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vector approximation. Because the momentum transferred in
the plane of the slab is small, we need not take the wave vector
into account for the components of the dynamical matrix of
nonzero reciprocal-lattice vector. These components, independent
of the transfer wave vector, have been summed and appear as
the Lorentz-local-6eld correction which is contained in the di-
electric function used. See Ref. 1.

"See Eq. (12) of Ref. 2.
"C. Von Festenberg and E. Kroger, Phys. Letters 26A, 339

(1968),"J.R, Jasperse, A. Kahan, and J. N. Plendl, Phys. Rev. 146,
S26 (1966),"J.Geiger {private communication).

i4E=430 is equivalent to a scattering angle of (10) 4 rad.
'~ Recently Lucas and Kartheuser LPhys. Rev. B 1, 3588

(1970)g have developed a single slab nonretarded theory for
(AU{0) ) which gives results comparable to those of FO except

in the frequency range near 0=0». Lucas and Kartheuser neglected
the interaction between the bulk modes and the surface modes
and this interaction gives rise to significant effects near 0 =0».

"H. Ehrenreich, H. R. Phillipp, and B. Segall, Phys. Rev.
132) 1918 (1963).

"For details of the Al loss distribution see Ref. 2."See also the first paper of Ref. 1, p. A2084.
"The plasma energy chosen is the lowest energy at which the

real part of the dielectric function of graphite has a zero according
to the data of H. R. Philipp )Opt~ca/ I'roperties and Electronic
Strlctlre of Metals and A/loys (North-Holland, Amsterdam,
1966), p. 408j. We calculated the relaxation time using the
carbon conductivity at zero frequency given in the Handbook
of Cl»emistry and Physics, 48th ed. (Chemical Rubber Publishing
Co. , Akron, 1968) p. f-132.

20 H. Boersch, J. Geiger, and W. Stickel LZ. Physik 212, 130
', 1968)) show theoretical energy-loss curves which clearly include
both angular- and energy-resolution functions. Their Figs. 5
and 6 are much like our Figs. 7 and 6. However, this paper of
Boersch, Geiger, and Stickel contains almost no details concerning
their treatment,
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By use of Fourier-integral representations and lattice orthogonality relations, Madelung sums are cast
in a form which explicitly separates contributions due to crystal symmetry from those due to the detailed
arrangement of neighboring ions. The usefulness and mathematical soundness of the method are demon-
strated by verifying known Madelung constants and by obtaining more accurate values for the electrostatic
energies of low-density plasma models. The method is also easily applied to the study of ionic displacements
or crystal defects.

I. INTRODUCTION

In connection with electronic-structure calculations
of crystalline solids, we found it convenient to introduce
a Fourier-integral representation for the electrostatic
potential energy. The various contributions of opposite
sign exhibit cancellations and limiting properties also
manifested by classical electrostatic interactions as
encountered in the evaluation of Madelung constants.
We therefore found it profitable to reinvestigate the
Madelung problem to establish the correctness of the
mathematical steps, and to determine highly accurate
values of numerical constants entering the electronic-
structure studies.

The classical methods for the evaluation of Madelung
sums are those of Evjen' and EwaM. ' These sums,
which are conditionally (and slowly) convergent, are in
Evjen's method analyzed by grouping contributions into
shells with vanishing low-order multiple moments.
Ewald introduces an integral transformation which is
then broken into two parts, each of which is more
rapidly convergent than the original sum. However,
neither of these methods has really made the evaluation
of Madelung sums as simple as might be desired.
Refinements and modifications of the Evjen and Ewald

procedures have therefore been investigated; of note are
the contributions of Emersleben' and of Bertaut. 4

The explicit use of Fourier transforms in lattice-sum
evaluations has been considered before, 5 and in fact a
treatment containing some of the features of that
described here is to be found in the work of Nijboer
and 0e Wet te.' However, the previous use of Fourier
methods has been such as to avoid the mathematical
difFiculties associated with arrays of point charges, and
the 6nally resulting formulations are not optimal for the
appllcatlon we contemplate to quantum mechanics.
In contrast, we And that passage to the point-charge
limit leads to simple and useful final formulas.

Our final formulas in effect calculate the electrostatic
energy as a deviation from a limiting case in which ions
of one sign are immersed in a uniform background of
opposite charge. This limiting case, familiar in plasma
physics, is treated with the aid of the Euler-Maclaurin
summation formula. The notion of a point-charge array
and compensating uniform background has also
entered previous discussions of Madelung energies.
For example, Tosiv reviews methods whereby this idea
can be used to relate Madelung constants of different
structures of the same lattice symmetry. The resulting
formulas are similar to those presented here. The most
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TAnrE I. Values of lattice structure constants C [Eq. (I) g and quantities F(a) (see Appendix 8}.

SQDlmet~ C (units 2p./o}

Cubic
Tetragonal
Orthorhombic
Orthorhombic
Orthorhombic
Hexagonal

1

2

V3

v'A-

+6
V'x

-0.731 669 897
—0.702 237 143

—0.731 669 901
—0.702 237 095

—0.975 066 171 —0.975 066 212 —8.913 633
-5.673 219
—5.688 760
—5.688 760
—4. 170 255
—7.033 153

significant practical point of departure from earlier
work is that wc give a direct method for evaluating the
energetic contribution for the array plus background,
while previous authors deduced this quantity from
conventionally calculated Madelung constants.

After describing our methods, we verify the analysis
by reproducing known Madelung constants and plasma-
energy limits, and we indicate how one may treat
deviations from perfect lattice structures.

II. METHOD

Consider an infinite periodic lattice each cell of which
is electrically neutral and contains an identical distribu-
tion of charge. I.et r; denote the position of the origin
of cell i, and let s, m=1, 2, . . . , d, denote the respec-
tive locations, relative to the cell origin, of charges q
in each cell. If there is a charge at the cell origin, we
assign it the symbol qo. Then the electrostatic potential
at r; due to ions at all other points in the lattice may be
expressed as the sum

In this and all equations to follow, sums over lattice
cells will include all cells except as explicitly indicated
otherwise. As written, the j summations in Eq. (1)
are individually divergent, but it is to be understood
that the two summations are to be combined to produce
a convergent result.

We proceed by introducing Fourier-integral repre-
sentations for the summands of Eq. (1), in the form

I
r

I

'= (1/2pr') f(dk/ip') exp( —ik r),
thereby obtaining

V(r;) = (qp/2n') Q f(dk/i'p') expL —ik (r—r,)j

+ Q (g„/2s') Q f (dk/k') expL —ik. (r;—r;+s )j.
m=1

Ke intend now to interchange the order of the summa-
tion and integration in Eq. (3), but we note that the
necessary uniform-convergence criteria cannot be
fulfilled in the neighborhood of k=0. We therefore

divide the k integrations into two regions, the hrst of
which is a sphere of radius e about k=0, the second
region being the remainder of k space. Appropriate
conditions determining ~ are examined in Appendix A,
as is a discussion of the first integration region. It is
shown there that the first integration region makes no
contribution to V(r,). In the second integration region,
we interchange summatior. and integration, reaching

'dk
V(r, ) = — —JQ expI ik—(r,—r;) j2~' k'

~LA+ Z 0 exp( —ik's ) 3—AI (4)

The prime indicates the exclusion of the sphere about
k=o. In writing Eq. (4), we have added the term
j=i to the summation involving qo and then explicitly
subtracted it again.

Next, we recognize that the sum over j can be iden-
tified in terms of 8 functions for points k„of the
reciprocal lattices:

g expI —ik (r,—r,)]= (Ss'/cp) g 8(k—k„), (5)
kfs

where cp is the cell volume (in ordinary space). Intro-
ducing Eq. (5), two of the terms in the k integration of
Eq. (4) reduce to reciprocal-lattice sums, and

q() Sm3
V(r;) = ——g k -'— k

—'dk
~0 kfs&0

+(4x/sp) Q q Q fp„'exp( —ik„s„). (6)
m=1 kfs/0

The portion of Eq. (6) in square brackets consists of
two individually divergent terms; by examining the
manner in which Eq. (6) was derived from Eq. {4),
it is dear that the square bracket is to be interpreted
as the limit reached when the integration and summa-
tion are extended infinitely over identical regions of k
spRcc. This limit, to which wc Rsslgn thc syrIlbol
depends upon the lattice structure. It is clear that C
need not be zero, as it is a close three-dimensional
Rnalog of thc one-dimensional lllTllt leading to Euler s
constant. The evaluation of C and some mathematical
questions associated therewith are discussed in Ap-
pendix 8, and values of C for some common lattice
systems are listed in Table I. Equation (6) therefore
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becomes our final form over w, obtaining

V (r;) = (q,C/2 ') + (4 /v, ) g q
m=1 &~+0

X exp( —ik„s ). (7)

Equation (7) may be interpreted as the sum of two
contributions, of which the first depends only upon the
lattice structure, while the second depends also upon
the distribution of charge within each unit cell. A fuller
interpretation follows if we consider the result of
distributing the charges q uniformly over the unit cell.
This corresponds to averaging exp( —ik„s ) with
respect to s and leads to the vanishing of the second
term of Eq. (7) . The quantity C is therefore a measure
of the potential at a lattice point when a unit positive
charge is placed at each other lattice point and balancing
negative charge is distributed uniformly. throughout all

spa, ce. The second term of Eq. (7) therefore represents
the effect of replacing a uniform background of charge
—

qo per cell by the actual localized charges qj, q~, . . . , q .
Turning now to the localization-dependent term of

Eq. (7), we note that the complex exponential provides
an oscillatory factor which accelerates convergence.
Because V(r, ) is real, we may make the oscillatory
nature explicit by replacing exp( —ik„s ) by
cos(k„s ), or, for orthorhombic systems, by cosines
produced by a component expansion: cos(k„,x )
Xcos(k»y ) cos(k„.z ), where s = (x, y, z ) and k„
= (k„„k»,k„.) . The oscillations and concomitant con-
vergence will be most rapid when s is near the center
of the unit cell.

If one or more of the lattice axial directions is orthog-
onal to the others, the sum of Eq. (7) can be reduced
analytically to two dimensions through use of the
relations8

g (cosvw/w') = 67r' —2vy+4y',
to=1

cosyw 7r coshn(v —y) n/0 .w'+n' n sinhnv-

V(r;) = + —Q q„2'' ab

1 as'u.
)X — + + cos

u v/00 a

uv.g„cosh f R„„(1—z/c) I

(X cos
R„„sinhR„„

where

R„,= v.[(cu/a) '+ (cv/b) '7"'.

III. DISCUSSION

Our first concern might well be an explicit ve;ification
of the mathematical arguments by reproduction of
some established Madelung constants. Ke also wish
to see what computational effort is needed to obtain
reasonable accuracy. We look first at a cubic CsC1
structure of cell dimension a, with a unit positive charge
at each cell origin and a unit negative charge at the
midpoint of each cell (-,'a, ~a, —,'a). We find the correct
value of V(r, ) already given to four significant figures
when the summation of Eq. (11) only contains the five
distinct terms with u'+v'(3; extension to u'+v'(5
yields from 12 distinct terms the six-significant-figure
result V= —1.762 675/s, where s, the nearest-neighbor
separation, is (Q-,')a. The established value' of this
Madelung constant is —1.762 670/s. The calculation
just described takes 5 or 10 min on a good desk
calculator and obviously does not involve the use of
tables of error functions. Comparable results are ob-
tained for the NaCl structure, calculated as a cubic
lattice of cell dimension a with unit positive charges at
(0, 0, 0), (—2u, 0, —', a), (0, —',a, —',a), and (-', a, —',a, 0) and
unit negative charges at (-', a, 0, 0), (0, —',a, 0), (0, 0, —',a),
and (za, -', a, —,'u). Our six-figure result is —1.747 563/s,
(s=-', a), while the established value' is —1.747 558/s.

We next look more closely at the relation between
our present calculations and those of low-density limits
for the energy of a plasma. The usual low-density
plasma model" consists of a lattice of point electrons in

We illustrate for an orthorhombic lattice of cell dimen-
sions a, b, c, for which k„= (2v.u/a, 2vv/b, 2v.w/c), for
integer or zero I, v, m. Then

TABLE II. Energy (Hartrees) per particle for unit charges in
various space lattices with uniform background of neutralizing
charge. The quantity r, (Bohrs) is the radius of the sphere con-
taining the volume per particle.

V(r, ) = (qoC/2v')+ (1/7rabr) Q q„

X
cos(uv-x /a) cos(v7ry /b) cos(wvz /c)

( )
~ w»0 (u/o) '+ ("/b) '+ (w/&) '

At least one of x, y, s will be nonzero. Assuming
z &0 for all m, we apply Eqs. (8) and (9) to the sum

Lattice

Simple cubic
Face-centered cubic
Body-centered cubic
Hexagonal close-packed

This research

—0.880 059 r, '
—0.895 874 r, '
—0.895 929r, '
—0.895 838 r. '

—0.880r, '
—0.895 86 r,-~
—0.895 93r, '
—0.895 84 r, '

Energy
Previous work
(Refs. 11—13)
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a uniform background of positive charge, and therefore
has an energy closely related to the constant we denote
by C. These plasma energies have been previously cal-
culated by Ewald-type methods for simple cubic, "
body- and face-centered cubic, " and hexagonal close-
packed" lattices. For primitive Bravais lattices (e.g. ,

simple cubic), our C values are directly identifiable as
electrostatic potentials at lattice sites. For nonprimitive
lattices, additional face- or body-centered charges can
be treated by explicitly including them in the summa-
tion of Eq. (7) . This idea is used in Appendix B to derive
C values for hexagonal lattices.

In line with the preceding discussion, we have cal-
culated the potential at lattice points of face- and body-
centered cubic lattices and of the hexagonal close-
packed lattice. Our results, shown in Table II, agree
with the less accurate previously reported values to
within the error limits of the latter.

Finally, we consider the application of our method to
calculations involving deviations from perfect crystal-
line symmetry. For such calculations we may need the
electrostatic potential at an arbitrary point of the
crystal. To make such a calculation, all we need do is to
define that point as a lattice point, making suitable
assignments of the locations of all charges. If no charge
is at a lattice point, we simply have F0=0 and no term
involving C occurs. Thus an interstitial defect can be
handled simply by evaluating the potential at its
location, while the displacement of an atom can be
treated by deducting from the potential calculated for
its displaced position the effect of the missing charge at
its original position.
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APPENDIX A: BEHAVIOR AT k=0

In order to carry out the analysis leading from Eq.
(4) to Eq. (6), it is necessary that the region excluded
at k=0 be su%ciently large that no residual contribu-
tions are produced from the presence of 5(k—k,) with
k„=0. What this statement really implies is that as
we proceed to the limit of an infinite lattice, the value
assigned to e must tend to zero more slowly than the
width of the function whose limit is 6(k) . An explicit
examination of Eq. (5) indicates that the width of
5(k) approaches zero as X '", where fit' is the number
of lattice cells. Therefore c- cannot be assumed to go to
zero more rapidly than S "'. This dependence for e is
such that the contribution to Eq. (3) near k=0
requires delicate analysis. We proceed accordingly, but
without great rigor.

Introducing spherical wave expansions for the ex-
ponentials in Eq. (3), and discs, rding the terms which
vanish upon angular integration, we find that the con-

tribution to Eq. (3) from k(e is proportional to

sink
I r, —r,

Ir=qog dk
' ' + gqkIr; —r;I

k
I r, —r;+s„

I

We rewrite F in the form

r=q, g I
r,—r, I-i t 'sint dt

+ 2 v-Z Ir —r+s-I-'
m=1 j

t 'sintdt

~lr& —r, +s~ I

t ' sint dt (A2)+ Z v-Zlr —r'+s-I-'
m=1 j e I

r7'—ri I

and approximate the last integral by
eIr;—r, +sml

t ' sint dt= (e I r,—r„+s„ I

—e
I r,—r, I)

—Z q Z I r,—r,+ s
I

' sin&
I
r —r'

I + ' ' '.
m=1 j

In obtaining this result we removed the term j= i from
the first summation because it vanishes proportionally
to e. We also used the fact that

d

g g~= —go.
m=1

We are now ready to argue that F~O as Ã~~, even
though (i) e~E "', (ii) the maximum values of

I
r, —r,

I
and

I r, —r;+s
I

both increase proportionally
to 1V't', and (iii) there are fear terms in the summations
over j.To start, we remember that the sums over j are
to be carried out in a way leading to the convergence
of Eq. (1). One way to do this is to sum successively
over spherical shells whose boundaries are chosen to
make them have vanishing moments at least through
order 2. Looking now at the expression for I', we see
that, because &~0, all the terms from a single shell of j
values will have nearly the same values of

t 'sintdt
0

and of sine
I
r,—r, I, and that for such a shell the net

contribution to I" will be proportional to the contribu-
tion of that shell to V(r,). Since the sum for V(r~)
converges, we conclude there will be no significant
contribution to I' for j-value shells of radii greater than
some Ro which is independent of X. Finally, we cause

sin~
I r, —r,

I

&&
' '

. A3

The result is that the third term of Eq. (A2) becomes

—
qo P I r,—r;

I

—' sine
I r,—r,

I
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the j values inside the radius Eo to have a negligible con-
tribution to F by increasing E and thereby decreasing ~.

Since Eo does not depend on E, this can certainly be
done.

An argument such as we have just given is necessary
because a straightforward expansion of

~
r, —r;+s

does not lead directly to cancellations of su%ciently
high order. The difhculty is related to that which would
arise if an attempt were made to evaluate Eq. (1) by
grouping terms of equal j from the two sums. This
would result in charge arrays which, even in the limit
Ã~~, wouM have nonvanishing dipole moments and
therewith divergent long-range contributions.

APPENDIX 8 ' LATTICE-STRUCTURE CONSTANTS

As indicated in the text, the electrostatic potential
at a point of a periodic lattice may include a constant
C whose value depends only upon the lattice structure.
In particular,

C= limL(8zrz/vo) Q k„—'—fk—'dk], (81)
kg&0

where the limit is that reached as the included region of
k space is extended infinitely. We no longer indicate the
exclusion from the integration of a small sphere about
k=0 as it does not aGect the value of the integral in
Eq. (81).

The limiting process of Eq. (81) has not been pre-
cisely defined, but a satisfactory way to complete the
definition is to extend the included region to infinity in
one lattice direction and to take successive regular two-
dimensional arrays of lattice cells in the remaining
directions. This will result in sets of points k„on the
boundary; it is clear from the way Eq. (81) was ob-
tained that such points are to be given half-weight (or
quarter-weight if on a corner) . If Eq. (81) is evaluated
as just indicated, consistency requires a similar treat-
ment (such as that given in the main text) for the
remaining conditionally convergent summation of
Eq. (&).

We have evaluated C for the general orthorhombic
lattice, thereby obtaining also as special cases the
tetragonal and cubic lattices. We have in addition
obtained, C for the hexagonal lattice. Particular
examples of the other lattice systems can be investigated
by the same methods, but the lower symmetry then
makes a completely general algebraic treatment less
at tractive.

We discuss first an orthorhombic lattice of cell dimen-
sions a, b, and c. Then vo ——abc, and. k„'=4zrzL(u/a)'+
(v/b)'+ (w/c)'], where the lattice point k„ is removed
from k=0 by 0,, v, and zv lattice steps, respectively, in
the +a, +b, and +c directions. In accordance with our
earlier discussion, we take the limit C by making
evaluations over regions in space E~ bounded in the
a and b directions by the planes &2zriV/a and &2zriV/b
(corresponding to u= &iV, v=&iV), where iV is an
integer which will be increased to infinity. We have

proceeded directly to &~ ln the c direction. Our
expression for C may then be written

C= lim (2zrc/ab) Q L (cu/a) '+ (cv/b) '+w']-'

k 'dk (82)

+ —llm — +

lQ t& — — . 83

The terms of Eq. (83) are grouped as shown to make
expllclt the fact that the llmlt is still of the difference
between the summation and integration of the same
arguments. The first sum, indicated as for N, m&0, 0,
need not be limited to R~ because it converges exponen-
tially.

We next evaluate the limit, which is now in two
dimensions, by applying the Euler-Maclaurin sum
formula. %e apply that formula to rectangular two-
dimensional regions in the form

Z Zf(u, v)
R=Q j, S~'V $

du dv f(u, v)

duff"'(u~ vz) f"'(u»)]

+Pd,
51

+ Q d,d, $f"'&(uz vz) f&'&'(uz v,)—
dvt f"'& (uz, v) —f"'&(uz, v) ]

f""(uz vi)+f""—(uz, »)], (84)
where P'» means (a/au)'(a/av)f(u, v), boundary
terms in the sums on the left-hand side are to given
half-weight (quarter weight for corner points), and the
sums on the right-hand side are over the first few odd
positive integers, with dz=1/12, d3= 1/720, dq=
1/302 40, dz= —1/120 960 0,

The Euler-Maclaurin formula cannot be applied here
to any region too close to N = v = 0 because the remainder
terms are then too large. We accordingly evaluate the

with the convention that the summation over E~
excludes 0=@=+=0 and is with appropriate fractional
weights for the boundary points.

Ke begin the evaluation by summing and integrating
to &~ in the c direction. The z summation is per-
formed using Eqs. (8) and (9), and the integration over
the corresponding Cartesian coordinate is elementary.
The result is, after some rearrangement,

C= (2zrv/ab) P(zr'/3)+zr g $(vu/a)'+ (vv/b) 2] '~2

uv&00

X (cothzrL(cu/a) '+ (cv/b) ']'i' —1)]
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8i&.'+25n +8 48n +146n +21a~+146n'+48
18Pzzz(i&z+1) z&z

+
2S2P&zz(~z+1) z&z

(B7)

limit of Eq. (B3) by explicitly summing and integrating with
out to

)
zz

~

=zz,
~

z&
)

=zz, and then using Euler-Mac-
laurin formulas for the several rectangles comprising + . . . , , 1+(n z+1)'&z&~

the remainder of R&z. For the calculations we have made,
seven-significant-figure limits were obtained when the
n value defining the lower limits of the Euler-Maclaurin
formulas was as small as 4 or 5. ——inLiz+ (i& z+ 1) '&zj+

Proceeding as outlined in the foregoing paragraph, 0,' 3&z (az+ 1) '&z

and letting f(zz, v) denote ((zz/u)z+(i&/b)z] "', we find

N

lim Q f(zz, z) — dl dz&f(zz, i&)

N~no uv cB~ -N —N

Q f(zz, z) — dzz dz&f(zz, i&)

n—4g d dzzf"'&(zz, zz)

0

—4+d dz&foo&(zz z&)
—4g d d f&"&(n, zz). (BS)

0 ij
In Eq. (BS), all terms containing vanishing derivatives
have been dropped, and the notation N~eR„has been
introduced to indicate that after setting up the Euler-
Maclaurin formulas the terms on the boundaries

~
zz )

=zz,
~

z&
~

=zz, remain for explicit summation with
just the partial weights appropriate to that notation.

We complete the processing of Eq. (BS) by taking
the derivatives and integrals indicated on its right-
hand side. The double integral is most easily evaluated
in circular coordinates. The final results obtained after
some algebraic manipulations are

C=(2zrc/ab) (zr'/3)+zr g I (cN/a)z+(cz&/b)zj '&'

@v+00

b'&

X f cothzrP (cN/iz) '+ (cz&/b) zj'&z—1}+(zrb/c) F
ai

(B6)

We have evaluated Eqs. (B6) and (B7) numerically
for some cases of particular interest. Values of C and
F(~z) are presented in Table I. We give F(cz) for I=4
and v=5, to indicate the degree to which the Euler-
Maclaurin formulas have converged. The C values are
believed accurate to seven signi6cant 6gures.

The method just described for the orthorhombic
lattice could with obvious modi6cations be applied to
the hexagonal lattice. However, there is available a
simpler alternative procedure based on the fact that a
hexagonal lattice can be described as an orthorhombic
system with additional face-centered points. In par-
ticular, an orthorhombic lattice with b=&3a and with
additional points centered in the a-b face of each unit
cell is exactly equivalent to a hexagonal lattice whose
unit cell has two dimensions of length a. The value of
C for such a lattice will clearly be equal to C for the
orthorhombic lattice plus the contribution of the face-
centered points to the potential at an orthorhombic
lattice point. The contribution of the face-centered
points to the potential is carried out as described in
Sec. II of the main text. A C value has been obtained
in this way for a hexagonal lattice whose c dimension
is appropriate to closest packing of spheres. This value
is included in Table I.
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