagnetic plate lying between
z=&—,'T in the coordinate system of Fig. 1 (such a
plate is, of course, a degenerate form of an ellipsoid).
Let the unlfoI'IQ ITlagnetlzatlon befole nucleation
have direction cosines (no, 0, yo}; superposed on this
will be the nucleation mode with direction cosines
(~, P v).

The free energy of a ferromagnet in equilibrium is
a minimum; when this condition is met, the torque

and write Eqs. (3.3)-(3.5) in dimensionless notation
by using

k= MH/2K, k= K/2~3P,

T = (C/2M2) ~~2 &= 2vrx/T

q= 2my/T, |= 2 /Ts,su= (2/C)'"C.

4 is the first-order part of U and does not include



DOMAIN NUCLEATION IN UNIAXIAL FERROMAGNETS 4587

the zeroth-order term 4xM, sin8. This gives

25'kh cosP 5 gpq/2 p+ ——=0,
~ cosg 2n. Bq

(3.6)
at $=&s,

Nip, = lout at f= &~,

The boundary conditions are

Bn/B)=0, BP/8)=0

S ~ ScosO 8p . ~p—&"+ n+ cos8 ——sine —=0,
2~ 8$

Bn gn BPV"'U =4S ——tang —+—
8( Bf Bq

where
x=2kb cos(8—P) —2k cos28 —2 sin'8.

(Bu/8$), „t,= —45n+ (Bu/8$);„at $= &s.
The general solution of the system of equations
(3.6)-(3.8) is

(3.8)

( ) n= A sinmg cos(pt —ul'),

P= 8 cos mg sin(P) —ul), (3.10)

u= V sinmq sin(p$ —ut ),
where p, m, and u are related by the vanishing of the

(3.9) secular determinant

p'+ e'+ ( 5'x/x)

p'+e'+ (2khS' cosp!m. cos8)

(S/27r) cos'8(p+u tang)

Sm/2n.

45(p+u tan8) —(p'+e')
and e'= m'+u'.

For most platelets of experimental interest, the quantity 5 (which is of the order of the platelet thickness
divided by a Bloch wall thickness) is much greater than unity. We now make the assumption (which will be
shown to be self-consistent later) that in the nucleation mode e' is of order S and x is of order 5 '; then the secular
equation becomes approximately

5'p', 2kb cosp 2kb S4 cosP
p'+ p' +x +2 cos'8(p+u tang)' +, [p'~+2 cos'8(p+u tang)'g

cos8 +' cos8

which, to the same approximation, has the roots The reduced potential outside the magnet is of the
form

where

p~, 2
——~i(25'kh cosp/s cos8) '"

p3, 4= ~i(25' cos'8/s ) '"
pg, g= n tang&pa,

u= exp[—( +m')I' '($ )]ss—inmg

)& P V; sin(p, s —ui'),

u= —exp[—(m'+s') ' '(( 7r) ] si—nmg

X Q V, sin(p, s —uf'),

(3.15)

po~= —(x+2 cosg) 2ztP sin 8+ (g+2 cos'g)

Thus, the eigenfunction will be of the form

n= sinmg g A, cos(p,$—uf ), (3.16)

which vanishes properly at infinity.
The boundary conditions, Eqs. (3.10), furnish the

needed relations to determine the values of the constants

Ai, 8;, and U, . The resulting system of six linear
homogeneous equations can be expressed in ter'ms of
the A, alone by means of Eqs. (3.14):

(3.13) p {p,sinp, s.}A,=O,

[p x+a+ 52./~]
cos'8(P;+u tang) [PP+e'+ 5'h~/w]

where h~ ——2kb cosP/cosg.

(3.14)

with similar forms for p and u. Equations (3.6)—(3.8)
furnish relations between the Ai, 8;, and V;:

V;=
—2n.[pp+e'+ 5'~/s j

A;,5 cos'8(p, +u tang)

g {p;cosp,s}A,=O,
i=1

(3.17)

6

cos'8 (p,+n tang)

[pP+e'+ 5'~/x j )[ '+e'+ 5'hg/s]
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6 p,
. I cos'8 (P~+II tan8)

micromagnetic solution also permits calculation of
the switching threshold curve for thinner samples,
The switching threshold conditions are now

7 s;np~ g, 0 {319) —,'$1—(D —D.)/k7 sin28=h„sin{8 —It„),
Lpp+ e'+ 5'hl/II7

(3.24)

6 2x
(e sinp, lr+ p; cosp,II)—

L1 —(D D.)/—2k7 cos28+ (1/2k) (D,+D,) (1+K)

= h„cos(8—P„), (3.25)

6 2~
(e cosp, lr —p, sin p,II)—

i=1 5

ppp+p+51„/~7 where the subscript Il refers to thin samples, and
+ 45cosp'~ ~'=0 (3 20) where from Eq. (3.23)cos'8 P,+II tan8

—4xbk h„cos@cos'8

T kh„cosg+ cos8

P e 51' IrX,' —48 sinp,
I

A;=0, (3.21)
Leos'8 (p,+Ã tRI18) 7

which has solutions only if the determinant of the
coeKcients vanishes.

It can be shown" that to the approximation in
which we are working, the determinant will vanish if

Ir (e'+ 5'II/Ir) cos2polr —5' sin'poIr= 0.
p0 cos 8

Slllcc tllc cocfflclcnt of cos2poII ls of order 5
q

this
llllpllcs po~g Rnd llcllcc flolll Eq. (3.12)

hy cos 8

2LII'hl(1+ tan'8)+m'(2+hi) 7

~(III'+ll') Pm'(2+hi) +n'hI7
(3.22)

'5L 'Ih(l1 +tan'8)+m'{2+hi) 7

MRX1mlzatlon of Eq. (3.22) wltll respect 'to III Rlld B
yields

5' (kh cosg cos'8)

,
,

2Ir {kh co++ cos8)

&The subscript infinity refers to thick samples and
&= {C/2&)I~' is the nominal Hloch wall thickness. 7
Equation (3.24) is just Eq. (2.1) rewritten at nuclea-
tion; Eq. (3.25) is the generahzation for nondegenerate
clhpsoldal spcclllMlls of Eq. {3.9) wlllcll was wl'lttcll
for D,= i.

Equations (3.24) and (3.25) may be solved for h
and @„ for given 8 using the values of h„and p„ob-
tained from the threshold-switching curve expressed
by Eqs. (2.1) and (2.2). The corresponding threshold-
switching curves are shown in Fig. 2 for the case
D,=1, k=2 and 4, and 2s8/T=0. 2. The switching
curve of the thinner specimen always lies outside
the curve corresponding to the thicker sample. The
interpretation of the threshold curve is the same as
that of Ref. 16; namely, instability occurs when Q
and 8 are in diferent quadrants and h crosses the
curve from interior to exterior. Also, instability always
occurs when h crosses into the loop of the threshold
curve below hard axis saturation. Thus, for any given
demagnetization cycle which starts with a saturated
specimen, domain nucleation (or switching) wiH occur
sooner for thick specimens than for thinner ones.

2Irkh co& cos'8

5'(kh cos@+ cos8)
(3.23)

ThcI'c ls no statlonaI'y point 5$ Q 0) 0Q Oq and Eqs.
(3.23) give the absolute maximum. It is the mode
belonging to this eigenvalue that may be expected
to nucleate, Note here that we have shown the self-
consistency of 'the assumption made earlier that, for
the nucleation mode, (III'+II') is of the order 5
and A: is of order 5 '.

We see from Eqs. (3.23) that the nucleation mode
has the form of incipient strip domains parallel to the
component of 6CM. in the plane of the platelet. This
refutes the previous conjecture" that the incipient
domain structuI'c ls a checkerboard pat tcI'n. The

I'Ic'. 2. One quadrant of the svvitching threshold curves for
D, =1, 4 =2, and 4 for very thick sample and one sample where
2vrB/T= 0.2, Solid lines: thick plate' dashed lines: 6Qn plate.
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The threshold curves, of course, reduce properly to
their thick-specimen values in the limit T/8~".
It was shown in Ref. $6 that in the thick-specimen
limit nucleation of domains always precedes switching

by the uniform rotation mechanism of Stoner and
Wohlfarth" because the uniform rotation switching
astroid always lies outside the full curves of Fig. 2.
This is no longer true of the dashed curves of the
figure which refer to thinner platelets; indeed, the
present theory, in essence, predicts single-domain
behavior for conditions under which the domain-
nucleation threshold curve lies outside the astroid.
This criterion is, of course, a function of the orientation
of the uniform magnetization. Comparing the switching
equation of the Stoner-Wolhfarth theory with Eq.
(3.25) of the present section shows that it will be
met if

(D,+D,) (1+&)+(D, D, ) co—s28&0. (3.27)

Thus, for the platelet geometry (D,=1), using
as given by Eq. (3.26) we 6nd

h„cosg„cos'8 &'"

8 (1+ cos28) hh„cosg„+ cos8i

For most of the range of 0, this inequality will require
a specimen so thin that our approximation no longer
holds. Thus the inequality is only useful in the vicinity
of 8=-,'x, and of course it is always satisfied at 8=-,'x.
We must conclude that our approximation does not
permit us to establish an improved criterion for single-
domain behavior. We do confirm the result of Forlani
and Minnaja" that domain nucleation cannot occur
in an easy axis demagnetization cycle, but the present
calculation makes it clear that the result arises from
a singularity. The theory predicts domain nucleation
for angles quite close to ~m if the plate is thick enough. "
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