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We consider a system of 2E electrons in a periodic loop of X lattice sites. These electrons are restricted
to occupy the subspace of two degenerate bands. The interaction within a band is limited to nearest-neighbor
and on-site Wannier integrals, but is otherwise arbitrary. The interaction between bands contains the
comp/ete set of intra-atomic terms but no nearest-neighbor term. The spectra of one-spin-flip excitations
relative to the saturated ferromagnetic eigenstate are calculated exactly. The results show that it is necessary
to have the intraband nearest-neighbor exchange coupling in order that the lowest spin-wave branch lie
above the saturated ferromagnetic eignestate. Conditions for the local stability of the saturated ferro-
magnetic eigenstate are given. It is shown that the saturated ferromagnetic eigenstate can still be stable as
a result of the nearest-neighbor exchange interaction J, even when the individual atoms would be non-
magnetic when J is turned oR.

I. INTRODUCTION

IQ R pI'cvious paper) w'c coQs1dcI'cd R system of 7
interacting electrons in a periodic loop potential which
has iV lattice sites. A one-band Hamiltonian containing
only nearest-neighbor interaction terms was considered,
and the onc-spin-flip spectra relative to a saturated
ferromagnetic eigenstate {the SF state) were calculated
exactly.

It was found that the characteristic terms contribu-
ing to the spin-wave spectrum are the band term, the
"correlation" term (~m't e J ), and the intersite ex-
change term. The local stability of the SF state results
from a balance between the ferromagnetic tendency due
to the direct intersite exchange term, and. antiferro-
magnetic tcQdcncy from 1ndircct effects stcInming from
the band and other interaction terms. In Rcf. 1, the
effects of the latter terms on the one-spin-flip spectra
were for the first time calculated exactly for a one-band
model with nearest-neighbor interactions. It would then
be natural to ask ho% would the local stability of the SF
stRtc bc chRngcd by having d, bRQd dcgcQcrRcy.

In an early paper, Slater, Statz, and Roster' con-
sidered the ease of two electrons in a nondegenerate
band and found that the lowest state is always a singlet
state; they then considered two electrons in a doubly
degenerate band and found it possible to have a triplet
state being the lowest state. As a result, it was proposed
that the intra-atomic Hund's rule coupling may be the
key mechanism that is responsible for band ferromag-
netism. Since then this point of view has been advocated
by many authors, ' and magnon spectra were calculated
us1ng VR1 ious approxlmatlons.

In the present article we shall consider a system of 2X
interacting electrons in a periodic loop potential which
has .V lattice sites. The Hamiltonian to be considered
represents the case of two degenerate bands. It includes
the band term, the correlation term, the nearest-neigh-
bor exchange interaction term within a band, and the
(;omp/eke interhand intra-atomic terms. ' The explicit
form of the Hamiltonian is as follows:
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where C;, '~)~, C;,.&~), and e;,,&") are the creation,
annihilation, Rnd number operators of the ith Wannier
orbital with band index 0 and spin index 0, «r=+, —.
The intraband cocScients V, J, U are taken for
simplicity to have the same value for each band. '

The degeneracy of the band makes it possible to have
four types of onc-spin-flip states relative to a saturated
ferromagnetic eigenstate which has total and s-com-
ponent spin quantum number 5=M=X, and is a
respectable candidate for the ground state.
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The spectra of aH four types of one-spin-Rip exccta-
tions are calculated exactly. Ke will erst treat only the
band term, the correlation term, and the "essential"
part of the interband intra-atomic terms, i.e., the V12,

J», and D12 terms; these will later be referred to as the
Hund's rule terms. The complete Hamiltonian in Kq.
(1.1) will then be treated.

There are two central results of the calculation. First,
without intraband (nearest-neighbor) exchange cou-
pling, the saturated ferromagnetic eigenstate could
never be stable. Second, it is possible for the SF state to
be, at least, locally stable as a result of the mutual
polarization among atoms through the nearest-neighbor
exchange interaction J, even when the individual atoms
would be nonmagnetic when J is turned o6.

If there is no coupling between the bands, there would

be two degenerate spin-wave states plus pairs of de-
generate exciton states plus four degenerate excitation
bands. When the interband interaction is introduced,
the following happens: (1) The pair of degenerate spin
waves split into two distinct branches separated by
order of magnitude 2 J&o', (2) two new exciton states
appear, separated also by order of 2J», which split oA'

from the continuum; (3) the continua of excited states
split into two, separated by order of 4W; (4) the old
excitons are also spbt by order of 4W. We shall be
interested in this paper in the erst three of these eA'ects.

The two spin waves and two new excitons states are
very similar to the four states found for One case of
two electrons occupying two degenerate levels, For this
reason, we start the discussion with a brief description
of the two-electron case.

II. TWO-EI ECTRON CASE

Let us consider the case of two electrons which are to occupy two degenerate single-particle states 4 and%',
i.e., consider the Hamiltonian

(2.2)

e= gi(*,, P,)+V([ x,—*,~), (2.1)
i~1

where &&&, is the single-particle Hamiltonian, and V(x~—») is the interaction between the electrons, and

AC =@4, M =«%.
Taking spin and Pauli s principle into account, there are six states to be considered. These states @re

C &"»=-,'V2[C (x&)+(xo) —4 (x&)4 (xo) ](+,+),
C&"""&=-,'&2[C (x,)+(xo)—+(x&)4 (x,)](—,—)

C'"'= o~2[C'(») +(xo) —+(»)4'(») ]o~2[(+, —)+ (—,+)], (2.3)
c"'=l~[+(»)+(.)++( )c(»)]K~[(+,—) —(—,+)],
C&"=C (*)C (»)!~2[(+,-)—(-, +)],
4&'&=0 (x )+(»)-',K2[(+, —) —(—,+)],

where (+, —), ~ ~, etc. represent the spin functions.
The parallel spin states, C'"» and C'd'""&, have total spin quantum number 5= 1. The other four states wiB be

called one-spin-Qip states.
Let us solve the energy eigenvalue problem in the subspace spanned br, these six states. The matrix elements are

calculated to be

(H;, Eo;;)=—
0 2 Jyo+Eo —E

(&+Ao —Un+ Eo—E)

where E is )he energy eigenvalue, and

a;,—= (c &'&
i
8

i
c & & ),

Eo—= Un —ho+ 2oo,

D12

i, j=up, down, 1, 2, 3, 4

( f&'—&u+ Ao+ Eo—E)

(2.4)

(2 5)

(2.6)
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U» =—jdxdy C*(x)4'*(y)%'(y) C (x) V(x—y),

J»—= jdxdy C *(x)@*{y)C (y)C (x) V(x—y),
D»= j—dxdy Co(x)C*(y)+(y)%'(x) V(x—y),

U—= jdxdy C*(x)C*(y)C (y)C (*)V(x—y),
W=—jdxdy C *(x)%*(y)% (y)% (x) V(x—y).

In Eq. (2.4) we have assumed, for mathematical simplicity, that C and 4' are real functions, and that

jdxdy e'(x) C'{y}V(x—y) = jdxdy e'{x)%'(y) V(x—y)

(2 'f)

(2.8)

jdxdy C (x)% (x)%'(y) V(x—y) = jdxdy C (x)%'(x)C'(y) V(x—y).

Also, using the fact that 4 and%' are real functions, we have

JI2= Dj2 (2.10)

It is clear that the parallel spin states, C &"» and C &~'""&, are themselves energy eigenstates with energy E'"»=
E&~'""~=Eo. The one-spin-Rip state with 5= i, the 4&') state, is also an energy eigenstate with energy

The problem now is to solve the 3&3 determinantal equation for the energy eigenvalues of the one-spin-Rip states
with S=o,

2 J»+Eo—E

( I U»+ ~») +Eo (2.12)

(U—U»+ A~)+Eo E—
The solutions are~ uslIig the fact that Jy2=Djo)

E,& & —Eo=2Z»+-,'((U—U») —P(U—U„)+16W']"j, (2 13)

E,"&—Eo——2 J»+-,' ( ( U—U») +L( U—U») '+16W'j'" }, (2.14)

Z, &» —Z,= U—U' . (2.15)
The superscripts and subscripts are used to make correspondence with calculations of later sections. In general,
J»&0, U—U»&0; in order that the ferromagnetic (5= 1) states are the lowest state, the following condition
must be sat =fied:

+8( ) +0+0
or

AP+ot»(U —U»} & W' (2.16)
It is clear that the W term is a source of antiferromagnetic effects, and when W=O, the ferromagnetic (5= 1)

states are the lowest states. This is a clear manifestation of the Hund's rule mechanism.
Thus we see that in the two-electron problem (with two degenerate states) there are four distinct excitations

relative to the parallel spin states. Ke will later see that in the band problem a similar separation of electron-hole
bound states into four branches occurs; the central bound states of each branch closely correspond. to the states
found here for two electrons.

HL HUND'8 RULE COUPLING VGTHOUT
NEAREST-NEIGHBOR EXCHANGE

In this section we shall study the effect of the Hund's
rule terms versus the band term and the correlation
term by calculating the spectra of the one-spin-Qip
excitations (see Fig. 1). The nature of eigenfunctions
will also be considered in some detail. The Hamiltonian
H to be used contains the V and U terms of Kq. (1.2),
and the U», j», and D» terms of Eq. (1.3), and nothing
else. (The J and W terms are omitted. )

The method used here is identical to those used in
Ref. 1, but we shall go through some of the details to
show how degeneracy effects the calculation.

I et
~

C'o) be the state with all Wannier sites of both
bands occupied by down-spin electrons and with no
up-spin electron. Then

~
Co) is an eigenstate of the

Hamiltonian JJ with eigenvalue

Eo=—{C'o
~
&

~
Co)=&(U» —J»). (3.1)

The state
~

Co) will later be referred to as the saturated
ferromagnetic elgenstate.
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Consider the following four types of one-spin-Rip
states:

0& —( f 0&2( 0&
~

@2)

&2& —C &2&t( &2&

~

411 )

&2& = (,I &1& t ( &2&

~

&Pg )
&4& —C &2&tc &1&

~

@lg)

(3.2)

where f, g=1, 2, ~ ~ ~, IV. It can be easily shown that
the linear combinations of the sets of functions

and {Cf,g&2&, 0'f, g&4&} are by themselves
closed. under the operation of H, so one can solve the
energy eigenvalue problem spanned by these two sets of
functions separately.

A. Subspace Spanned by {%'fg,%f,g }

Let us erst solve the eigenvalue problem in the sub-
space spanned by {+f,go&, 4'f, g&2&}, i.e., consider the
following equations:

—Ubf, gAf &'& —J,gbf gAf &'& = E'Af &'& (3.6)

V[Af+I, g&2&+Af , i&g& 2Af—,, 1&'& —A 1&'&j

—Ubf, gAf, ,&2& —J12bf,2Af, g&" =E'Af, g&'&, (3.7)
where

E'= E—Eo—(U+ J12) (3.8)

In Eqs. (3.6) and (3.7), both indices f and g run from 1

through V. There are altogether 2S' such equations.
To solve these equations, try solutions of the form

Af, ,&"'= exp[i'( f+g)]gf g&"&(I(), X=1, 2 (3.9)

To solve the eigenvalue problem, we first calculate
H kf g(" and H% f,,(" then substitute the results into
Eq. (3.3). Shifting indices under the summation sign
and noticing that all the vectors in {4'f,g"&, 4'f, g&'&} are
linearly independent, we get the following set of
equations:

where
(H —E)%'&12&=0 (3.3) where

I(' = 242r/1', 22= 1, 2, , lV. (3.10)
N

@&12& Q (A &I&1Ir &1&+A &2&11r &2&) (3 4)

The set of constants {Af, &", Af, ,"'} to be determined
satisfy the periodic boundary conditions

Afi.if, g& & = Af, g&"&, Af,g+II&"&= Af, ,&"&, (3.o)

where X=1, 2, and f, g=1, 2,

Putting Eq. (3.9) into Eqs. (3.6) and (3.7) and sim-
plifying, we get

P'[eiICB &1&+e
—iZB &1& e i IIg &1& eiirg— &1&j

rib, ,gg, &" —J12b, ,gg„&2&—= E'B„&'&, (3.11)

v[g'Ir g 1&2&+ &,
ixg &2& —4,

—-ixg &2& eW'g &2&j
B &2& —Jig/„gg o& —Erg &2& (3 12)

where
E-Eo

CONTINUUM
r=1) 2 ~ ~ ~ lV

g—= U+2J cos2E.

(3.13)

(3.14)

To solve Eqs. (3.11) and (3.12), let us define the
Fourier transform of Br(') and 8 ('):

b &x& Q &riibrg &x& (3.15)

00 oo oo5'&XX X X
0 0 0 0X x x x 0Xxx

or
P ()~)

Vi

—1 ~ &-sI&,rb ())
)

I&:

3=1, 2 (3.16)

where the set of k values depends on the value of E in
such a way that'

«~0000O„,oooon"-xxxxxxxxxxia 2Ksin K

2rfigr/1V

(2214+ 1)gr/.V
m=1, 2, ~ ~ ~, cV,

e even
V U QI22 2 JI2 W) XXXXX BRANCH T-

=(I, I0, 5,0,05,0) 00000 BRANCH G
lf E=

ngr/1&/ 24 Odd.
(3.17)

FIG. 1. Bound-state spectra of the system when there is
Hund's rule coupling but no nearest-neighbor exchange coupling.
There are two spin-wave spectra, separated by order of 2J»,
and two interband exciton spectra, also separated by order of
2JI~. The spin-wave spectra are bending downward, and the
ferromagnetic eigenstate is unstable.

Multiply Eqs. (3.11) and (3.12) by exp(ikir) and
exp(ikgr), respectively, and sum over r; we then have

b2, "& —( Ugg'"+ J——22B&&&2&)/(E' —E2,), (3.18)

4 = (Ugo + J12go ' )/(E' E&4 ), (3 19)
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E&=—4V sinE sink. (3.20)

Sllbs'tlt'ute Eqs. (3.18) alld (3.19) back lilto Eq. (3.16),
and let r=0; we have

always lies below Eo except for the E=0 state which has
total spin V instead of (N —1).

For branch II(', the energy spectrum and total spin
of the bound states a,re found to be

where

B &'& = —( UB "'+J B "')u

B &2& — (U'B &2&+ J B o&)u,

u—=N-' P [1/(&'—&&,) ].

(3.21)

(3.22)

(3.23)
8'+, &'& (E)=N (N 1)%'—.&'& (E) .

(3.32)

(3.33)

B. Subspace Spanned by {%'r,,&", %'r, ,' ')

F,&2& E0=—U+ J&2—L(U—J&2) '+16V' sin'E]'~',

J&2u 1+Uu
=0. (3.24)

The determinantal equation, Eq. (3.24), can be fac-
torized into

(3.25)g —F is&P &s& —0
where

Fi"——1+(U+J&2)u=0,

g (~) —g (2)

(3.26)

(3.27)

Equations (3.21) and (3.22) have nontrivial solutions
if and only if

1+Uu J&2u

The eigenvalue problem in the subspace spa, nned by
{'Pq,&3&,

,%'f,,&4&I can be solved using exactly the same
procedure as that in Sec. III A. The solutions can again
be divided into two branches, branch I(" and branch
II('). The superscript i stands for interband, and the
bound states are called interband excitons. The reason
for this nomenclature is that these bound states occur
only when the interband interaction is put on.

In the following we will just write down the energy
spectra and the total spin of these excitons:
For branch I("

E;&'&—Eo——U+ J&2—L(U&2+D&2)'+16V' sin'E]'&',

representing the branch I(' solutions, and

F2&'&=1+ (U—J&2)u=0, (3.28) 8'0'o&(E) =N(N —1)% &'&(E)

(3.34)

(335)
with

+0(I)— +0(2) (3.29)

representing the branch II(') solutions. The superscript
s stands for spin wave; it will later be shown that the
bound states of these two branches can be identi6ed as
spin waves.

In each branch, for a given E, there is a set of con-
tinuum states, as indicated by the energy denomina, tor,
and a bound state lying below the continuum. ' Here we
are only interested in the energy spectra and total spin
of these bound states.

To 6nd the energy spectra of the bound states, we
can replace the sum over k by an integral using the
correspondence

1V-' Q —+ — dk
k

For branch I('), the energy spectrum and total spin of
the bound states are found to be

E,"'—Eo——U+ J&2—L(U+ Ji~)'+16V' sin'E]'",

(3.30)

.S'+ &'&(E) = V(iV —1)+ &'&(E) if EWO

=N {N+1)%."&(E) if E=0, (3.31)

where%', &'& (E) is the eigenfunction corresponding to the
branch I(' bound state with wave vector E. A similar
notation will be used for other branches. It should be
noticed that for this branch the bound-state spectrum

For branch II(')

E;&@—Eo= U+ J'i2 —L(U&g —Dig) '+16V' sin'E]'",

(3.36)

8 e,&» =N(N —1)e,&'&(E).

C. Summary

We have thus far calculated the energy spectra of all
four types of bound states using the Hamiltonian H.
We can make the following observations:

(1) The lowest bound-state spectrum, that of
branch I(', always lies below Eo, except for the E=O
state which has E=Eo, and can be shown to have total
spin N instead of (N —1) . This shows that the system
cannot be ferromagnetic (see Fig. 1).

(2) All four spectra are bending downward as sin'E
increases; moreover, the curvatures increase as V in-
creases, indicating that the effect of the kinetic-energy
part is against ferromagnetism.

(3) If we identify the coefficients U, U&2, Ji2, D&2

with those dehned in Sec. II, setting 8'=0, then there
is a correspondence between the energies of the central
bound states (E'= 0 states) and the energy levels of the
one-spin-flip states in Eq. (2.11), and Eqs. (2.13)—
{2.15); the corresponding members carry the same
indices. Furthermore, the total spin of the ferromag-
netic e&genstate

~
Co) is the same as that of the 4,&'&(0)

state, and is one less than that of the other central
bound states. This makes the correspondence more
vivid.
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IV. COMPLETE INTERBAND INTRA-ATOMIC QTTTERACTION WITH NEAREST-NEIGHBOR
EXCHANGE COUPLING

In this section we shall consider the complete Hamiltonian given in Eq. (1.1). The saturated ferromagnetic
eigenstate

~
4(&) is again an energy eigenstate with energy

E,= (C, i
H

i
C )=$(U —J —J). (4 1)

With the addition of the W term, all four types of one-spin-flip states (0'f,,(",4'f, ,"),4'q, ,(2), 4'f, ,(4)
} are mixed.

Following a procedure similar to those used in Sec. III, for a given E, one will arrive at an 8)&8 determinantal
equation as follows:

G=

1+1Jf(+) 1 Jk(+) &)g(+)+Wg(-)

1 Jk(+) 1+1Jf(+) —)&g(+)—Wg(—)

Wg(+)+U12g( ) Wg(+)+D12g( ) J12g(+)+Wg( )

~g(+) Uygg( ) ~g(+) Dying(
) egg(+) gag( ) 0

1 Jg(+)

& Jg(-)

4 Jg(+)

4 Jg(—) 1+U12f(+)+Wf( )D1-2f(+)+Wf( )W—f(+)+ J12f( )0-Wf (+)+ ~f( )—
Wf(+)+ J12f(—) D12f(+)+Wf( )1+—U12f(+)+Wf( )Wf-(+)+&f( )-& Jg(-) & Jg(-)

& Jg(+) —~ Jg(+)J12f(+)+Wf( )W—f(+)+D12f( )W-f(+)+ U12f(
—) I+)&f(+)+Wf( )—

1+2)f(+)+Wf( )W—f(+)+U12f(—) Wf(+)+D12f( )J—&2f(+)+Wf( )—

J&&g(+)—H/"g( ) ~g(+) Dy2g( ) —Wg(+) —U12g( ) —&&g(+)—Wg( ) 1+1Jf(+) 1 Jjg(+)

where

J12g(+)+Wg(-) Wg(+)+D12g(—) $ifr'g(+)+ U12g(-) 2)g(+)+ Wg(-) 1Jk(+) 1+1Jf(+)

=0, (4.2)

f(~)—= (1/2$) Q [1/(E' —E2 2W) &1/(E—' E2+2W) ],—

g(+&—= (1/2$) p [e '"/(E' —E2—2W) +k '"/(E' —E2+2W) ],
k(+'=—(1/2$) p [e ""/(E' E2—2W—) +e "'/(E' —E2+2W)],

(4 3)

and where
E'=—E E, (U+2 J+—J,2)—. (4.4)

The determinantal function G in Eq. (4.2) can be factorized into

where

with

G—p~ p~p2 —0

F~= [1+1J(f(+)+Q(+)) ]2=0

(4 5)

(4 6)

g, (&) —g, (~) P (2) —g (2)

representing the branch A solution, and

1+1J(f(+)—k(+))

Jg(+)

Jg(—)

with

g, ( ) —g, ( —g, ( ) —P,( ) —0

(&)+J„)g(+&+2Wg( —
& 2Wg(+&+ (U12+D12) g( &

1+(»+J„)f(+)+2Wf(—
& 2Wf(+)+ (U12+D12)f(—& =0,

2Wf(+'+ (2)+ J12)f' ' 1+ (U12+D12)f'+'+2Wf' '

(4.7)

(4.8)

g, (~) — p, (i) P,(2) — g, (2)

g (3)—g (4)

representing the branch I solutions, and

p .(&) —p .(2) i=0, &1 (4.9)

( U12 D12) g

(U)2 —D12)f( '1+ ()& J1 )f'+'—Jg(+)

Jg(—) (»—J12)f' ' 1+ (U12 D12)f'+'

1+1J(f(+)—k(+)) (2) J12)g(+)

(4 1o)
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P2 —P (s) P&(s)

where

Fg&'&= 1+(q —Ji2) I+-', J(N —w)

(4.17)

+-,' J(q—Ji2) (I'—Niv+2v') =0, (4.18)

Fp&*'= 1+(Ui2 —Di2) ~=0. (4.19)

0o
oo x X

X
~ «MX

0 0
0 X X

X
X

l,O
sin K

(q, U, U, ,g, J, ,gf ) XXXXX BRANCH I
=(~, ~O, 5, ~, OS,O) oooo BRANCH 2

g (&)— p (&)

FIG. 2. Demonstration that when the nearest-neighbor ex-
change coupling is introduced, with the other terms kept the
s3me as in the case of Fig. I, the spin-wave spectra are turned
upward. In particular, since 8'=0, Eq. (2.16) is automatically
satis6ed, which means that the individual atoms would be
magnetic by themselves. The "old" (one-band) excitons appear
]ust below thc band at small E, and quickly merge into thc band.

These equations are„with the addition of the nearest-
neighbor exchange terms ( J), the modified version
of solutions of the branches I(e) I(s) II(s) II(s) jn
III. The corresponding members carry the same indices.

The branch A solutions here correspond to the branch
A solutions in Ref. 1, and Eqs. (4.15) and (4.18) corre-
spond to the branch 8 solutions in Ref. I; there the
solutions of these equations have been investigated in
detail. %e will just list the spectra of the spin-wave
states in which we are mainly interested. Under the
conditions U&&V, J, JIg, the spin-wave spectra may be
approxUnated by'

K")—Ep 4J sin'E

—Pl" »n'&/(U+J +2J c»2&——;J)j, branch 1

E,'@ ED~2 Ji2+4—J sin'E

—$8V' sin'E/(U —Ji2+2J cos2E——,
' J)j, branch ff.

(4.21}

P (3) — P (4) g .(I)— g .(~) i =0, +1 (4.11)

representing the branch II solutions.

A. The Case 8'=0

It can be easily seen that when iV=0,

f"'(lf'=0) =-~ 'Z (E'—E~) '= I, —

g'+'(%=0) =.V-' Q (E'—Ei)-'e "=—ri, (4.12)
jg

fii+i (g —0) —iP-i Q (E& E )-ie-Sic—~
k

while f~-', gi-', h' ' all vanish. Equation (4.6} then be-
coIQes

Fg pl+-', J(m+m) g'——=0, (4.13)

p» —p)(&) F~(&)—0 (4 14)

and Eqs. (4.8) and (4.10) can be further factorizedinto
& X M

(V,U, U,~,J,Jfq, 'IN )
=(~, e,5,0,0.5, ~.0)

I.O

s~n'K
XXXXX BRANCH g

BRANCH 3X

Fl 1+ ( U12+ D12)+ (4.16)

+-,'J(g+ Ji2) (u' —um+2s') =0, (4.15)

FIG. 3, Case where there is no nearest-neighbor exchange
coup4Qg, but there is complctc intcrband lQtra-atomic coupling.
The continuum splits into two parts, and part of the interband
exciton spectrum merges into the band. In this case, 8'&0, but
Eq. (2.I6) is still satisfied. Notice that as E-+0, the spin wave
from branch II still lies above I"ff.
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Notice the "gap" ( 2J») between the two spin-wave
spectra. The spectra of bound-state solutions of Eqs.
(4.16) and (4.19) are

E;&'& —Eo——U+2 J+2J,2

—[(U»+ D») '+ 16V' sin'K]'~' branch I (4.22)

E &"—Eo= U+2 J+2J»

—[(U»—D»)'+16V' sin'E]'" branch II. (4.23)

l5

IO

E-Eo

l5

10

X XwwVY X K n lh A()U~
0.5

(V, U, U, ,J,J, ,W)
=( I, IO, 5,0.5,0.5, I.5)

X Xoo OQ
I.O

sin K
XXXXX BRANCH I
ooooo BRANCH H

0.5 I.O

()oo 0 0 0 x x x x x x sin'K0 0 0 0 0 0

FIG. 5. Case where there is a weak nearest-neighbor exchange
coupling, and the individual atoms are nonmagnetic, i.e., Eq.
(2.16) is not satisfied. Here the spin-wave spectra are turned
upward, but the central part of the spin wave of branch II still
lies below Eo. This means that the nearest-neighbor exchange
coupling is not strong enough to magnetize the system through
mutual polarization. )Equation (4.29) is not satisfied. ] The
old excitons appear only for extremely small value of sin'E; they
are neglected on this figure.

(V,U, Ui~, J,JI~,W)

=(I, I0, 5,0,0.5, I.S)
xxxxx BRANCH I
ooooo BRANCH E l5

FIG. 4. Similar to Fig. 3, except that in this case Eq. {2.16)
is not satisfied, which means the atoms would be nonmagnetic
by themselves. Here the spin-wave spectrum from branch II
lies below 1'0 as E—+0. Also, when W' becomes larger, the inter-
band excitons from branch II merge into the band.

IO

(

and

J(U+ J»+23 J) &2V' (4.24)

(U+2 J—U») (U+2J+U»+2J») )16V'. (4.25)

We can see from Eqs. (4.20) and (4.21) that with the
addition of nearest-neighbor exchange coupling, the
spin-wave spectra could be concave upward, and hence
the saturated ferromagnetic eigenstate could be stable.
The conditions for the stability of the saturated ferro-
magnetic eigenstate are, from Eqs. (4.20) and (4.22),
using J» ——D»,

X
X

xxx oo
0

o., x &

0.5
I

1.0
sin K

& U&UI2& J& l2&W) XXXXX BRANCH I
=( I,I0,5, I,0.5, I.5) 00000 BRANCH

Equation (4. ) is the one that is more likely to be „hb I (J) d J tt] Th f
violated. eigenstate is still not stable.
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E-Eo

l5

JO

splits the continuum. The structure of the continuum is
illustrated in Figs. 3—7.

To find the energy spectra of the bound states in
which our main interest lies, we again replace & 'Ps
by (2ir) 'f dk, and solve Eqs. (4.8) and (4.10).
This is done with the aid of a computer, and the results
are presented in Figs. 2—7. Here we have made use of the
fact that J~~ ——D~~. It is seen that the slopes and curva-
tures of the spin-wave spectra as functions of sin'E are
only slightly modified by changing W (comparing Fig. 2

and Fig. 6).At X=0, the energy eigenvalues of the spin-
wave states are analytically found to be

E —Ep= Oy branch I (4.27)

5-
XX

X 0
X 00

X 0

K"'—Ep= 2 Jn

+-,' ( (U+2 J—U,2) —[(U+2J—Ui2)'+16W']"'I,

branch II. (4.28)

Oc)
0.5

(V, U, Ulq, J,Ji~,W )
=( I, I0,5, 2.0,0.5, 1.5)

I

I.O . 2
sin K

BRANCH I
BRANCH II

In order that the central point of the spin-wave spec-
trum of branch II could lie above the E= Ep state, the
following condition has to be satisfied:

Ji2 + -', Ji2 (U+ 2 J—Ui2) + W ~ (4 29)

FIG. 7. Case where nonmagnetic atoms are magnetized through
mutual polarization. )Equation (2.16) is not satisfied, but Eq.
(4.29) is satisfied. g The spin-wave spectrum of branch II again
lies completely above the Ep level.

B. The Case S'/0
For nonvanishing 8', the determinantal functions

Ii~ and F2 can be expanded and rewritten in the form

F =1+ Q [p &+'(k)/(E' —Ei,—2W) j
+ g [p i (k)/(E' E&+2W)j,— m= 1, 2 (4.26)

where p„&+&(k), p & & (k) are functions of E and the set
of parameters {V, U, Ui2, J, Ji2}.In this form one can
see that the continuum states, as indicated by the energy
denominators, are subdivided into two subbands. The
centers of these two subbands are separated by 48'.
Notice that it is the 8' term and not U or U~2 term that

Equation (4.29) looks very similar to Eq. (2.16), the
criterion for the triplet states being the lowest states in
the two-electron case discussed in Sec. II; the two equa-
tions are in fact the same when J=0, if we identify the
corresponding parameters, Ui~, J~2, etc. Yet we see
that when the nearest-neighbor exchange coupling (J)
is strong enough, Eq. (4.29) can be satisfied even though
in the isolated-atom case (J=O) it would not be
satisfied (compare Figs. 5 and 6 with Fig. 7). This can
be interpreted as follows: Atoms, in the sense of Wan-
nier sites, can be magnetized through mutual polariza-
tion, even though individually they would be non-
magnetic. '

As mentioned earlier, under the condition U&) V, 8",
etc. , there is only a slight dependence of the slopes and
curvatures of the spin-wave spectra on W", hence Eq.
(4.24) would be an approximate criterion for the spin-
wave spectrum to be concave upward. We propose
Eqs. (4.24) and (4.29) as criteria for the ferromagnetic
eigenstate to be locally stable.
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