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Side-Jump Mechanism for the Hall Effect of Ferromagnets*

L, BERGER

Physics Departnsent, Carnegie-Mellon University, Pittsbifrgh, Pennsylvania li 213

(Received 2 June 1970)

The center of mass of a wave packet undergoes a discontinuous and finite sideways displacement on
scattering by a central potential, in the presence of spin-orbit interaction, This is the main Hall-e8ect
mechanism (pH~p ) for Fe, Ni, and their alloys above 100 K, while asymmetric scattering dominates
below 100 K. Displacement Ay per actual collision is calculated by partial waves. In the case of Born expan-
sion, the leading term of Ay or p~ jp is of zero order in the scattering potential. The magnitude is predicted
correctly (Ay=10-"—10 " m) when using the effective spin-orbit Hamiltonian derived by Fivaz from
spin-orbit interband mixing, The calculation of p~ is extended to arbitrary u,r for compensated and un-
compensated metals. Other nonclassical physical mechanisms proposed by Karplus and Luttinger and by
Doniach and by Fivaz are spurious for the dc Hall effect.

I. INTRODUCTION

The various contributions to the Hall effect of ferro-
magnets can be classi6cd as follows:

(a) Terms caused by the magnetic Lorentz force
and dependent on the field 3 (ordinary Hall effect).

(b) Terms dependent on the orientation of the mag-
netization M (extraordinary Hall e8ect), and which
can be explained by a classical Boltzmann equation
(asymmetric scattering' '). They are caused by spin-
orbit interaction, and are irnportant4 at low temper-
atures.

(c) Terms similar to (b), but which require new
terms in the Boltzmann equation. These nonclassical
terms may bc cxpcctcd to become lITlpoI'tant ' as soon
as the dimensionless quantity fi/e~ is not very small,
where ~p is the Fermi energy and 7 the electron relaxa-
tion time. This corresponds to high temperatures or
concentrated alloys (small r). The Hall resistivity pH

of ferromagnets seems to be more sensitive to these
nonclassical e&ects than the (larger) Ohmic resistivity
p. Kohler's rule, valid4 for the asymmetric scattering,
fails in the nonclassical case.

We show on Fig. 1 the data of Jellinghaus and
DCAndres7 for various dilute Fe alloys at room temper-
ature. Data points for varying impurity concentrations
are located on the same line R, ~ p", where R, is dehned
by the usual equation pir ROB,+R,M, for t——he Hall
resistivity p~, and where m=2, 08 over almost two
decades. As shown by Kooi and by Jan, ' the same
line with the same slope e 2 also holds for varying
phonon concentration in pure iron. On the other hand,
any classical asymmetric scattering theory' 4 would
predict e= I for impurity scattering in dilute alloys.
Thus, the room-temperature data of Fig. j. constitute
a powerful objection against a theory based only on
classical asymmetric scattering.

Existing nonclassical theories'»' are successful in
predicting I 2, but are usually very coInplicated.
There still is a need for a relatively simple formalism
which might more readily be applied to the explanation
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of various specific experiments, and which would pro-
vide an intuitive picture of the physical mechanisms
responsible for the Hall effect of ferromagnets around
room temperature. An important step ("physical
bands") was made by Adams and Blount, " and even
further by Doniach" and Fivaz. "Unfortunately, as we
will show later, the physical mechanism ("dipole driv-
ing term") proposed by the last two authors is spurious.

We will propose a different mechanism, " namely,
the "side jump" Ay which an electron undergoes at
every scattering by impurities or phonons, and which
leads to m=2. The value of the displacement (Ay
10 "m) may be calculated easily by considering the
motion and scattering of a wave packet.

The present paper is dedicated to the proposition
that the complexity of the problem of the Hall effect
of ferromagnets is more apparent than real, and results
mostly from the excessive use of momentum space and
from not using "physical bands" [Eqs. (22) belowj.

II. SIDE JUMP b,y

According to quantum mechanics a fI'cc clcctI'on
(represented by a wave packet) moves on the average
with a constant velocity, "'along a straight line (Fig. 2).
Assume then the electron to be scattered at t 0 by a
central potential. Again, and for the sa,me reasons, the
average electron trajectory after scattering (t))0) will

be a straight line (Fig. 2). In the presence of spin-orbit
interaction, the symmetry of the problem is low, and
there is no reason why the two straight lines should
coincide. Thus two new effects are expected: First, the
two lines form an angle 6 related to asymmetric scatter-
ing LFig. 2(a) j. Secondly, the two lines do not meet
at the center of the scattering potential; there is a small
and abrupt side jump Ay LFig. 2(b)j. We will find
later Ay 10 "m for band electrons.

Of course, the side jump is not instantaneous, but
the details of electron motion inside the scattering po-
tential are irrelevant for our purpose.

The side jump d Y is of no consequence in the case of
conventional experiments where free particles are scat-
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stood in terms of wave packets, but not in terms of
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III. SCATTERING OF PLANE WAVES

The scattering of a free-electron plane wave e'"" by
a short-range square-well potential has been solved by
Smit' in the presence of spin-orbit interaction. We sum-
marize here his results, as a preliminary step to the
problem of wave packets.

The Hamiltonian is H=H. +H„, where

H„= —(5'/2m) 7'+ V(r),

H„= (1/2m'c') (r 'BV/Br) S,I„

V(r) = Vp, r(R.

Keeping only s- and p-wave phase shifts, the wave
function may be written as fs=tPs"+tPs"

Io 20 40 60 80 Ioo 200
]o [IO enm] L=1

fs"——exp(ik x)+ Q b~k~(kr)Pt(cos8),
L=O

r&R

FIG. 1. Extraordinary Hall coefficient R, of several Fe dilute
.alloys at room temperature, according to Jellinghaus and De
Andres. Alloys of concentration larger than 0.05 have been
excluded.

L=1

P, = Q a,j,(k,r)P, (cos8),
L=O

(ks/2rrs) (k' —krs) = Vs,

r(R

tered by atoms or nuclei. This is understandable, since
the particle detectors are usually located at several
cm or m from the target, distances much larger than
hy. But hy is more important in ferromagnetic metals
and alloys, where the mean free path A, of a conduction
electron after a collision may be as small as 10 '—10 ' m.

While asymmetric scattering arises from the collision
term of the classical Boltzmann equation, the side
jump Ay is nonclassical. The physical nature of Ay is
easily understood in terms of localized electrons or of
wave packets, but not in terms of plane waves or of
the momentum representation. Ay exists because the
impurity distorts the wave function locally, and creates
a local current density.

Since, in a disordered dilute alloy, the location of
impurities is almost randem, outgoing wavelets scat-
tered by different impurities have almost no definite
phase relationship. As a result, it is sufhcient to con-
sider the scattering of a wave packet by one impurity
at a time, and to neglect interference phenomena in-
volving two or more impurities. This is especially true
when using the first Born approximation.

Note that the jump is not necessarily transverse to
the incident k. A longitudinal component Ax exists
too, but it does not influence the Hall eGect directly,
and exists even in the absence of spin-orbit interaction.
It is related" to the lifetime ht of virtual bound states.
As in the case of 5y, the nature of 5t is easily under-

Ps«= P qtkt(kr) sinj(d/d8)Pt(cos8),
L 0

r&R

L 1

Ps"——g P t j&(kr) sin j (d/d8) Pt (cos8),
L=O

t=o

h)X

I

t »o
I

~Qy
I

t=o «y

ko t «0 k, t«o

(b)

FIG. 2. Average motion of an electron before and after scatter-
ing by a central potential, in the presence of s in-orbit interaction.
The spin is S I) s. The incident direction is ks i

x. ia) Asymmetric
scatteririg. (b) Side jump by. Actually, these thoro e8ects are
usually superposed.
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where"

jgikr
hp(kr) =-

kr '

h, (kr) = —c""[(i/k'r')+ (1/kr)].

The polar axis i is chosen parallel to the incident di-
rection k. The 9 direction 8= &x, @=0 is parallel to 8
and SJ k.

%e have calculated the following exact expressions,
to be used later:

written
))2'= g cplpk

Assnming * II lr„S ll.glr„ the new system x, y, ~ is
6xed and related to 8 and ko, while the oM system
i, j, i is variable and related to the individual k. The
wave packet is assumed to have been launched at a
time to«0, at the location xo——epfo«0, pp= so= 0, Scatter-
ing takes place at t 0. Then, writing f=f„+P„,set-
ting 0 for the volume of crystal, and assuming

(sinp cosa/p) —(sina cosp/a)b= g-sP
(i cosa/p)+ (sina ja)

~2 2 g 2'

(2)
co= [n'148"'/Q(tI)k)p)']

Xexp[ i»—(t t, )—', (l—r -lr, )—'/(Zk) p ilr —x,],
we obtain

2b. = Q co[exp(ilr x)+boho(kr)+b~h&(kr)(lr x/kr)],

x. . . , , , (3)~ ~ ~

—cosa/a+ slna/a

i co—sa/a+ i sina ja' —sina (i/p'+ 1jp)

0.=ATE,

IV. SCATTERING OP WAVE PACKET

A scattering state" for the case of an incident Gauss-
ian %ave packet of average wave vector ko may be

P,.= P co[—g)h~(kr)(lrXx). S/-', 5kr], r)E.

The last term of P„may be neglected if koR is small.
Then we expand», (1r—1rp)', kr —k,xo, ln(bo/k); d'k,
and in{a~/k) in powers of (k—ko), k„, and k„keeping
terms up to second order in order to take into account
packet dispersion correctly. After integration, if )I)p

represents the unscattered wave packet, and if {I&&0,

4"= So+ &P.,
1rp)'Fp [(x—xp) —(t—t())vp]' . [(x—xp) —vo(t —tp)]p(5/r5) (t—tp) ((()k)'

(2or)P)'(Ak)P)' 2(tax)' 2(~x)'

+t)t, (x x) i, (t t ))—, (—4)—
(tI)k)»o iF — {—[Ar+r —xp—v()(t —tp)]'+BP+2iBg[Ar+r —xp—v()(t —tp)]}
oroi'2))' kor[1—(t(k)'ixp/ko] 2(Ax)P

X[l (8,+)t'A, t()titx)(t —t )](t(tt)'+—(A,+—3,+t),(r x, ) i, (t t,))—, (5—)—
(Ak)'t' yP { [Cg+r xp vp(t—to) ]'+—DP+—2iDr—[Cr+r xp vp(t t())]}—— —
)r'I'2')' kpr'[1 —(t) k)'ixo/k ]exp 2(hx)'

&& [1—2Dp+2iCp —i(5/vp) (t—tp)](tI)k)'+iCo+Do+iko(r —xo) —io)o(t —tp) ~, (6)
)

(t)o= (p (kp),
2»2~kF—

[1+ (») (~/ )(t-t,)])"
bo(k) /k (2/ko) exp[iAo+zAr (k —ko) +id (k —ko) P+Bo+Bs(k—ko) +Bp(k ko)P]t-

(tg(k)/k (1/kp) exp[iCo+iCg{k —ko)+iCp(k —ko)'+Do+De(k —ko)+Do(k —kp)' I,

{1+[(fp/pN) (t—t()) (Ak)']'}"'
Sx(t) =

Ak
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V. MOTION OF CENTER OF MASS
AND SIDE JUMP Ay

The average y coordinate for the wave packet before
scattering ()'((0) is zero, since f 1to. After wave-packet
scattering (t»0), it is found from Eqs. (4)—(8). We
keep only the terms of 6rst order in spin-orbit perturba-
tion and lowest order in Ak. The limits AxAk= j. Rnd
Asdkp+I glvc thc same lcsult

(y) = {y).--+ (y)p--,

(y)'--- f g/3ko'j~x(~= o)]'I f opt Imago*(ko)qi(kp)]

—-', (Di—Bi) ReLbp*(kp)iIi(kp)]I, (10)

(y)o .. —V2 Reqi(kp)/kp'Pkpp((=0)]' (.11)

To zero order in spin-orbit perturbation, thc total
scattering probability is, with similar approximations,

fff I ~4„ I'd'*=4
I

f (ko) I'/k, 'I ~*«=o)]'. (12)

actually been scattered is therefore

(13)
As expected, Eqs. {2)—(3) and (9)—(13) show that

(y)„varies in a uniform and linear manner with in-
creasing time after scattering (t»0). The time-depend-
ent term L6rst term of Eq. (10)] corresponds to an
electron having acquired average velocity and momen-
tum towards left or right, on scattering. It is caused
by "asymmetric scattering" I Fig. 2(a)], i.e., a left-
right symmetry of the differential cross section, ' ' and
is consistent with Eq. (19) of Smit. '

On the other hand, the time-independent part of
(y)., after collision is equivalent to a discontinuous
finite lateral jump performed by the electron I Fig.
2(b)] on scattering. From Eqs. (9)—(13)
hy= lim (y),.

—-', (Di—Bi) ReLbo*(kp)qi(kp)] —Ref qi(kp)/2P)'kp]

I f)o(ko) I'

The average y coordinate of those electrons which have where bo and qi are given by Eqs. (2) and (3).

VI. BORN EXPANSION

If the potential strength Vp is assumed weak, we can expand bp and gi I Eqs. (2) and (3)] in powers of
Vo ———(5'/2m'') (a'—P') .

To erst order:
ho= i(p—sinp cosp) (a'—p')/2p'.

To second order:

h 23 sinp "-, , a' —p'—coop+ ( '—p')
' — i + p+(spcosp)sinp) i p' cosp+p —sinp+sin—p)]) . (15)2mpE p p p'

Then Eq. (14) gives, neglecting terms of order higher than zero,
'

L
—cosp+ (sinp) /p]' 2'"3 1+sinp cosp —sin'p(p '+p ')Ay=— 2(Di —Bi)— (17)2m' 1—L(sinp)/p] cosp 1—L(»np)/p] cosp

~here Di and Bi are given by Eqs. (7) and (8),
d(ln

I bp(kp)/ko I )8$ ko
dko

k
d(ln

I vi(kp)/kp I )
tQO

Hence, to lowest order, 5y is independent of potential strength Vo.
If we add to the assumption a' —p'((1 (Born) the assumption a((1, p((1 (short-range limit), the second term

of Eq. (9) or Eq. (17) vanishes and we obtain finally

where X.=A'/mc is the "rationalized" Compton wavelength, and where kp~10'o m ' at the Fermi level. Note that
this Ay value is independent of both depth Vo and radius R of the scattering potential well. Note also that Ay
arises already from the first-order Born wave. This, of course, was not true for SIIut asymmetric scattering. In
phy»c» «rms, the phase of the first-order wave has a left-right asymmetry, even for incident plane wave. This
ph~~~ »ymmctry becomes important when forming and scattering wave packets, and results in the existence of
the side jump 5y.

This small free-electron vRluc will now bc shown to bc enhanced by ~IO through baIid cRccts.
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8R= (ti/i) —,8k' (20)

(q)i- —-',kXD, D II S. (21)

The interaction of the electric dipole e(q)k of a Bloch
wave with the field E causes a k-dependent energy shift,
and the Fermi surface has no center of inversion any-
more (asymmetric physical bands' "),

~(k)=(fP/2m*)k', E(k) =c(k) —eE(q)a, (22)

and resembles the Fermi surface of a ferroelectric ma-
terial.

As shown by Smit, ' by Adams and Blount, ' and in
more detail by Fivaz, " the combined effect of the
dipole LEq. (21)] and of the impurity potential V(r)
is to yield an effective spin-orbit Hamiltonian,

H "=—(rq/Am*)R '(BV/BR) (RXp),S„(23a)
r.=(m*/3&') & (x&t'/»-)1&m I qXp I

~) I'
m+74

VII. EFFECTIVE SPIN-ORBIT INTERACTION FOR
BAND ELECTRONS

We consider band electrons in a dilute alloy. Added
to the spin-orbit Hamiltonian created by the impurit~
scattering potential V (r) I Eq. (1)],we now have' the
periodic spin-orbit interaction associated with the lat-
tice potential U(x),

H„= —(1/2m'c')S (VU(x)Xp). (19)

The interaction of Eq. (1) can be actually neglected
a,s compared to Eq. (19) whenever the impurity per-
turbation V(r) is not too strong.

Both Eq. (19) and the Hamiltonian —eEx of the
applied electric field have d-d or p-d interband matrix
elements, and it is best"" to eliminate this interband
mixing by diagonalization. The new, redefined, bands
E(k) are called "phvsical bands. ""

Even after interband diagonalization, the position
operator x may be written x=R+q. The first part R
is the usual Wannier coordinate. The second part q
represents""" a periodic dielectric polarization inside
each lattice cell,

ing potentials, an unrealistic assumption in metals, and
the results have only qualitative significance. Inter-
band elements of V(r) are neglected.

Combining Eqs. (18), (23b), and (24), we obtain

hy= (-,'Aping)(2m'c'/m*6)v, ,'=ra-rq 2(9xp'ko)
mn

~0.8X10 "m (25)

for band electrons, in the limit of weak and short-
ranged scattering potential.

Note that, although the effective interaction LEq.
(23a)] arises indirectly from the existence of the
electric-dipole energy shift of Eq. (22), nevertheless
this interaction involves explicitly only the usual part
R= (6/i, )B/itk of the coordinate. Thus the side jump
of Eq. (25) represents a time variation of R, not of
the dielectric polarization g. This agrees with the fact
that, as we have shown above, the side jump exists
even in the case of free-electron scattering, where q= 0.

VIII. TRANSPORT THEORY AT ARBITRARY eo,v'

We assume a model with one band of holes and one
band of electrons. The induction 8 is

I I

s. The "classical"
current densities j„jzof electrons and holes arise from
the time varia, tion of the coordinate R= (fi/i)8/Bk,
but not including the side jumps. The nonclassical cur-
rent densities, associated with the side jumps happen-
ing at every collision, are

J,=s,74e,coax„Ax,= (hy, /v, e,74)j.Xot

Ji,= si 7ti ei A xi,, ckxi, ——(bye/vqei 7ii, ) ji,Xtx (26)

where ckx, and AxA, represent vector side jumps aver-
aged over nonequilibrium Fermi distributions, e, and
n~ are electron and hole densities per unit volume, v,

and v~ are Fermi velocities, and 0. is a unit vector
parallel to M. The relaxation frequencies s„s~ associ-
ated with the dilute scattering impurities are simple
scalars if we neglect asymmetric scattering. 4 Equations
(26) insure that coax„ckxi remain, respectively, per-
pendicular to j„j&even when these, at 8/0, are not
parallel to E anymore. The total current densities are

(23b) I.= j.+J., Ia= ja+Ja. (27)

similar in form to the free-electron interaction of Eq.
(1) but with a coupling parameter enhanced in the
ratio

(2m'c'/m*f't)7, ~~3.4X 10', (24)

where the energy gap between 3d bands m and e is
assumed AE 0.5 eV, the overlap integral y 0.3,
the nearest-neighbor distance p 2.5&10 " m, and
the atomic spin-orbit parameter for iron

(= —(fi'/2m'c')(r '(cjU/Br))~0. 1 eV.

Of course, the effective-mass formalism used to derive
Eq. (23a) strictly applies only to slowly varying scatter-

In the stationary state, we write for the total mo-

menta p„pq of electrons and holes per unit volume,

0= dp, /dt = 74e,E+I,XB—(m, /e, )s,j,
0=dpi, /dt = 7tse~, 8+Ii,XB (mi/ei, )st i, , —(28)

e,(0, 0= e,+e~.

The structure of the right-hand side of Eqs. (28) is

based on the idea that the accelerating effect of the
fields E and 8 and the relaxation effect of the scattering
potentials are independent and simply additive, at least
as far as transverse spin-dependent phenomena are
concerned. For example, even in the presence of scatter-
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ing, there is no anomalous "driving term" of the form
n,e,s, (EXS). This is easy to prove in the case of the
wave function f of the first Born approximation. We
wl lte

p= Q ag(t)y(R, t),

y(Q, t) = expiLQ x—(fik't/2m)+ (1r Et'e/2ni)]

is'7 the wave function to first order in E in the absence
of scattering. Then we find, for k/ko, in presence of
scattering,

I o~(t) I'=& '
I (k I

I'(r)+II-
I ko) I'

X f((It—ko) 'E, t, cu(k) —co(kp) ),
where ko is the incident wave vector, and where 8
appears only in II„.Thus the scattering probability is
symmetric with respect to the (E, S) plane, at least
for the leading term of the Born expansion.

Similarly, the "inside" current J contributes to the
I orentz force in the same way as the "outside" current
j does, in Eqs. (28). We have found that a failure to
'take into account this JXB term may actually result
in a negative value for the resistivity p= E,/(I '+I, )
at 8&0, in contradiction with the second law of
thermodynamics.

Combining Eqs. (26)—(28), we obtain

0=n,e,E+I,XB—(n4/e, ) I t')I„
0=

nisei

E+Ip XB—(nil/ei, )Lt"]Ii„(29)
where Lt'] and ft") are linear operators with anti-
symmetric oG-diagonal elements,

s,n, (»,/Ii, )
P& 1+( ~ /A )2& ( )

and where A, = e./s, and Aq = ei, /si, are mean free paths.
Equations (29) are isomorphous to Eqs. (4) of

our work4 on asymmetric scattering, and thus have a
similar formal solution,

tanCrr = E„/E

(u.+ui, ),

(31)
p= E /(I;+I& ) = L(u, +ui, ) (1+tan'C~)]-') 0, (32)

pa Eyj(I:+I&) = tanC~/(——u, +up) (1+tan'C~Ir), (33)
where the boundary condition is I„'+If= 0, where the
tensors

LT')= (~./e. )Lt'], ET")= (nba/e. )Lt")

p~ (&4+0'a)

+- '( .~y, /A. )+(e,»,/A, ) n„36
0'e+ e A

(Tg —nyet/Tgg )Op 0$ nQeg/Tg2; )0)

(37)
(~ 2/n, e,)+

(aiP/nisei,

)

( .~y./A. )+( .»./A. )
0'e Oh

Note 'tllat. Eq. (38) is of tile ilsual fol'Iil pH=R08~+
E,M, . If we introduce the "extraordinary Hall con-
ductivitv" yii,, ——R,M, /p', then, at

I
8/T„'

I (&1,
I
8/T**"

I «1,
n.[(n,e.2»./hk, )+ (ni, ei,'»i, /Itki, )) (39.)

Thus yH, is a constant independent of impurity con-
centration, and therefore E, ct- p' for varying impurity
concentration, in agreement with room-temperature
data~ discussed in the Introduction. Moreover, Ay, and
hence pH„ is predicted to be roughly independent of
the radius, strength, and sign of the central impurity
potential, in agreement with these data which show
the relation between R, and p to be the same for many
diGerent types of impurity in iron and even for phonon
scattering in pure iron.

As shown by Eqs. (38) and (39), the relative con-
tribution of each band to pII or yH, is actually inde-
pendent of its relative mobility. This paradoxical situ-
ation is possible only because of the nonclassical side-
jump mechanism, and explains how the low-mobility
3d electrons can possibly dominate the extraordinary
Hall eAect of ferromagnets.

A one-band estimate of fair. gives fair, ne'»/Sk
1.0X104 0 ' m ' assuming n=SX10" e/m' »=
0.8&&10 " m k=10' m '. This is within an order of
magnitude of the experimental value~ yH, = 10)&10' for
iron dilute alloys. This is a satisfactory agreement in
view of the rather uncertain numerical value of the
multiplication factor of Eq. (24). Nevertheless, this
result suggests that Ay 10 "m would be experimen-

have the dimension of in inverse mobility (induction),
and where

e,n./T„'
1+L(T*.'—8 )/T**']' '

ehn1~/TxP

1+3(T*u"— .)/T**"]'
are field-dependent conductivities.

In the low-field limit
I
8/T„'

I &(1,
I
8/T,P I «1, Eqs.

(31)—(33) become, if
I T,„'/T„'

I
«1,

I
T,„"/T„"

I &(1,

(..8./~. )+( .8./~. )
&~+0@
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tally more correct than the predicted value ~10 "m.
Note also the very simple and revealing form for one
band, at

I B/T, I
«1,

tanC rr a,Ay/—A—. (40)

prr B„/(n,e,+n——hei, ). (43)

To first order, these formulas are independent of Ay,
and Ayy, . Thus the side jumps are of no influence on
the high-field properties of an uncompensated magnetic
metal. On the other hand, if the metal is compensated
(n, = ni, ), Eqs. (31)—(33) become' at high fields

I
T*.' I (~y./A. )+ I

T**" ~ (~y~/A~)

(44)

p=B*'/n.
I
e.

I ( I
T**' I+ I

T*"
I )»,

I
T-'

I (~y /A. )+ I
T* "

I (&ya/A. )
n

I ' I ( I
T *'

I
+

I
T*."

I
)'pa=—

(45)

(46)

Since T„', T, ", Ay./A„and Ayi, /Ai, are proportional
to the impurity concentration, and since o.,~ M„
Kqs. (44)—(46) imply

tan@~ ~ ~ 'Bgo (47)

p ~ M,'B,'/c, (48)

p~ ~ M, '8,'c'. (49)

As in the case of asymmetric scattering, 4 we obtain a
finite asymptotic Hall angle at high fields, here of order
—4y./A. , and a Hall resistivity proportional to M,B,'.
However, while the high-field asymptotic behavior is
not too difficult to reach experimentally' in iron for the
case of asymmetric scattering, it would actually require

I
(B/T„')(Ay, /A, ) I

»1 in thepresent case. This would
mean fields of the order .8 104 T.

Note [Eqs. (41)—(49)] that the relation prr~ p' or
R,,~ p', valid at low fields, is predicted to break down
at high fields.

A more accurate form of Eq. (37) would add
to the right-hand side small (positive or negative)
linear magnetoresistance terms such that Ap/p

(B,/T„')(Ay, /A, )e„and also the more usual quad-
ratic positive terms such that Ap/p (B,/T;)'.

In the high-field limit

I B./T, I »1, I
B,/T.; I

»1,
A, = const, h@——const,

Eqs. (31)—(33) become, if the metal is uncompensated
(n, Wni, ),

tanCrr B,(n,e,——+nisei, )/(n, e,T, '+nieiT "), (41)

p= (n,e,T„'+nisei,TP )/(n, e,+nisei, )'& 0, (42)

Note also that Kohler's rule, valid4 for asymmetric
scattering, breaks down for the nonclassical side-jump
model. This results from the fact that

I
(cd, ),r, I

=
I
B/S,

I
and hy, /A. are two independent parameters,

appearing in our formulas. Thus the high-field limit
has to be defined carefully, stating whether A., is to be
kept constant or not.

IX. DISCUSSION OF OTHER POSSIBLE
NONCLASSICAL MECHANISMS

The theory by Karplus and t.uttinger' was the first
one to predict R,~ p' and a correct order of magnitude
for R, It is based on the transverse current arising
from the time variation of the periodic electric dipole
[see our Eq. (21)].However, as pointed out by Smit, "
the time variation caused by the accelerating action
of the applied electric field on k must be cancelled in
the stationary state by the decelerating action of im-
purities and phonons. '0 Thus this polarization current
cannot be the correct physical mechanism for the dc
Hall eGect.

More recently, Doniach" and also Fivaz" have pro-
posed that a Fermi distribution for the asymmetric
bands E(lt) arising from the dipole energy shifts [our
Kq. (22)] cannot be considered to be a state of thermo-
dynamic equilibrium. Due to the asymmetry of the
density of states, any relaxation process associated with
impurities or phonons would rather push the electron
system towards some diGerent distribution. Correspond-

ingly, an anomalous "dipole driving term" would exist
in the Boltzmann equation. However, the Born calcula-
tions made by these authors to illustrate that point
seem actually to lead to the opposite conclusion. For
example, Eqs. (12) and (13) of Doniach [or Eqs. (55)
and (56) of Fivaz] show that the electron system will

indeed relax to the equilibrium Fermi distribution asso-
ciated with E(lr) [rather than to the one associated
with e(k)]. And, of course, the total current arising
from the E(fr) equilibrium Fermi distribution and from
the BE,/'Bk velocity operator vanishes"" even when

the band is asymmetric. The "dipole driving term'

disappears when the correct energy E is used (instead
of e) as an independent variable. Actually, the argu-
ments of Doniach and Fivaz, if they were correct, wouM

lead to the existence of persistent currents in any impure
metal without inversion and. time-reversal symmetry
(impure and magnetic ferroelectric), at K= 0.

This does not mean that an anomalous driving
term' cannot exist in the Boltzmann equation, or in
our drift equations (28), where it would be of the form
n.e,s, (EXS) or nieqsi, (EXS). However, as we have
shown earlier, it would appear only in the higher orders
of Born expansion.

We have also found that the addition of such
n,e,s,(EXS) or nieisi, (EXS) anomalous driving term
to Kq. (28) may lead to p(0 at BWO, in contradiction
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with the second law of thermodynamics, unless the
Lorentz-force term is correspondingly modi6ed by the
addition of a s,(I,XB)XS or ss(IsXB)X S term. This
is to be expected, since E and 8 transform into each
other under a I.orentz transformation.

After correction, it is easy to show that the formulas
then obtained for p, pII, and tanCII are identical to
our Eqs. (31)—(33), so that there is no direct way of
experimentally differentiating between anomalous driv-
ing term and side-jump mechanism, except by the
Born order. However, the physical natures of the two
mechanisms are quite diGerent.

X. CONCLUSIONS AND FINAL REMARKS

The side jump Ay is an important nonclassical mech-
anism for the Hall eGect of ferromagnets at room tern-
perature. The srde jump per colhsson cs of order 10 "—
j.0 " m and, to lowest order, is independent of the
range and strength of the scattering potential. Of
course, classical asymmetric scattering is also important
in metals and dilute alloys at low temperatures. Side-

jump theory is developed for a two-band model, at
arbitrary values of co.7..

While the constant hy derived from the lowest order
of Born expansion PEq. (18)]may be suffIcient in the
case of phonon scattering, one would expect higher-
order terms to be important LEq. (14)j for impurity
scattering. This should especially happen for Cr, V
impurities in iron, which form 3d virtually bound states
at the Fermi level. "However, the data of Fig. 1 hardly
show any difference between the various impurities,
and are consistent with the lowest-order theory (con-
stant Ay). This puzzling fact suggests ths, t the effect
of higher-order Born terms of Ay turns out to be nearly
cancelled by the eGect of the "anomalous driving term"
mentioned above.
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