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We have used the Faraday effect to measure the magnetization of the insulating ferromagnet CrBr3
as a function of magnetic field (up to 9.5 kG) along 29 isotherms in the temperature range T,—2.8'K(
T& T,+6.7'K, where T,=32.884'K. The numerical results are presented in tabular form. We have also
analyzed these data and found that the spontaneous magnetization goes to zero as (T,—T) & with P =
0.368+0.005. Along the critical isotherm M~H"' with 8=4.28~0.1 and the susceptibility for M=O and
T& T, diverges as (T—T,) & with p=1.215+0.02. All of the data are consistent with the hypothesis
of the static scaling laws. Two simple parametric equations of state were tried, and the better of the two
was found to represent the data quite well and be a useful form for calculations of thermodynamic properties
in the critical region.

I. INTRODUCTION

The striking similarities in the anomalous behavior
of thermodynamic properties near phase transitions
in apparently very different materials has led to intense
experimental and theoretical interest in the study of
magnetic materials, fluids, and other substances in the
region around the critical point. ' '

The erst general model of the critical point was
provided by Landau's theory of second-order phase
transitions, ' which is equivalent to the Weiss molecular-
field model for magnetic systems or to the van der
Waals equation for fluids. The Landau model assumes
the free energy to be analytic everywhere in the critical
region, and predicts thermodynamic anomalies at the
critical point which are qualitatively valid but which
have been experimentally shown to be quantitatively
incorrect. The physical reason for this is clear: The
Landau model predicts a diverging susceptibility at the
critical point, but fails to include the diverging Quc-
tuations of the order parameter (magnetization)
which accompany the rise in susceptibility.

A significant unifying advancement was the concept
of static scaling laws' based upon the physical idea
that the fluctuations in order parameter could be
treated by means of a spatial correlation function with
the critical behavior expressed as the divergence of a
single correlation length at the critical point. This leads
to the mathematical assumption that the free energy is
everywhere analytic except at the critical point itself
(and possibly along the coexistence curve). Expressed
in magnetic language, the static scaling laws may
be summarized in the statement that the scaled mag-
netic field II

~

T—T,
~

~' is a function only of the scaled
magnetization M

~

T T.
~

& (where P, —5 are the usual
critical exponents along the coexistence curve and
critical isotherm, respectively) . That is,

H/[ T T. P'= C (M/[ T T. )t') .— —

These ideas were first experimentally tested and
verified within the accuracy of available data for the
metallic ferromagnets nickeP' and Cr02 (only for
T&T,)." The analysis of data collected by Green,



Vicentini-Missoni, and Sengers" is consistent with the
scaling law hypothesis for pure Quids.

In this paper we present the results of our measure-
ments of the equilibrium properties of the insulating
ferromagnet CrBr3. A preliminary analysis of our data
showed the scaling laws to be valid within experi-
mental errors, and this provided the hrst experimental
conhrmation of the scaling hypothesis for an insulating
ferromagnet. " Our measurements were su%ciently
precise to enable the determination of the form of the
scaling function C in Eq. (1), and we gave several
mathematical representations for the equation of state
in a previous letter. "In the present paper we discuss the
details of our experiment, give the numerical resul. ts of
our measurements, and include a discussion of the
analysis of the experimental results that was omitted
from our earlier reports because of limitations of space.
We also present the results of data analysis to test
parametric equations of state"" that we have carried
out since the publication of our preliminary results.

D. EXPERIMENTAL

It is desirable to study an insulating ferromagnet,
such as CrBr3," because the Heisenberg model for
ferroma, gnetism assumes the magnetic moments to be
localized on a lattice, Comparison with theory is there-
fore more meaningful than for metallic magnets with
their mobile magnetic moments.

Zero-field nuclear magnetic resonance'~ "provides the
most accurate method to measure magnetization in
many magnetic systems. This method has been applied
to CrBr3 in the critical region" to measure the tem-
perature dependence of the spontaneous magnetization
(i.e., the shape of the coexistence curve) . Unfortunately
this technique does not provide measurements of the
magnetization as a function of magnetic held and cannot
be used for temperatures very close to the critical
temperature. The more conventional force" or induc-
tion" methods include undesirable moving parts a,nd
require rather large uniform samples. Complications
arise when the sample is magnetically anisotropic, as is
CrBr3. These methods would require a large single
crystal of CrBr3, which is not available.

Fortunately, CrBr3 is somewhat transparent to
visible light and exhibits a large Faraday rotation.
proportional to the magnetization. " CrBr3 crystals
grow in the form of small thin Qakes perpendicular to
the hexagonal c axis, which is also the easy magnetiza-
tion direction. Ke were therefore able to use the
Faraday effect to study readily available single crystals
with the field a,pplied along the axis of easy mag-
netization. The use of a remote optical probe greatly
simplified the temperature control of the sample.

Our measurements were made using light of wave-
length 5461 X selected from a mercury arc spectrum by
means of a narrow-band interference filter. At this
wavelength, CrBr3 exhibits a large specihc rotation and
~'et is reasonabl& transparent. We constructed a sensi-

tive polarimeter by modulating the plane of polarization
of the incident light and using phase-sensitive detection
to determine when the polarizer and analyzer were
crossed.

The incident light was polarized by means of sheet
Polaroid (type HN32), and the plane of polarization
was rotated by means of a KDP Pockels cell and
quarter-wave plate. The light then passed through the
sample, a Gian-Thompson analyzer, and into a photo-
multiplier tube (RCA type 7265). The KDP cell was
modulated at 500 Hr. and a minimum in the 500-Hz
component of the photomultiplier current (detected by
means of a lock-in amplifier) indicated when the
analyzer was crossed with the polarization of the light
emerging from the sample. The amplitude of the
modulation of the plane of polarization that is necessary
for optimum signal-to-noise ratio is discussed in Appendix
A. It is determined by the ratio of the transmitted light
intensity with the polarizer and analyzer in the crossed
and parallel orientations. In practice, the optimum
amount of modulation was determined by adjusting
polarizer and analyzer for minimum transmission with
no modulation present. The modulation was then
increased until at least a twofold increase in dc
photocurrent was observed. We originally attempted to
measure the Faradav rotation of the CrBr3 by meas-
uring the dc bias on the KDP cell that would just
cancel out the rotation caused by the sample. However,
the KDP cell was not stable under dc conditions and
so we mounted the analyzer on the divided circle
obtained from a transit. With this equipment, the light
transmitted by a 20-p-thick crystal of CrBr3 was enough
to enable us to measure rotations less than 10 4 ra.d.
The saturated rotation of this sample was about 1.2 rad
at 0 K, so we were able to measure magnetization
changes of I0 4 of the saturation magnetization at 0 K.
This sensitivity is about a factor of 3 less than that
obtainable with zero-field NMR measurements, and
with suitable samples and light sources the Faraday
rotation method should surpass the sensitivity of
NMR.

The sample was mounted in a copper block that also
contained a germanium resistance thermometer, a
carbon thermistor, and a heater. The copper block was
thermally loosely coupled by means of a variable-
pressure exchange gas to the hehum reservoir of an
optical Dewar. An electronic servo system with a fast
proportional and a slow integral response regulated the
heater power to keep the carbon thermistor at constant
temperature. Temperatures from 25 to 40 K were
obtained with a few mW of heater power. We checked
for tempera'ure gradients by adjusting the exchange-gas
pressure so the system would regulate at the same
temperature with varying amounts of heater power.
For a given magnetic field and germanium thermometer
reading, the CrBr3 always showed the same rotation,
indicating no signihcant temperature gradients for the
heater power levels used. The servo maintained the
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TABLE I. T, a, and H data of CrBrg.

r ('K) H (G) T ('K) II (G)

30,076
30.076
30.076
30.076
30.076
30.076
30.076
30.683
30.683
30.683
30.683
31.925
31.925
31.925
31.925
32. 106
32. 106
32. 106
32. 106
32.286
32.286
32.286
32.286
32.286
32.478
32, 478
32.478
32 ' 478
32.478
32.589
32.589
32.589
32.637
32.637
32, 637
32.655
32.655
32.655
32, 655
32.676
32.676
32, 676
32.676
32.709
32.709
32.709
32.709
32.768
32.768
32.768
32.768
32.768
32.822
32.822
32.822
32.822
32.822
32.822
32.826

0.4895
0.4956
0.5096
0.5210
0.5401
0, 5678
0.6031
0.4681
0.4909
0.5085
0.5413
0.3329
0.3500
0, 3652
0.3780
0.3185
0.3366
0, 3521
0.3661
0.2788
0.3034
0.3223
0.3394
0.3532
0.2628
0.2872
0.3078
0.3256
0.3407
0.2202
0.2370
0.2521
0.2164
0.2335
0.2488
0.1953
0.2149
0.2318
0.2471
0.1938
0.2135
0.2306
0.2441
0.1913
0.2106
0.2275
0.2429
0.1653
0.1865
0.2054
0.2222
0.2374
0.1383
0.1616
0.1825
0.2013
0.2179
0.2333
0. 1381

82.3
262. 6
729.6

1176.9
2116.0
4039.2
7488. 8
529. 1

1249.1

1980.1

3880, 8
33.2

170,9
329 F 8
489.8
85.3

221.7
370.7
534.9
22.8

138.7
268. 1

421.4
570.3
80.5

190.8
322.6
467.3
619.7
25.2
66.0

112.6
38.8
78.6

125.1

13.8
44. 8
85.2

131.6
19.0
49.8
89.7

141.9
28.3
60.2

100, 7

146, 5
19.6
45.0
78 ' 5

119.6
165.9
14,2
32.0
58.6
92.5

133.8
179.9
14.8

32.826
32.826
32.826
32.826
32.826
32.836
32.836
32 ' 836
32.836
32.836
32.836
32.836
32.836
32.840
32.840
32.840
32.840
32.840
32.840
32.844
32.844
32.844
32.844
32.844
32.844
32, 844
32.844
32.844
32.844
32.844
32.852
32.852
32.852
32.852
32.852
32.852
32, 855
32.855
32.855
32.855
32.855
32.855
32.855
32.855
32.858
32.858
32 ' 858
32.858
32.858
32.858
32.872
32.872
32.872
32.872
32.872
32.872
32.872
32.926
32.926

0.1614
0.1820
0.2009
0, 2177
0.2330
0.1606
0.2176
0.2817
0.3317
0.3857
0.4223
0.4709
0.5259
0.1370
0.1600
0.1808
0.1992
0.2159
0.2314
0 ' 1376
0.1814
0.2171
0.2818
0.3430
0.3920
0.4261
0.4523
0.4739
0.4910
0 ' 5195
0. 1110
0.1359
0. 1588
0.1795
0.1980
0.2146
0. 1594
0.2162
0.2798
0.3309
0, 3817
0.4218
0.4712
0.5260
0. 1363
0.1591
0.1798
0. 1982
0, 2149
0.2303
O. iiio
0.1354
0.1578
0.1783
0.1968
0 ' 2134
0.2288
0.0825
0.1080

32.8
60. 1

93.5
134.5
180.9
35.7

134.9
412.6
838. 1

1649.5
2525. 7
4359.3
7751.5

18.5
37.3
64, 3
99.5

140.7
186.1

17.8
63.3

138.1

420. 8
984, 7

1802, 8
2672. 9
3584.9
4546.0
5479.5
7398.4

10.1

22. 3
41.9
69. 1

103.6
145.3
39,2

139.2
418.6
841.3

1668.4
2533.3
4380, 3
7774. 6

21.3
41,0
68. 1

103.2
144.4
190.1
11.7
25.7
46.8
74.6

109.5
151.0
197.1

11.1
22. 1
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TABLE I (Conti Nued)

T ('K) H (G) T ('K) H (0)

32.926
32.926
32.926
32.926
32.926
32.926
32.981
32.981
32.981
32.981
32.981
32.981
32.981
32.981
33.034
33.034
33.034
33.034
33.034
33 ' 034
33.034
33.034
33.034
33.142
33.142
33.142
33.142
33.142
33.142
33.142

0.1319
0.1541
0.1743
0. 1926
0.2092
0.2247
0.0539
0.0799
0. 1047
0.1280
0.1497
0.1696
0.1878
0.2044
0.0528
0.0782
0.1024
0.1252
0.1466
0.1661
0.1842
0.2004
0.2158
0.0252
0.0498
0, 0736
0.0966
0 ' 1183
0.1387
0.1577

37.9
59.6
88.7

124. 1

165,6
211.1
11.1
19.6
32, 3
50.3
73.8

103,8
139.8
181,4
15.7
26.3
41.2
60.8
85.5

116.8
153.2
195.9
241.7

12.4
25.8
42.0
61.1

84.5
112.6
145,8

33.142
33.142
33.739
33.739
33.739
33.739
33.739
33.739
33.739
33.739
35.029
35.029
35 ' 029
35.029
35.029
35.029
35.029
35.029
36.730
36.730
36.730
36.730
36.730
36.730
39,517
39,517
39.517
39.517
39.517
39.517

0.1754
0.1916
0.0187
0.0371
0.0728
0,0897
0.1063
0.1221
0.1372
0. 1517
0.0221
0.0331
0.0440
0.0548
0.0654
0.0760
0.0864
0.0965
0.0207
0.0343
0.0477
0, 0611
0.0871
0. 1240
0.0119
0.0197
0.0275
0.0353
0.0509
0.0740

183.6
226.4
35.2
70.6

145.0
185.2
226.9
271.3
318.2
367.2

122.4
183.7
245. 2

307.2

369, 8
432. 5
496, 0
560.4
230.0
382.0
534. 7
687.6
998.8

1475.4
260.0
432.4
604. 8
777.5

1127.0
1662.5

e= vm, (2)

where U is a Verdet constant appropriate to the sample.
fn Appendix B we show that the linear relationship of
8 and M is expected theoretically. In addition to the
theoretical justification, we were able to confirm this
result experimentally.

The internal magnetic held of a ferromagnetic
material is the difference between the external field a,nd

temperature constant to better than the sensitivity of
our thermometer. Our germanium thermometer was
calibrated against a platinum resistance thermometer
used in previous NMR studies of CrBr3 in the critical
region. "The absolute calibration is probably &20 mdeg
and the relative temperatures are accurate to %2 mdeg.

Magnetic fields up to 9.5 k G were obtained in a, 12-in.
electromagnet and measured to 0.1% accuracy with a
rotating coil gaussmeter and a Hall probe.

III. RESULTS AND ANALYSIS

The analysis of our measurements is based upon the
assumption that the Faraday rotation 8 is directly
proportional to the magnetization M of our sample.
Therefore we write

the demagnetizing field. We used the demagnetizing
field not only to verify Eq. (2), but also to obtain the
numerical value of the Verdet constant. The internal
field H, for an infinitely thin disk is related to the
a,pplied field H by

II,=H, —4zM.

For T(T, and M less than the saturation magnetization
(this is analogous to the two-phase region for a fluid, the
two phases being oppositely magnetized domains), we
found no detectable hysteresis in the rotation and hence
no magnetic hysteresis. The internal field was therefore
zero and so the magnetization was given by H, /4z. . In
this "two-phase region" the magnetization as a function
of H, was known and we were able to verify Eq. (2) . For
the sample on which measurements are reported here,
we found for 5461-A light the value of V was 4.935)&10 '
rad erg ' cm' G. There was no observable dependence of
U upon temperature. Furthermore, outside of the
coexistence curve (for T) T, or else M greater than
saturation) the magnetization is given by

M= yH;= yH, /(1+4'), (4)

where p is the susceptibility. In the immediate vicinity
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of the critical point, 4m'&)1, and so one obtains to a
good approximation M= H, /4~. From the initial slope
of our M-versus-P curves, we were able to determine
that V was independent of temperature up to about
100mdeg above T,. In particular, we observed no change
in V on passing through the critical point. Therefore,
the theoretical prediction that V is indeed a constant
was verified to within the sensitivity of our measure-
ments and the value V=4.935)&10 ' rad erg ' cm' G
was used to analyze our data. Our crystal of CrBr3 was
not a perfect in6nite disk; however, the calculated
demagnetizing factor (for a sample 20 p thick and
3.5 mm in diameter) is within 0.5% of the value 4s.
which we used. Were this correction applied, it would
simply shift all our magnetization values by 0.5% and
in no way alter our conclusions.

Since we believe others may wish to analyze our data,
we present the results in numerical form in Table I.
The reduced magnetization 0=M/M(0'K) was ob-
tained using the value 4n.M(0 K) =3520 G." We
conservatively estimate the errors in internal 6eld to be
about ~2 G, the reduced. magnetization ~10 4, and
the temperatures &3 mdeg.

We first analyzed our data by a method similar to
that employed by Kouvel and Fisher. "From a plot of
o' versus H/0 we extrapolated isotherms for T)T, to
obtain the value of H/o for 0 =0, which is the reciprocal
of the susceptibility. If the susceptibility diverges as
(T T,) &, then—a plot of (1/x)'~& versus T should give
a, straight line passing through zero at T,. We made
such plots for various values of y and from the plot
which represented a straight line for the widest tem-
perature range determined y=1.215~0.02 and T,=
(32.844+0.01)'K. Extrapolating to zero field for
T&T„we similarly found the shape of the coexistence
clllve to be glvell by P= 0.368+0.005, also witll T,=
(32.844&0.01)'K. Once T. was known we were able to
measure M versus H at 32.844 K and obtained. 6=
4.28&0.1. The uncertainty in the value of 8 comes
mostly from the uncertainty in T,. For several isotherms
near T„M appears to vary as H't' within the experi-
mental errors —however, the correct value of 6 is
obtained only if T, is well known. For example, log-log
plots of 3f versus H look quite linear for T= T,—0.01 K
(giving 6=4.4) and T,+0.02'K (8=4.1).

The value of P we find is in good agreement with
/=0.365&0.015 obtained by Senturia and Benedeki9

by zero-field nuclear magnetic resonance. However our
value of T, is about 275 mdeg higher than that reported
by Senturia and Benedek. Since we calibrated our
thermometer against the one used by them, the dis-
crepancy must be due to a difference in CrBr3 samples.
Similar variations of the critical temperature have been
observed in nickel, '~ yet the critical exponents obtained,
are in agreement with one another. Our sample was
grown from the vapor phase using 99.9% chromium
and analytical grade bromine. It has been suggested
that impurities should cause a departure from the

power-law divergence of the susceptibility"; we observe
no departures to (T T—,)/T, & 10 '. We also studied a
second sample of CrBrl from a different preparation.
Analysis of 12 isotherms for this sample yieMed ex-
ponents and coe%cients identical to those for our 6rst
sample, although the critical temperature was
(32.82&0.01) K. The variation of T, which has been
observed for different samples shouM be considered in
the design of proposed nuclear resonance thermometers
using CrBr3. '9 We conclude that the power-law diver-
gences we have measured represent, within experi-
mental uncertainties, the true critical behavior of
CrBra.

IV. EQUATION OF STATE

As we mentioned in the Introduction, the concept of
static scahng laws predicts an equation of state of the
form of Eq. (1). In a previous publication" we gave
plots of scaled magnetic field and. scaled magnetization.
that con6rm this hypothesis for CrBr3. Our measure-
ments provided an experimental determination of the
equation of state and were suKciently precise to enable
us to establish a mathematical representation for this
equation. The results of several approaches were given
in Ref. 13.We now wish to discuss details omitted from
Ref. 13 and progress made since the appearance of our
earlier paper.

Several approaches may be taken to obtain a mathe-
matical representation for the equation of state. A
successful representation using a relatively lar ge
number of parameters can be obtained by using power-
series expansions about special paths such as the critical
isochore and critical isotherm. We found three terms
each in series (about the critical isochore and critical
isotherm) adequately represented our data over the
entire critical region. A second approach is to seek a
single function to represent the function C of Eq. (1)
over the entire critical region. This method has been
tried with varying degrees of success by several
authors. 8 "'5 The most successful representation is the
function used by Vicentini-Missoni, Green, and
Sengers. "

Although these approaches can provide a satisfactory
representation of the experimental M, H, and T data,
the resulting equation is not in a useful form for cal-
culations in the critica, l region.

An equation of state which is mathematically elegant,
clearly displays the relationships between various
thermodynamic quantities in the critical region, and is
particularly amenable to calculations of static thermo-
dynamic properties can be obtained using the parametric
approach suggested independently by Scho6eld'4 and
Josephsen. is The parametric method. is a general and
powerful one that might pro6tably be used even in
cases where the scahng laws do not apply. Here we
con6ne ourselves to a discussion of two particular
representations which are mathematically simple and
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0.05 function for energy density fluctuations depends only
on r.

An alternative approach is to use the transformation
0 0 1~+0 og ~ ~ ~

pp5 I I I

0 O. I 0.2 0.3

I.p

0.9—

0.8—

~ ~ ~ ~

~ ~

0.4 0.5 0.6
8

~ 4 1 jan+

0.7 0.8 0.9 1.0

H= a8(1—8') rtM

T=(1—b 8)r,
M =k8{1—[(3—2Pb) /(3 —2P) ]O'I r&

= k8 (1 c8—') r&

b'= 3/(3 —2P) .

(6a)

(6b)

(6c)

(6d)

0.7—

0.6—

0.5—
E

0.4—

0.3—

0.2—

O. I

I I I I I

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
e

FIG. 1. Test of the equation of state (5). The lower portion
of the figure shows the experimentally determined values of m(g)
in Eq. (C3b). The solid line is Eq. (5c) with k=0,955. Other
parameters are given in the text. The upper portion of the figure
shows the deviations of nb(8) from the solid line.

H= a8(1 8') 8', —
T= (1 b'8') r, —

M= ked.

(Sb)

(5c)

The temperature origin is taken to be T, a.nd the scale
factors a and k serve to convert magnetic field H and
magnetization M into compatible units. When the
parameter b' takes on the value

b'= (8—3) /(8 —1) (1—2P), (Sd)

lines of constant r correspond to paths of constant
specific heat C~. The parameter r then measures the
distance from the critical point in terms of mean squared
Ructuations in energy density, and the correlation

in. which the parameters have a simple physical signifi-
cance.

In the parametric representation of Schofield, " a.

parameter r represents the "distance" from the critical
point in the HT plane. It would be desirable to express
this distance in some physically significant sense, say
by having paths of constant r correspond to paths along
which some thermodynamic quantity is constant. A
quite satisfactory equation of state with this feature
has already been presented. "The form of the equa, tion
of state is

With this equation of state, paths of constant r corre-
spond to paths of constant susceptibility. Then r
measures the distance from the critical point 'n terms
of mean squared Quctuations in magnetization, and the
correlation function for magnetization fluctuations
depends only on the parameter r.

In either of these representations, the parameter 8
locates a point in the HT plane along paths of constant
specific heat [Eq. (5)j or susceptibility [Eq. (6)].
The critical isochore is 0=0, the critical isotherm
8= ~b ', and the coexistence curve 0= +1. Both
equations have only five adjustable parameters: T„P,
8, a, k. W'e used a computer program to vary simul-
taneously all five parameters for the best nonweighted
least-squares fit to our CrBr3 data. The resulting values
for Eq. (5) were P=0.366, 8=4.34, and T,=32.846,
in excellent agreement with the results of analysis along
specific paths in the H T plane. "The magnetization was
expressed in reduced units, as in Table I, and the
temperature in reduced units by division by T,.
With the magnetic field in dimensionless units
(H=gpiiSH/kiiT, ) we obtained the values a=0.875,
k=0.955. The results are illustrated in Fig. 1.

Using the alternative Eq. (6) we obtained the best
fit with P=0.372, 8=4.36, and T,=32.846. With the
same dimensionless units as for Eq. (5), the constants
were a=0.800 and k=0.765. The results are shown
ill Flg. 2.

The deviations of the experimentally determined
values of m(8) from Eqs. (Sc) and (6c) are also shown
in Fig. 1 and 2, respectively. The relatively large
deviations near the critical isotherm (8=0.817 and
0.795, respectively, for the two figures) are caused by
small temperature errors and are within experimental
errors; Eq. (5) provides a satisfactory fit to the data
everywhere except in the region near the coexistence
curve. Here there is a small but systematic deviation as
the coexistence curve (8=1) is approached; this is
probably outside of the experimental uncertainties.
Eq. (6), on the other hand, shows systematic deviations
somewhat larger than experimental errors over the
entire critical region.

We have also applied these equatioi. s to the pure
fluids He' and He4, and either equation seems to
represent the data satisfactorily. "For CrBr&, Eq. (5),
while not perfect, is clearly preferable and provides a
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satisfactory representation of our experimental data.
For convenience we give in Appendix C the expres-
sions for various thermodynamic quantities that are
obtained using Eq. (5).

We should like to comment on the existence of
"pseudospinodal" curves as discussed by Chu, Shoenes,
and Fisher" for critical mixtures and Benedek" for
SF6. Experimentally it is often observed that a quantity
(such as the susceptibility in a ferromagnet) which
diverges as (T T.) & —along the critical isochore will
apparently diverge as (T T,*)—~ along other iso-
chores. "The locus of the temperatures T,* for various
densities determines a pseudospinodal curve. In the
van der Waals equation this curve coincides with the
true spinodal curve of van der Waals, which is a curve
of infinite compressibility (or susceptibility) and hence
a boundary to a metastable region within the co-
existence curve. Whether the true and pseudospinodal
curves should coincide in general is not clear. However,
we Inay see from the scaling hypothesis why the pseudo-
spinodal behavior is experimentally observed. This is
easily seen for the susceptibility in a ferromagnet. The
equation of state may be represented as a power-series
expansion about the critical isotherm (T=O) of the
form"

H=boM'+bgTM' "P+b2T'M' "~+ ~ ~ ~ .

For CrBr3 we found this series to represent the data
quite adequately for all T(0 and for a considerable
portion of the critical region with T)0. We also found
the third term in the series to be relatively unimportant.
If only the first two terms in Eq. (7) are considered,
one readily obtains for the susceptibility along an
isochore

This apparently diverges at T,*, a temperature lower
than T, by an amount proportional to M'I& and there-
fore yields a pseudospinodal curve with the same
exponent as the coexistence curve. Similar expressions
for specific heat and susceptibility can be obtained from
the parametric equation of state (5), and are given in
Ref. 26. The range of temperatures for which this
pseudospinodal behavior is observed depends upon the
coefficients in the equation of state and therefore varies
from substance to substance. We see from the dis-
cussion that a pseudospinodal curve with the same
exponent as the coexistence curve is consistent with the
scaling hypothesis. However, a parabolic pseudospinodal
curve, as reported for SF6, is not consistent with
scaling.

V. SUMMARY AND CONCLUSIONS

We have shown that Faraday rotation can provide
accurate measurements of magnetic properties in the
critical region for suitable magnets, and have used this
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FIG. 2. Test of the parametric equation of state (6) .The lower
portion of the figure shows the experimental values of m(8)
in Eq. (C3b). The solid line is Eq. (6c) with 0 =0.765. Other
parameters are given in the text. The upper portion of the figure
shows the deviations of m{0) from the solid line,

technique to study Cr Bra. Other materials under
investigation include yttrium iron garnet, EuS, and
EuO.

Measurements on CrBr3 showed this insulating
ferromagnet to be described within experimental error
by the static scaling law hypothesis.

The parametric method appears to be the best
approach to an equation of state. One can obtain a
single equation that is valid over the entire critical
region, possesses the mathematical properties required
by the scaling hypothesis, and also adequately describes
the experimental data using a minimum of adjustable
constants.

We have tried two specific parametric representations
for the equation of state that are mathematically
simple and also have obvious physical interpretations.
In one representation, Eq. (5), the distance from the
critical point is measured by a parameter inversely
proportional to the 0. power of the specific heat at con-
stant magnetization, which is related to the Quctuations
in energy density. ' In our second representation, Eq.
(6), the distance from the critical point is inversely
proportional to the p power of the susceptibility, and
hence a measure of the fluctuations in magnetization.
Behavior in the critical region is determined by the
divergence of fluctuations as the critical point is
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approached, and we presume this is why these two
equations of state are reasonably satisfactory.

We do not understand why Kq. (5) is preferable to
Eq. (6) for CrBrp. There is no reason to assume that
either Kq. (5) or Eq. (6) represents the precise analytic
form of the equation of state; however, these must be
reasonably good approximations to the correct equation.
Recent calculations for the three-dimensional Ising
modeiPP suggest that Eq. (5) is not precisely correct;
however, it is indeed very good, agreeing to better than
1% with approximate calculations for this particular
model.

The same equation provides an equally impressive
fit to experimental data for real systems and is in a
form quite suitable for engineering calculations of the
thermodynamic properties of magnets, pure Quids, and
possibly other systems in the critical region. Recently
it has been successfully used" to correct for the effects
of gravity on measurements of specific heat and sound
velocity in several Huids near the critical point. Only
five parameters are required to represent the experi-
mental data and these may be obtained from relatively
few measurements. For example, a measurement of the
spontaneous magnetization below T„and the suscepti-
bility along the critical isochore above T„ is sufhcient
to determine the entire equation of state.
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APPENDIX A: THEORY OF POLARIMETER

The light intensity I at a detector separated from the
source by a pair of nearly crossed polarizers is given by

I= Ip sin'8+Ii,

where (Ip+Ii) is the intensity when the polarizers are
parallel, I~ is the leakage intensity at the null position,
and H is the angular deviation in radians of the polarizer
axes from the null. If the polarization of the light is
further modulated at an angular frequency co and an
amplitude Hp, the intensity becomes

I= Ip sinp(8+Op singlet) +Ii. (A2)

If Op«1, Kq. (2) can be expanded in power series in 8p.

I= Ii+-', Ip }1—cos28 } (1—8p') +8p' cos2pit+ ~ ~ g

+sin28 f(28p 8p') sin~pt+ ipOp' sin3cot+ ~ ~ j}. (A3)

The amplitude I„of the intensity component at
frequency ~ is

I„=—',Ip(28p —8p') sin28.

S= 2cxIpHHp.

Thus the signal to noise ratio is

(S/1V)'=4nIp'8'Op'/(Ii+-', IpOp') B.
If Op'«2Ii/I p, we have

S/1V = 28 (aIp/B) "'Op(Ip/2Ii) "'.
On the other hand, if Op'))2Ii/Ip, we have

(A6)

(A7)

(A8)

S/iV =28(nIp/B) 't' (A9)

Thus for suKciently strong modulation, the signal-to-
noise ratio is independent of the modulation amplitude
and is related to the number of photoelectrons emitted
in time 1/B with the polarizers uncrossed. The optimum
modulation is

Op'~4Ii/Ip.

APPENDIX B: FARADAY ROTATION IN CrBr3

The origin of the large Faraday rotation in CrBr3
was firs discussed by Dillon, Kamimura, and Remeika. "
It was shown that at low temperatures the rotation is
caused by the spin-orbit splitting of the excited states
and is independent of the applied field as long as the
sample is magnetically saturated.

A general theoretical treatment for the form of the
electri, c dipole rotation due to magnetic ions in various
circumstances has been given by Crossley et at.32 We
will simply outline the approach and point out those
features which are applicable to CrBr3.

The total Hamiltonian acting on the system is
H=Hp+Hi, where Hp is the free-ion Hamiltonian
together with the octahedral crystal field, and Hj is
the perturbation given by

Hi Vert+ Vrs gtisS, H, .—— —(81)
Here Vzz is the small trigonal component of the crystal
field, which is proportional to j —L, , VL,q is the spin-
orbit interaction, and H, is the sum of the exchange
field (using the molecular-field approximation for
simplicity) and any external magnetic fmld. The ground
states of the Cr'+ ion consist of the orbital singlet 432
with a small admixing with the first excited states e,
the orbital triplet 'T2, both having spin S=~.' Let
E, and E„P be the unperturbed energies of the ground
and excited states, respectively, and E, and E the
perturbation energies about the unperturbed values,

This is the source of the signal at the lock-in detector
and goes through zero at the null position.

The shot noise lV in the photocurrent is proportional
to the square root of the dc signal and is given by

V'= nB (Ii+-', IpOp'),

where o. is the emission rate of photoelectrons per unit
I and 8 is the bandwidth of the lock-in detector. The
amplitude S of the signal component (at frequency pi)

of the photocurrent is approximately
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such that

(82)

The specific rotation 8 in the absence of damping is
given by

8= (&o/2c) (n,
——n+), (83)

wave function +
m

P
I @)= P (I, rw

I
e&

I
l, m), (812)

where
I l, m& are angular momentum eigenfunctions, one

obtains the expression

where

xCI &g I v, I n& IP—
I &g I

v
I

n& I'7p„(84)

where ao is the angular frequency of the light, and e+
and n are the refractive indices for right and left
circularly polarized light, respectively. Applying the
Kramers-Heisenberg dispersion relation and the
Lorentz-Lorenz correction, this becomes

8= —K P CsP/(pp„, '—co') 7

with

8p= KpkCGPcop/5(M —pp ) 7M

mM/2
M—=XpB Q p„rn,

m=3/2

(813)

(815)

K= 2$ (n+—2) '/9ncS,

5~.p=5~p+ (E„—P.,), —
Kp= (4K/r~, )P(~,/x) (4a,

I
v+Pr„,PV

I
4w, &.

(86)

2 KC2Mpppp/$ (pppP MP) 2

xzp, z,zcl &gI v+ In& I'—
I &gI v In& I'7, (89)

8p = KC2aPppp/5 (orp —&cF)

XZp, ZCI &g I v+ I n& I'—
I &g I
™

I n) I'7&n
I

H~
I

n&.

(810)

It can be shown" that if the ground state is regarded
as a pure orbital singlet, 8i and 82 vanish. When the
perturbation H& in Eq. (81) is substituted to evaluate
83, only the VL,& term contributes. Using the form

Vrs=g&, L S, (811)

where the summation is over the three electrons in the
ion and ~; are the spin-orbit coupling constants, and
defining a projection operator P' such that for any

.7 is the number of ions per unit volume, n is the mean
refractive index, V+ and V are the electric dipole
operators for right and left circular polarization, respec-
tively, and p, is the occupation probability of the ground
state g.

In the conditions under consideration,

I
cop' —p p

I
»cop

I
E. Ep I/5. —

Therefore the frequency-dependent factor in Eq. (84)
can be expanded in the form

pp 4) 2 (E~—Ep) cop
1— + ~ 87

2 ~2 ~ 2 ~2 $(~ 2 ~p)

and we obtain the first three terms in the formula for 8:

8y= KCGl /(cop —GP) 7

xg~,&CI &g I v, I n& I'—
I &g I

v
I

n& IP7, (Bs)

I g&= I
'~p& —~(Ag/g) ~

I
'Tp&, (817)

where 0. is a number of the order of unity and Ag is the
deviation of the Lande g factor from the spin-only value.
Then 8i and 82 have finite contributions, the former
being predominant because of the frequency-dependent
factor and given by

8g ——Kg (Ag/g) C(o'/(ppp' —aP) 7M,

where

(818)

Kg =(2nK/LVps) (—4Ap
I

(V~PV ) —(V PV+) I
4Tp&.

(819)

Since Ag is about 0.01 for CrBr3,"we expect 8~ to be
substantial and may even be of the same order as 83.

Thus for CrBr3 the Faraday rotation can be separated
into the two terms in Eq. (813) and. Eq. (818), both
linear in the magnetization, with coeKcients which
have diBerent frequency dependence but are both
temperature independent. Higher-order terms in the
expansion in Eq. (87) give nonlinear contributions,
but these are reduced by at least the factor P.„/pp„
which is of the order of 10 '.

APPENDIX C: EQUATIONS IN LINEAR MODEL

Here we summarize expressions for various thermo-
dynamic quantities using the parametric equation of
state Eq. (5). This is called the "linear model" in Ref.
26. We begin with a general statement of thermo-

dynamics in the critical region using parametric nota-
tion. It is convenient to define a potential pr(r, 8) which

(816)

M defined in Eq. (814) is the magnetization of the
sample, and depends on 8, through p .

In reality, the ground states have the form
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depends upon the parameters r and 8. From this one or, in alternate form,

P(8) = t:8/(8+1)] (8)h(8)+51/P(8+1)]t(8) (8)

(C4b)
Equation (C1) can be written as

It s' -sgI-'= pbmht » -s '-t' -m—h't » -s -. (C5)
8vr ) 8(z., H)

S(r, 8)= —
~

=
8Tirr 8 (r, 8)

8(T, H)
8(r, 8)

z.(r, 8) =p(8)r»+~,

M(r, 8) =m(8)rs,

H(r, 8) =h(8)r»,

T(r, 8) = t (8) r,

S(r 8) =s(8)r»+~ '.

(C3a)

(C3b)

(C3c)

(C3d)

(C3e)

Substituting these into Eqs. (C1) and (C2), one obtains

z = t 8/(8+1) ]MH+L1/P(8+1) ]TS (C4a)

where 5 is the critical part of the entropy. Other
quantities may be calculated in a similar manner. If we
now include the experimentally observed power laws in
the form of the r dependence of the functions, we obtain

In Eq. (C5) the prime denotes differentiation with
respect to 8 and the 8 dependence of the functi'ons m,
h, and t is not shown explicitly.

If the specific forms for m, h, and t given in Eq. (5)
are chosen, then Eq. (C5) may be readily integrated to
obtain an expression for p(8). One may then obtain an
expression for s(8) by substituting in Eq. (C4b) and
calculate the specific heat from Eq. (C2) in the form

Cir = (P8+ h 1) (S/—T) P(M/T) (—8S/8M) r. (C6)

If one requires that C~ be independent of 0, one obtains
an equation whose solution is given by Eq. (Sd) .

On the other hand, if it is desired to make the sus-
ceptibility independent of 8, one readily obtains Eq. (6) .
The results summarized in Eqs. (C4)—(C6) are generally
true for the power-law dependences in Eq. (C3) and
may be used to calculate other thermodynamic deriva-
tives even if different forms for m(8), t(8), and h(8)
are chosen.
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