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The first four terms of the high-temperature expansion of the wavelength-dependent susceptibility x(k)
and the spin correlation function S(k) are calculated. Nearest-neighbor exchange interactions are assumed
with general spin values and a Bravais lattice. From these results the first four terms in the high-temperature
expansion of the effective range of the spin correlation are obtained for both ferromagnets and anti-
ferromagnets. The terms are slightly different according to whether the range is defined from y(k) or
from S(k), though they become identical limitingly close to the critical ordering temperature. The cal-
culated properties can all be measured by current neutron scattering techniques.

I. INTRODUCTION

In a recent paper Fisher and Burford' have given
a comprehensive study of the wavelength-dependent
properties of the Ising model. It would be desirable if
we could get similar insight into the Heisenberg model
with general spin value S, since this corresponds to a
case more commonly occurring in nature. The purpose
of this paper is to investigate the high-temperature
expansion of the wavelength-dependent properties of
this Heisenberg model.

An immediate extra complication arises for the
Heisenberg Hamiltonian over the Ising case because
there are two distinct wavelength-dependent properties
of interest. These are x(k), the susceptibility, and
S(k), the spatial Fourier transform of the two-spin
correlation function, where k is a general vector in
reciprocal space. For the Ising model these two quan-
tities are the same, to within a constant factor; the
differences arise essentially because the Heisenberg
Hamiltonian does not commute with S' on any partic-
ular atom while the Ising Hamiltonian does. For the
Heisenberg Hamiltonian the two quantities only become
the same at k=0 or in the limit as S tends to infinity
(the "cia.ssical model" ) .

This paper deals with the expansion of both x(k)
and S(k) at high temperatures. For the special cases
of x(0) and x(v), where v is an antiferromagnetic

reciprocal-lattice vector of a loose-packed material,
Rushbrooke and Wood" have given the expansions to
six terms. This involved a laborious calculation and,
seeing that the analogous calculations at general wave
vectors are even more laborious, this work only goes as
far as the fourth term for a general Bravais lattice of
spin s.

Given the functions x(k) and S(k), an expansion
can be made about the point k= 0 to give

x(k) = x(0) E&—t.'&'+O(&') j (&)
and

S(k) =S(0) t I —$,sk'+O(k') j. (2)

The quantity f as defined by the above equations is
known as the effective range of spin correlation. ' For
the Heisenberg Hamiltonian there are two such effec-
tive ranges $, and t, defined from the functions S(k)
and x(k), respectively. It can be shown that the
effective ranges become equal in the limit as the tem-
perature approaches the critical ordering temperature
from above so that the parameters have the same
critical exponent vl.

The quantities S(k), x(k), g„and g, which are
calculated in this paper are all observable quantita-
tively by current neutron scattering techniques. The
physical principles involved in such experiments have
been reviewed recently by Marshall and Lowde4 and
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will not be discussed in the present paper. In fact, hardly
any measurements of spin correlations have been made
in the range of temperature from about twice the
critical temperature upwards. Only at these tempera-
tures do the terms in the high-temperature expansion
that have been calculated give sufhcient convergence for
quantitative comparison with experiments. It is hoped
that the expansions given in this paper will stimulate
further experimental work.

II. FORMAL THEORY

Firstly formal expressions will be given for S(k) and
x(k) and for their high-temperature expansions.

The Fourier transform of the two-spin correlation
function is given by

Sa(k) V—1 g ~4k (n—m) (S aS a) (3)
n, m

where the superscript a= x, y, or z, ~'lt is the number of
atoms in the crystal, n and m are atomic positions, and
S is the o. component of spin of the atom at n. The
expectation value is to be evaluated at the temperature
T of the crystal. Where no ambiguity arises the super-
script n in the function S (k) will be dropped.

Following the method of Opechowski' and of Rush-
brooke and Wood, ' the high-temperature expansion for
S (k) in powers of P L= (ksT) '$ is given by

" (—e)Sa(k) —V—1 g (ak (n—m) P (S aS a~ r) (4)
n, m t

where 3CO is the Hamiltonian of the spin system and the
expectation value is to be evaluated at temperature
T= 00.

The wavelength-dependent susceptibility x(k) is
formally defined by the equation

M (k) =)(a(k)Ha(k),

where M (k) is the k Fourier transform of magnetiza-
tion in the 0. direction produced by the k Fourier
transform of the applied field H (k) in the (2 direction.

The Hamiltonian of the system 3C is given by

3C=X()—.V ' Q M (k)H (—k),
k, e

where Xo is the Hamiltonian in zero applied field.
High-temperature expansion, following the methods

of Opechowski~ and of Rushbrooke and Wood, ' ' gives

" (—)(l)'
+a(k) g2442fi P ~ik (n-m) g (S a I~ rS a} ).-o (r+&) (

(7)

where the curly brackets symbol I
~ ~ ~ } denotes a sum

over the terms inside the bracket taken in all distinct
sequences; y is the Bohr magneton and g the gyromag-
netic ratio.

If 3C() commutes with S the expressions (4) and (7)
for S (k) and x (k) are identical except for the con-
sts,nt factor Sg2)42P. This is the case for the Ising
Hamiltonian with O. =z and also for the Heisenberg
Hamiltonian if k =0. The latter condition arises because
the Heisenberg Hamiltonian does commute with

S . It is shown in Appendix A that for the Heisen-
berg antiferromagnet x (v) and &Vg2)42PS (T) become
equal in the limit T~T~+, where v is an antiferromag-
netic reciprocal-lattice vector.

Rushbrooke and Wood' ' have evaluated the expan-
sion of S (k) LEq. (4)j up to v=6 for the special case
k=0, and also the expansion of x (k) [Eq. (7)j to
the same order for the special cases of simple-cubic and
body-centered-cubic lattices with just antiferromagnetic
nearest-neighbor interactions at k=v, the antiferro-
magnetic reciprocal-lattice vector. In this paper, S (k)
and x (k) are evaluated for general k values and any
Bravais lattice with just nearest-neighbor interactions
up to r=4. The method used is essentially the same as
that of Rushbrooke and Wood, though in the calcula-
tion of the susceptibility expansion it is necessary to
calculate also terms arising from so-called "even graphs"
and also to calculate terms involving pairs of nearest-
neighbor atoms to a given atom which are also nearest
neighbors to each other (pi&0 in Rushbrooke and
Wood's notation) .

Except for these two types of terms, the agreement
which is found between the present calculations and
those of Rushbrooke and Wood should constitute a
sufhcient checking procedure for the results. A neces-
sary, but not quite sufficient, check on the other terms
has been provided by using the calculated, expectation
values also to determine the fourth moment of the
neutron scattering cross section. This is an evaluation
of the quantity

&ik (n—m) (S ag4S a)
nim

where Z is the Liouville operator representing a com-
mutation with the Hamiltonian. The expression ob-
tained agrees with that given by Collins and Marshall'
using a different approach.

The actual terms in the expansion rapidly become
lengthy as r increases; they are written out in Appen-
dix B.

Two other calculations in this area have appeared in
the literature. Dwight, Menyuk, and Kaplan' calculated
the second term of S(k) for the relatively complicated
spin system found in ferrites. Since our calculation was
completed, Tahir-Kheli and McFadden' published an
expansion of x(k) up to r=3. Their expressions for
r=2 and for r=3 do not agree completely with those
given in the present paper. Their work also does not
agree with the susceptibility expansion of Rushbrooke
and Wood2' and of earlier workers; it is believed that
there is an error in the calculation of Tahir-Kheli and
McFadden for a certain set of diagrams. The correct
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FIG. 1. Neutron scattering S(k) at high
temperatures for a simple-cubic antiferromagnet
with spin -,'plotted from the origin (0, 0, 0) to
the antiferromagnetic reciprocal-lattice vector
{-,', —,', —,'). The scale is such that for a non-
interacting spin system S(k) =1. As the tem-
perature approaches the ordering temperature
T~ the scattering becomes peaked about the
point (—,', —,', ~).
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treatment of these diagrams follows from Theorem II
of Ref, 2.

III. EFFECTIVE RANGE OF CORRELATION

The expression for x(k) given in Appendix B can be
expanded at small wave vector k to give

x(k) = y(0) —Ak'+O(k4), (g)

where for cubic symmetry the parameter A is inde-
pendent of the direction of k. Comparison with Eq. (1)
shows that

g,'= A/y(0) .

The power series in 8 for x(0) can be inverted to
give a power series for x(0) '. Multiplication of this
series with that for A and collection of terms of the

same order in P gives a power series for $,' in powers of P.
The leading term is of order P, so that P, tends to zero
as P tends to zero, as is to be expected on physical
grounds.

Analogous expansions can be made for $,2 and for
both $,' and $,2 in the antiferromagnetic case. The
numerical values of the terms in these expansions are
given in Appendix C.

The series for $,' and for $,2 are not the same; the
differences between them become smaller as 5 increases,
as expected. Arguments on the same lines as those given
in Appendix A can be constructed for the limiting
behavior as the critical ordering temperature is ap-
proached from above. The necessary generalization of
the arguments of Appendix A is that the quantity (~')
nlU. st be expressed as a function of k as well as of $.
This is done using dynamic scaling for the hydro-
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DIRECTION
FIG. 2, Neutron scattering S(k) at high tem-

peratures from a face-centered cubic ferromagnet
with spin —',. The scattering is plotted from the
origin to the $100j zone boundary. As the tem-
perature approaches the ordering temperature
T„ the scattering becomes peaked about the
origin. The dashed line shows the analogous plot
for y(k) at temperature 2T.; it should be within
the scope of current neutron scattering tech-
niques to observe the differences between
x(k) and S(k).
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dynamic region with the result that

hm (g,2—~,2) =0.

Thus the two series become asymptotically the same,
with the same critical index v~. This is not apparent in
the limited number of terms given in Appendix C,
especially for small values of the spin S.

Though all the terms in the series are positive, it
does not appear to be quite as regular as the series for
y given by Rushbrooke and Wood."Use of the ratio
technique indicates divergence at the same temperature
as the corresponding series for y to within the uncer-
tainties of the extrapolations (about 10/e). The series
are too short to enable any good estimate of the critical
exponent v~ to be made; our best estimate is 0.68&0.07.
Fisher and Burford' have obtained the first six terms
in the series for the ferromagnet, though their actual
results do not appear to be quoted in the literature.
They claim that for the face-centered-cubic lattice with
5= ~ the critical exponent is 0.692~0.012.

IV. NUMERICAL VALUES

In this section some numerical values of x(k) and
S(k) are given. The series are too short to be of value
in determining properties at temperature close to T„
but for temperatures greater than about 2T, the con-
vergence is satisfactory. Thus the series investigates the
short-range order of a spin system at temperatures
greater than 2T, . In Fig. 1 the function 5(k) is plotted
for a simple-cubic antiferromagnet with spin 2 at four
temperatures. The data are plotted with k in the [111]
direction, with k varying from the origin (0, 0, 0) to
the antiferromagnetic reciprocal-lattice vector (~, 2, —',).
The scale is such that for a noninteracting paramagnetic
spin S(k) = 1. Around the origin S(k) is less than 1,
but around the point (—',, —',, —',) $(k) is greater than 1,
as would be expected qualitatively. The short-range
order persists at temperatures well above T,.

It is clear that the curvature of the plots at the point
(2, —'„—',) increases as the temperature decreases. This
shows the increasing range of correlation as T~ is
approached.

There appear to be no careful quantitative measure-
ments of $(k) except in the critical region. Windsor
et a/. "have reported some qualitative data at 3.5T, for
rubidium manganese fluoride arising from an investiga-
tion of the frequency spectrum of S(k). Their results
have the same qualitative features as Fig. 1, but the
degree of short-range order observed is only about two-
thirds of what is predicted in this paper.

It should perhaps also be noted that the calculations
here show that corrections for short-range order must
be made to paramagnetic form-factor data taken by
neutron scattering techniques. For example, Erickson"
typically took data at 8T„a temperature where correc-
tions of up to 20'~/~ must be applied.

Figure 2 shows the analogous plot to Fig. 1 for a
ferromagnet. This time the L100] direction of face-
centered-cubic lattice has been chosen with S= 2. The
plot is similar to that for the antiferromagnet given in
Fig. 1 with no significant alteration of the main fea-
tures.

At the temperature 2T, the dashed line indicates the
analogous plot for x(k). The differences between the
plot of $(k) and of x(k) are small but it should be
within the scope of present-day neutron scattering
techniques to observe these differences, at least for
S 2

APPENDIX A

It can be shown that, 4 above T„
00 1 e 50)p

x (k)= ~Pgi" -5 (k ~)d~
Lpg

and

5 (k)= 5 (k, &v)d~,

where

SN(k ~) —gT
—1 P eik &n—m) (2&)

—1

n, m

X«e '"'(S. (0)5- (t) )~«

with $„(t) the n component of spin on the atom at n
at time t.

At T& T~ and k=v for Heisenberg antiferromagnet
the function S (k, &o) tends to a 5 function in au.

Just above T, it would appear to be satisfactory to
expand the function e ""~ as a power series in As&P, and
we assume this to be the case. Then we have

x (~) =-~'PgV I1—k& P+sL(& P)']IS (& )d .

For a centrosymmetric lattice the principle of de-
tailed balance shows that4

S (v, —(u) = e e" S (v, a)).

Expanding the exponent also, we obtain

x (~) =-'QgÃ L1—(A &'P'~')+O(~')]5 (~ ~)d~

where

= VPg'p'5 (T) (1——'5'P'(M')+O(N'))

(pS (v, sr)d(u/5 (v).
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TABLE I. First four expansion coeKcients of P for the simple-cubic lattice and spin values S of —,', 1, $, 2, z, and 3.
The coefFicients are expressed in units of the lattice constant a.

Spin S

0.5
1.41667
2.91667
5.49167

1.333
10 AAAA

65.5556
390.0148

2.5
37.0833

451.9167
5 267.9583

4.0
95.333

1 886.267
35 834.933

5.833
203. 194

5 907.806
165 246.440

8.0
382.667

15 326.667
591 237.867

0.5
1.58333
3.91667
8.625

1.333
10.8889
72.6667

457.0370

2.5
37.9167

476.9167
5 724.9583

4 0
96.667

1 950.267
37 734. 133

5.833
205. 139

6 043.917
171 181.662

8.0
385.333

15 582.667
606 616.0

0.5
1.25
3.5
4.91667

1.333
10.0
69.3333

381.5062

2.5
36.25

464.8333
5 215.4167

4.0
94.0

1 918.933
35 625.467

5.833
201.25

5 976.833
164 605.756

8.0
380.0

15 456.0
589 598.667

0.5
1.75
2, 5
7.33333

1.3333
11.3333
62.2222

452.2716

2.5
38.75

439.8333
5 730.8333

4.0
98.0

1 854.933
37 824. 133

5.833
207.083

5 840. 722
171 568.272

8.0
388.0

15 200.0
607 777.333

Now dynamic scaling" predicts that co will scale asp". This implies that the terms in S'(v)(&v') and
higher on the right-hand side of the above equation
tend to zero as the temperature approaches T~. Since
both y (v) and S (v) become infinite at T~ it is clear
that their critical exponents must be the same and that

lim LXPg'p'S (v) —y (v) j=0.
T~T++

APPENDIX 8

In this Appendix formal expressions are given for
y(k) and for S(k) . Following Rushbrooke and Wood, "
it is convenient to work in terms of the spin variable X,
equal to S(S+1), and in terms of the dimensionless
reduced temperature 0, given by k&T/J where J is the
Heisenberg exchange parameter. Then

y(k) =.Vg'p'l3-', X Q x 8 ".

At k =0, or at k =v for the antiferromagnet, the
coeScients x„reduce to the coefficients a„and a„' given
by Rushbrooke and Wood.

It is found that

xp= j.,

xg ——3XZg,

x2= —,'Xt 4XZ2—Zi —2sj,

xg ——(X/27) L3, (12X'—8X+3)Zi+3s

+8X'Z8 —4XZ2+8X(s —1) (3X—1)Zi

—12X'(2s —1)Zi—4XPisj,
x4 ——(2X/81) I

—0.9L (6X'—6X+2) Zi

+ (4X'—4X+3)z]—3X(2X—1) (s—1)

X (3Zi+2s)+0.6piXL(56X' —24X+3) Zi+6sj
—4X'p2s+8X'(3X —1) (s—2) piZi

+8X'(3X—1)Z2L(s —1)' —pi] (s—1.)-'

+1.2X(12X'—8X+3) Z2+ 4X'(3X—1)

&& (s—2) Z,—6X'Z, +8X'Z,+3X'(2s—1)

)& (3Zi+2z) —24X'(s —1)PiZi —12X'Z2

&& (3s—2) —0.6XLs(z—1)—Z2] I.
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TAax, z II. First four expansion coefFicients of P for the body-centered-cubic lattice with spin values S of —',, 1, ~ 2, $, and 3.
The coefFicients are expressed in units of the lattice constant u.

Spin 5

0.5
1.91667
5.83333

17.025

1.3333
14.0

124.8148
1 082.8938

2 ~ 5
49.5833

849.8333
14 233.7917

4 0
127,333

3 528.933
95 742. 667

5.833
271+25

11 023.315
438 953.785

8.0
510.667

28 553.333
1 565 230.4

0, 5
2.08333
7.16667

23.13056

1.3333
AAAA

134.2963
1 209.5704

2;5
50.4167

883.1667
15 090.0972

4 0
128.667

3 614.267
99 288.089

5.833
273.194

ii 204. 796
450 012.079

8.0
513.333

28 894.667
1 593 849.422

0.5
1.75
6.58333

16.0

1.3333
13.5556

129.7778
1 066.2469

2.5
48.75

866.9167
14 128.3333

4.0
126.0

3 572.267
95 317.733

5.833
269.306

ii 115.028
437 646.914

8.0
508.0

28 725.333
1 561 876.0

0.5
2.25
5.25

21.66667

1.3333
14.8889

120.2963
1 208 ' 5185

2.5
51.25

833.5833
15 133.3333

4 0
130.0

3 486.933
99 553.733

5.833
275. 139

10 933.546
450 980.185

8.0
516.0

28 384.0
1 596 566.667

The notation is the same as that of Rushbrooke and
%'ood, with 2' the number of nearest neighbors to any
given atom, and p~ and p2 the number of closed non-
intersecting circuits of three and four neighboring atoms,
respectively, involving both a given atom and a partic-
ular one of its nearest neighbors. For the simple-cubic,
body-centered-cubic, and face-centered-cubic lattices
s equals 6, 8, and 12; p~ equals 0, 0, and 4; and p2 equals
4, j.2, and 22, respectively.

Z„ is the sum of the cosines of the scalar product of
k and the end points of all the nonintersecting vmlks of
r steps between neighboring atoms, starting from the
origin. Formally

Z~= P cos(k y)

Z2= ZZ «sLk (e+e')3(1—b-. ,, )
p pI

Z3= Z&Z«s[k (e+e'+e") j(1—6-. ,')
p pl pf/

X(1—8, , )(1 8p, p+I ), —
etc.

In an analogous way S(k) can be expanded to give

S(k) =-',X Q s„8—".
~0

It folio&vs from Theorem II of Ref. 2 that all the terms
in S(k) for r)0 must be k dependent. At k=0 the
coeScients s„are identical to the coe%cients e„given
by Rushbrooke and Wood. The expansLon gives

sp= 1)

sg ——-', XZg,

sg ——-', X[4XZ2—3Zgj,
s3

——(X/27) {[2.4(3X'—2X+2)+SX(s—1) (3X—1)

—4Xpg —12X'(2s—1)]Zg—4XZg+ SX'ZI I

s~
——(X/81) ([—9(2X'—2X+1)—30X(2X—1) (s—1)

+1.2Xpg (56X'—24X+9) —SX'pm+ 16X'

X (3X—1) (s—2) px+30X'(2» —1)—48X'

)& (s—1)pg]Zg+ {16X'(3X—1)[(s-1)'—pg]

X (s—1) '+2.4X(12X'—SX+3)+SX'

X (3X—1) (s—2) —24X'(3s—2) I

X Z2 —12X'Z8+ 16X'Z4).
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Than, z III. First four expansion coefFicients of &-'for the face-centered cubic lattice with spin values 5 of —,', 1, —,', 2, —,', and 3.
The coefricients are expressed in units of the lattice constant a.

0.5
2.9167

14.6667
68.1492

1.3333
21.1111

300.2222
4 031.8537

2.5
74.5833

2 020.6667
51 994.4735

4 0
191.333

8 350.267
346 945.285

5.833
407.361

26 018.222
1 584 043.227

8.0
766.67

67 294.67
5 634 609. 12

0.5
3.0833

16.6667
86.2659

1.3333
21.5556

314.4444
4 376.2882

2.5
75.4167

2 070.6667
54 127.7235

4 0
192.667

8 478.267
354 828.485

5.833
409.306

26 290.444
1 605 j08.712

8.0
769.33

67 806.67
5 678 462. 98

0.5
2.75

15.4167
68.6742

1.3333
20, 6667

305.1852
4 043.0191

2.5
73.75

2 037.75
52 069.4318

190.0
8 393.6

347 254. 218

5.833
405.417

26 109.935
1 585 004. 188

8.0
764.0

67 466.67
5 637 091,52

0.5
3,25

13.4167
90.0076

1.3333
22, 0

290.9630
4 490.2783

2.5
76.25

1 987, 75
54 959.4318

4 0
194.0

8 265.6
358 376.618

5.833
411,25

25 837.713
1 616 343.377

8.0
772.0

66 954.67
5 707 792.85

APPENDIX C

In this Appendix the high-temperature expansions
for t are g1ven. Uslllg the methods described 111 the
text, we can express P as

The coeScients of the analogous expansions for the
antiferromagnet about the point k=v will be called
8p and K'g .

The expressions for the higher terms in these expan-
sions are rather long and cumbersome; only the erst
two terms will be quoted explicitly. Numerical values
for the higher terms are given later in this Appendix.

The expansion gives

vl tl K1 Kl/ 9XS~/pl ij

v2
——(Xs/54) L4X(s—1) (pP) —(4Xs+1) (pP)j,

w2 ——(Xs/54) L4X(s—1) (pP) —(4Xs+3) (pP) j,
rg' ——(Xs/54) L4X(s—1) (pP) —(4Xs—1) (pP)7,

m 2' ——(Xs/54) L4X(s—1) (pP) —(4Xs—3) (pP) j,
where (p,') is the mean-square distance between an
atom and the set of atoms described in the cosine func-
tion of the definition of Z, (Appendix 8).

Tables I-III give the values of these coe%cients for
the simple-cubic, body-centered-cubic, and face-cen-
tered-cubic lattices, respectively.
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