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Using a kinetic equation, the effect of Kondo-type anomalies on spin relaxation and transport in local-
moment systems is studied. For zero wave number of the external magnetic field a modified Hasegawa
equation can be derived. With increasing wave number a diffusion regime is reached. The diffusion con-
stant can be related to the electrical resistivity. Further increase of the wave number yields a collisionless
regime for the conduction electrons. In this regime, the spin relaxation becomes essentially unbottlenecked,
and the local-moment relaxation proceeds with the full (anomalous) Korringa value.

I. INTRODUCTION

An exchange interaction Js-S between the con-
duction-electron (s) spin s and local-moment (d)
spin S in a metal leads to an anomalous temperature
dependence of the s-d scattering amplitude {+7s-S,
if the sign of J is antiferromagnetic.! The anomalies
in the scattering lead to a number of peculiarities in
the linear response of local-moment systems to elec-
trical, thermal, and magnetic external disturbances.
There exist? a maximum in the electrical and in the
thermal resistivity at 7=0, a maximum in the im-
purity part of the specific heat near the so-called
Kondo temperature Tk, and deviations from the Curie
law of the static impurity susceptibility.

The theory of magnetic response is more difficult
than the theory of nonmagnetic response. Nonmag-
netic response can be calculated from the non-spin-flip
part f(e) of the scattering amplitude alone. For in-
stance,’"® electrical and thermal transport coefficients
depend essentially only on Imi(er), and the specific
heat only on #(e) for large e.* For the calculation of
these quantities, the two main approximation schemes—
the S-matrix approach of Suhl and the Green’s-func-
tion decoupling procedure of Nagaoka—work equally
well and yield identical results.45

On the other hand, #(¢) is not sufficient to cal-
culate magnetic response. Aside from literature on
the static susceptibility’” and spin relaxation®=!! in
which the s-d scattering is treated using perturbation
theory, there exist calculations using the full informa-
tion contained in Suhl’s spin-flip amplitude 7,21 or
else Nagaoka’s spin-flip Green’s function I'® As a
consequence of different approximations used in the
two'*~2 approaches, the results for the static suscep-
tibilities disagree. Thus, the precise nature of informa-
tion about spin flip which can be obtained from
experiments on the static susceptibility is unclear
as yet.

Additional information can be obtained by looking
at the frequency dependence of the suceptibility. In
the following sections, we want to discuss this pos-
sibility and also investigate the wave number depend-
ence of the susceptibility in more detail.
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II. KINETIC EQUATION

We shall base our investigation on two kinetic
equations for the coupled s-d system!:
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As far as possible, we shall follow the notation of
Ref. 4. In particular, we shall consider the “narrow
impurity band limit,” i.e., wr=%%/2m—pus and m—
and k,=pupgsB, hi=upgaB. fpe(r, 1) and nu (7, t) are
the distribution functions for the s and d electrons,
respectively. 7 and I’ are the collision integrals for s
and d electrons. They have the usual Boltzmann-type
gain and loss terms with scattering amplitudes pro-
portional to T'=¢+7s+S and in addition two spin-
lattice relaxation terms. Thus, we use as collision
integrals
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a? and af are two phenomenological spin-lattice re-
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laxation frequencies and f°(e) is the Fermi function.
To obtain the linear response function, one linearizes
in the external field and takes the Fourier transform
with respect to r, ¢. In doing so, one has to pay at-
tention to the fact, that the magnetic field contained
in the Zeeman energies of e,, and wi not only occurs
in the left-hand side of the kinetic equations but also
in the collision terms (2a), (2b), and (3). This then
leads to equations in which the magnetization of each
spin species properly relaxes to its instantaneous local
value.? Apart from this difference, which becomes
relevant only for g,#gs, our equations agree in the
long-wavelength limit with the equations given by
Hasegawa.!®

In order to exhibit the dependence on the g factors
explicitly, we first consider angular momentum den-
sities rather than magnetizations. In Eq. (1b), we
also sum over k and take the limit of infinite impurity
mass, i.e., we consider

m= oy 1= Tl S )
ne=V"13 np, 1= 3prhs=17"hs; (52)
ng=V1 kﬁ KMok, 1= ng—nd’;

n=cN[S(S+1) /3T T ha=rLha. (5b)

We omit the details of the linearization and Fourier
transformation procedure® and just give the final
result for the Fourier components #,(g, w) and 74(g, »)
of the angular momentum densities:
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Here (n,) is the average of n, taken over the Fermi
surface of the conduction electrons, and the various

relaxation frequencies can be expressed in terms of ¢
and 7 as

v =4mprcN | 1 PS(S+1) =2mppTr | 7 2, (7a)
v=mps*T | 7 [*=2mppTr | 7 |2, (7b)
Yo=2mppeN [ | ¢ >+ 1S(S+1) | = |2]. (7c)

Regarding the ¢ dependence of Egs. (6), one can
distinguish three different limiting cases. There is first
a relaxation regime for ¢—0. With increasing ¢, a dif-
fusion regime is reached and further increase of ¢
finally yields a collisionless regime for the conduction
electrons in which Landau damping is predominant.
We first discuss the ¢=0 case.

III. RELAXATION REGIME

If one sets g=0 in (6a) and sums over p, one
obtains together with (6b) two equations for the total
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angular momentum of each spin species:
Loti(vs"+a?) Jns—ivdna=i(v 24 a?) nl—iynd,

(8a)
—iysnst[wti(vd+ad) Ina

= — 1y +i(vd+al)nd.  (8b)

Apart from the terms proportional to v, and v on
the right-hand sides of these equations, they agree
with Hasegawa’s equations®® if g,=g,. If the g factors
are not equal, one has to distinguish between equa-
tions for magnetizations and angular momenta. This
leads to changes in the corresponding off-diagonal
values of the relaxation frequencies in Egs. (8). In
our notation the two s-d relaxation rates, according
to (7), are related by

Y=y =y g = vxd/ 8, (9)

which agrees with Hasegawa’s detailed balance con-
dition for equal g factors. Equations (8) satisfy three
conditions:

(i) In the static limit w=0, the solutions approach
their static values # and #»/.

(ii) The energy absorption is positive.

(ili) The total angular momentum #n,+#4 is con-
served if a’=a=0 (regardless of the g values).

Usually,” 8 (i) and (ii) are satisfied by violating
Eq. (9) and (iii). In order to determine the frequency
dependence of the susceptibility, one has to solve (8)
for n, and g and multiply each by its g value to
obtain the magnetlzatmns my= gsns and mq= gana. The
susceptibility then is given as xioi(w) = (ms+my)/B.
The solution of (8) is

2
= <1_ %)ms"— gi{(wo_{_a )m°+ ’nggz'rnd } ’
(10a)
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with the denominator
D=[wti(v +a0) Jot+i(vd+ad) THvdvs.  (11)

In the limit of small spin-lattice relaxation frequen-
cies a;4 and gi~gs, Eq. (10) exhibits the familiar
bottleneck: The absorptive part of xio; is dominated
by a narrow peak with a width controlled by the
spin-lattice relaxation. This width does not depend
on v, and 74 separately but only on the ratio
va/ (vs+7a). In this ratio, the anomalous | 7 |2 of (7)
has dropped out.

In order to apply the results to EPR experiments,
one has to include the dc field B¢ which adds the
two Larmor precession terms

ws= upg:B*=hy, wa= upgaB*=ha* (12)
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to the diagonal part of the equations for the trans-
verse magnetization. Furthermore one has to take
into account the “molecular field terms” by replacing
the external field everywhere by the corresponding
effective field

heff=h+\n+\ng, (13a)
hf=hs4 M4 Aang. (13b)

The diagonal terms A, A\;s then have no effect on
the Larmor frequencies but lead to an enhancement
of the static susceptibilities and a “slowing down” of
the s-d relaxation (for ferromagnetic sign). These
effects can be taken into account by introducing the
new quantities

as=aso(1—)\srso) y 'Ys=’730(1"'>\31’30) y (14‘)
and

rs= r«?o/ ( 1- )\srso) ( 15)

(and three similar quantities with se2d). These quan-
tities again satisfy the detailed balance condition (9).
Furthermore, the diagonal exchange terms will renor-
malize the original exchange interaction of the Kondo
problem. We will assume that in the calculation of ¢
and 7 entering the quantities (7), this renormalized
value of J has been used already. The final result for
the transverse magnetizations including off-diagonal
exchange N\ can be cast into a form similar to (10)
by introducing the quantities”

&a=ws+ )\ndz_i(ae'*")’s) "‘ixrd'Yd; (16)
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with the denominator
D= (w—&s) (w—&a) —{sta. (20)

IV. GENERAL CASE (g50)

In the general case of nonzero ¢, one has to treat
(6a) more carefully. The solution in this case (omit-
ting dc and exchange fields) takes the form

ny=[1— (w?/D) (1— L) Jn?

— (0/D)i{ (vt ad) nd+v0nl} (1— L), (21a)
ng= (1—w?*/D)nd— (w/D)i{ynd(1—L)
+v a4+ (Y= LInd},  (21b)
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D= {ot+i[v +a+ (v*—2) L]}

X [wti(vd+ad) Hvv(1-L). (22)
The ¢ dependence occurs via the Lindhard function
I <w+i(as°+7°)) _ < —V»'q >

Urq wt1(a+7°) =52 q/ pl=mop

(23)

The two limiting forms of this function for small and
large values of ¢ are

L(x)=—1/322,

g | wtial+90) | (24)

and
L(x)=1+3iwx, pg>> | wti(ad+70) | (25)

In particular, for ¢—0, L—0 and one recovers the
results (10) of the relaxation regime.

For slightly larger values of ¢ but still in the re-
gime (24), one finds aside from relaxation widths a
diffusion width proportional to ¢2. For small values
of a, and gi~ga, the diffusion width, for instance, is
given by D.¢® with®®

Det®= [/ (v 4+ J(vr/37°). (26)

The diffusion constant therefore is related to the total
s-d scattering cross section contained in 4° and there-
fore shows the same kind of anomalies as the elec-
trical and thermal conductivity.

Exchange corrections can be taken into account
again in the molecular field approximation in analogy
to (14) and (15). A nonzero conduction-electron ex-
change constant A, for instance, changes (26) into

Deff= [’Yd/('Ys'i_'yd) ] (7}[1‘2/3’)’), (27)

where v,, vs is again given by (14), whereas v is
given by
1/y= 1=\ /4"

Thus the diffusion pole also becomes narrower for
ferromagnetic exchange.

An interesting regime is reached at even larger ¢
values where (25) applies. One may then to lowest
order replace L by 1. Looking at (21) and (22), this
yields

(28)

ns=n,",
na=[1 (v’ + o) /ot i (v ad) Jnd. (29)

In this order, the s electrons are in equilibrium and
the absorption takes place at the d electrons alone.
In higher order, according to (25) there will be some
absorption at the conduction electrons as well, but
at low temperatures where # is large, the local-
moment absorption will dominate.

g values as large as in this regime are obtained,
for instance, in inelastic neutron scattering. Experi-
ments using such tools can therefore eventually yield
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rather direct information about the spin-flip scattering
cross section contained in vyg.

V. VALIDITY OF KINETIC EQUATION

The kinetic equations (1) and (2) have been de-
rived®® using the method of Kadanoff and Baym.®
There are several nontrivial points which have not
been mentioned explicitly in Ref. 13. Here we want
to discuss them briefly as far as they are related to
the Kondo problem.

(a) In order to determine the collision integrals (2),
one needs the collision rates M>< and Ms< which
are closely related to the self-energies of the s and d
electrons. M, can be expressed in terms of the scat-
tering matrix 7'(¢), Eq. (4). In Suhl’s approxima-
tion, 7" contains only single-particle intermediate-state
cuts.* It can therefore be decomposed into 7'(e)=
T?(e)+T"(¢) where IP(T*) contains only single-
particle (single-hole) intermediate states. The collision
integral (2a) then contains only the scattering cross
section which is proportional to | 7T?(etin)+
T*(e+14n) |2 If an analogous kind of “cut philosophy”’
is applied to the calculation of My, it turns out that
the corresponding cross section is not exactly pro-
portional to | T'(e+4n)|? but rather to | T?(e+in)+
T"(e—in) |2 If this result were used to calculate the
collision integral I’ of (2b), one would therefore obtain
a kinetic equation which would violate (iii) of Sec. III.
We have therefore used T'(e+45) in the calculation
of both collision integrals (2) in order to have a trans-
port theory consistent with conservation laws. Although
a power expansion of 7™(e+1in) —T"%(e—1n) in powers
of J yields terms which are less singular in every order
of J than the corresponding ones for T"(ez=in) sepa-
rately, it seems difficult at present to find a straight-
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forward diagrammatic derivation of kinetic equations
consistent with conservation laws.

(b) The inclusion of a dc field by just adding
Larmor precession (12) terms to the diagonal part
of the equations for the transverse susceptibility ne-
glects the frequency dependence of the scattering
matrix which is produced by such a dc field. Effects
of this kind have been considered in second order
of perturbation theory and neglecting off-diagonal
terms in the kinetic equations. It would be interesting
to look at these effects in a more general treatment.

(c) The static susceptibilities x,%=g%® and x=
g4 occurring on the right-hand side of the kinetic
equations according to (5) are just the ordinary Pauli
and Curie susceptibilities. The static solution of (8)
at w=0 thus shows no Kondo anomalies at all. This
defect is due to the approximations inherent in the
Boltzmann equation in which the equilibrium proper-
ties are generally treated on a lower level than the
relaxation effects. Although it looks promising that
reasonable equilibrium properties can be calculated
from diagrams which are closely related“® to our
kinetic equations, and although it is known in prin-
ciple?® how the correct equilibrium behavior can be
incorporated into the transport theory, it remains to
be shown how this can be done in detail.
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