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A theory of photoemission is presented in which all results are derived rigorously from first principles.
It is shown how to calculate properly the external current of electrons, with the transmission at the surface
done correctly. A new and rigorous formalism is derived for doing many-body calculations in photoemission.
Extensive calculations are performed on the angular dependence of photoemission. It is shown that the
angular anisotropy is interesting and significant. Numerous numerical examples are presented for the alkali
metals.

I. INTRODUCTION

Surprisingly few theoretical papers have been writ-
ten on the theory of photoemission from simple metals.
Most of the early work was concerned with the sur-
face effect. ' ' Of those concerned with the volume ef-

fect, most have treated the surface in an off-hand or
ad hoc manner. ' ' Nor has a method been yet pre-
sented which treats many-body effects in a satis-
factory fashion. The present article discusses these
problems in detail, and solves them rigorously. In ad-
dition, a detailed discussion is presented on the angular
dependence of photoemission. It is shown that the
electrons are emitted with conical distributions, and
that a measurement of these cone angles will provide
information on the band structure of the metal. 7

Photoemission has often been interpreted as a three-
step process: optical absorption, transport to the sur-
face, and transmission through the surface. 4 Recent
work has challenged this view, and instead treated
photoemission as a scattering process. ' ' Here one
views the experiment as the sending in of photons,
and the measuring of electrons which come out. One
can think of the process in terms of wave packets,
or alternately one can use the outgoing-wave formal-
ism of ordinary scattering theory. The conversion of
ingoing photons to outgoing electrons is just an in-
elastic scattering process. The absorption of the photon
raises an electron to an excited state, after which the
outgoing electron may leave the crystal. Before leaving
the vicinity of the crystal, the electron may experience
other scattering processes and therefore be in other
intermediate states along the way. We show that the
multiple scattering may be adequately described by
a T matrix. One way of evaluating this T matrix is
to insert a Green's function Go(r, r') between each
operator. The argument over whether these inter-
mediate states are real or virtual is one of semantics. '
For example, the free-electron Green's function in
one dimension may be written as

" dk expLik(s —s') j
Go s, s' = — . (1.1a)

oa 2' 6A; 6 Z8

These two forms are identical. In case (1.1a) it ap-
pears as if the electron states are summed over, and
no single state dominates. In (1.1b) it appears that
the electron is in a single state. These two identical
expressions have quite different "physical" interpreta-
tions. In photoemission we are also concerned with
evaluating an expression such as (1.1a), but it must
be modified to account for (a) 'the three dimension-

ality of the problem, (b) the influence of the surface
on the wave functions, and (c) the influence of band
structure on the electrons. In spite of these complica-
tions, for simple metals one can still express the
Green s function in a, simple form similar to (1.1b).
So the controversy over whether the intermediate
states are real or virtual has no substance, since that
is just a question of whether one should use the type
of form for the Green's functions (1.1a) or (1.1b).

The amplitude of the electron wave function out-
side the crystal may be obtained by selecting a par-
ticular component of this T matrix. Our approach
has a formal resemblance to that of Ashcroft and
Schaich, ' but our results are presented in a different
and simpler way. For example, we explicitly discuss
how the band structure of the metal influences the
intensity of external photoemission. Band structure
influences not only the absorption of light, but also
the subsequent transport and transmission of the
electron.

Most of this article is concerned with predicting
the angles at which the electrons are emitted. The
angular dependence of photoemission has not been
measured, but the experiments are now in progress.
Our calculations show that inside the crystal the
electrons have a conical distribution. The external
distributions are determined by how these cones of
electrons are projected through the surface. For nearly
free electrons, the internal distributions consist of
high-intensity primary cones, centered along the di-
rections of reciprocal-lattice vectors, and weak-inten-
sity secondary cones. These latter cones are a con-
sequence of the band structure: Since the Bloch
functions are linear combinations of plane waves,

or alternatively as

Go(s, s') = (im/p) exp(ip
~
s—s' ~), p= (2m') '~'

(1.1b)
2

0~(r) =e'"'f1+ Z», «"'t t + Z & o't '"
G&0 GAD

an electron created in the outgoing state k has plane-
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TAaLE I. Parameters employed in preparing the tables and figures in this article. All values are energies in eV except the first column
of lattice vector u. The potential Uo equals the work function p plus the Fermi energy. The two values of Vo represent using E+o and
I' p, respectively.

BEp Vo Vill

Li
Na
K

6.597
7.984
9.874

24. 67
16.84
11.01

2.28
2.25
2.24

4.75
3.24
2. 12

—1.42
—0.06
—0.07

3.33
3.18
2.05

7.03/5. 61
5.49/5. 43
4.36/4. 29

1.37'
0 23c

0.20c

a F. S. Ham, Phys. Rev. 128, 84 (1962); 128, 2524 (1962).
F, Seitz, Modern Theory of Solids (McGraw-Hill, New York, 1940).

A. W. Overhauser, Phys. Rev. 156, 844 (1967).

wave components going in the directions k+G. Each
of these components creates an external distribution
of electrons. The primary component exp(ik r) makes
the primary cones. The other components make dis-
tributions which are only approximately conical shape.
Another way to visualize the secondary cones is to
observe that they arise from trying to match plane-
wave functions outside the crystal to Bloch functions
inside. Outside the crystal, many plane waves are
needed to match to the internal Bloch function, and
each of these external plane-wave components pro-
vides another direction for electrons to come out of
the solid, and is the direction of another distribution
of electrons.

Figure 1(a) shows the experimental arrangement we
have in mind in doing the calculations. Light illumi-
nates a sample of area 8,, and the electrons are col-
lected in a hemispherical cup. The angular measure-
ment consists of determining how many go into each
unit of solid angle dQ. Another possible experimental
arrangement is shown in Fig. 1(b). Here a sample of
infinite area is illuminated with light, and electrons
are collected in an area O', . This geometry will yield
the same results as the total hemispherical method
of Fig. 1(a). We make this remark because most
experiments use the configuration in Fig. 1(a), while
some of the theoreticians have calculated for the
geometry of Fig. 1(b).2 Since we a,re concerned with
angular measurements, we will only do the calcula-
tion for the geometry of Fig. 1(a). This means that,

(b)

FIG. 1. Schematic view of two possible photoemission experi-
ments. In (a), a sample of area 8 is illuminated with light and
gives o6 electrons which are collected in a hemisphere. An angular
measurement would count just those in a unit solid angle dO.
In (b), an infinite surface of sample is illuminated with light, but
electrons are collected in an area 8. These two experiments
give the same result for the total yields.

outside the crystal, we must explicitly construct out-
going wave functions in the form

where the amplitude factor f(e, p) determines the
amount of photoemission.

Our general model for the surface is shown in Fig. 2.
The potential V(z) is zero for s(a, and this is the
vacuum region. For s)b we have the solid region,
and the in-between region a)s) b is the surface.
Not shown in the figure, but included in the calcula-
tions, are the atomic core potentials regularly spaced
in the surface and solid region. For a simple metal,
we interpret the potential Vo to be the sum of the
Fermi energy EI and the work function p. We assume
that the component of wave vector parallel to the
surface is conserved at the surface. This is an as-
sumption of specular refiection at the surface. Actu-
ally, it is an assumption on the care with which the
surface has been prepared for the experiment. Clearly
an idealized surface is specular. It is just actual ones,
which are irregular, which may not have specular
refiection at the surface. Most of the results we obtain
would be significantly altered under some other sur-
face condition such as a diffuse reQection. Indeed the
angular measurement of photoemission would provide
a critical test of surface smoothness and specularity,
since a diffuse surface would have no y dependence
in the angular measurement, and certainly no sharp
cones of electrons.

New results are, whenever possible, illustrated by
numerical examples. The alkali metals have been used
in these examples, and Table I shows the parameters
we have used in the calculations. But the ideas and
conclusions of this paper are not restricted to the
alkali metals, but should equally apply to other free-
electron metals.

II. EXTERNAL INTENSITY

In this section we derive an equation for the in-

tensity of external electrons which are measured in
photoemission. The physical problem may be stated
quite simply: Given that the optical absorption creates
a certain distribution of electrons inside the crystal,
how many of these electrons actually escape out of
the solid? Previous theoretical treatments of this
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v(z)

-Vo

Fzo. 2. Schematic representation of the potential shape at the
vacuum-solid interface. The vacuum region is z(a, and the
solid region is z &b. The potential —Vo is the bottom of the
conduction band, so that Vo equals the Fermi degeneracy plus
the work function of the metal.

problem have, at best, added an ud hoc transmission
coefficient. The main exception is Adawi's calculation
of the photoemission of the surface effect, where the
external intensity was calculated correctly. ' There is
a clear need for a formalism which rigorously accounts
for the transmission properties of the surface, and
which can be used for both the volume effect and
the surface effect. This will be accomplished in this
section.

Let us begin by discussing the simplest possible
example. This is a solid which has no band structure
whatsoever —it is a free-electron gas. We will also
consider just those electrons which leave the solid
without suffering any scattering from electron-phonon
effects, etc. After this simple case is understood, it is
easy to show how to include the effects of many-body
interactions and also band structure. First, we need
to evaluate the electron Green's function in the
presence of the surface

Go(r, r', E) = d'Ir dk g}I

(2.1)
Eo= (k(('/2m)+E,

The wave functions p, (» r) have the following form:

&*(» r) = [exp(»ii ~)/(2x) 34;(k*, s).

Consider the surface potential in Fig. 2. For k, such
that

0)Eo, = (k,o/2m) —Vp) —Vp

ponent of the Green's function

(, q) "dk ~4(., )4'( *, ')
( )

Ep,—0—i5

Gp(r r E) = f [dlr[[/(2x)'] exp[»~~ ~ (p—y')]

X go(s, s'; E—k~~'/2m). (2.3)
This equation satisfies

[—(1/2m) (8'/8 s)+V( )s—&]go(s, z'; &) =&(»—s').

(2 4)

If both z and z' are less than a, and therefore in the
region where the potential is zero, then this Green's
function must have the form for Q&0

gp(z, s'; II) = (im/p, ) {exp(ip,
~
s—s'

~)

+R exp[ —ip. (z&s') ]+R' exp[ip, (s~s') jI,
p '=2mQ.

The terms with coefficients R and R' satisfy the
homogeneous part of (2.4). For photoemission we
require that one of these variables, say z, go to —,
so that z(z', in which case the Green's function is

gp(s, s'; 0) = (im/p, ) exp( ip,s—) [exp(ip, s')

+R exp( —ip,s') ]+(im/p, )R' exp[ip, (sees') ].
We can interpret the term exp( —ip,z) as a plane
wave going to the left. Since in the experiment there
are no plane-wave electrons coming in from —Oo, we
conclude that the coeKcient R' must be zero. So w' e
can write

gp(s, s ' 0) = (im/p, ) exp( —ip,s)+(p„s'), (2.5)

where for z(z'(a the ingoing wave function p~ is

p~(p„s') =exp(ip, s')+R exp( ip,z')—.

This has a simple physical interpretation: + repre-
sents a wave function which has a term exp(ip, z')
describing a wave incident upon the crystal from the
left, and the term R exp( ip,s') rep—resents the amount
reflected. We conclude immediately that in the region
z&b in Fig. 2 the transmitted wave has the form

y~ = T exp(ik, s')

there is only one wave function p, (k., s) which has
the form sin(k, s—5) for s)b. In this case the sum
over i in (2.1) extends only over this one term. But
for k, such that

EI,,——(k,'/2m) —Vp) 0

there are two wave functions, and the sum over i has
two terms. The dificult way to obtain the Green's
function in (2.1) is to write down all of the wave
functions and then to perform the integrals. There is
a much easier way. First consider just the z-com-

In general, one can determine the form of + for all
values of z since it is a solution to Schrodinger's
equation

I
—(1/2m) (8'/Bz')+V(s) —Q}/~=0,

with the initial condition of a wave, of unit ampli-
tude, impinging from outside the solid. Thus, as noted
by Adawi, in order to obtain the number of electrons
which get out of the crystal, one has to calculate
the fraction T which get in. This is not surprising,
because the transmission coe%cient for getting out of
a crystal is proportional to the transmission coe%-
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cient for getting in—the factor of proportionality is
just the ratio of velocities inside and out.

Assume that the initial wave function of the elec-
tron is Q;, and the applied radiation excites this eigen-
state by the p A interaction

function M(1, oo') has no q' dependence, we simply get

lirn)P(R) = (m/2xR) exp(ipR) M(p((, p,),

(2.8)

X'= (e/me) Aa p. M(p((, p, ) = fd'r' exp( —ip(( y')qP'(p„s')X'o);(r').

Then the wave function of the electron after the
optical transition is

)P(R) = fd'r'Go(R, r')X'(//;(r').

For external photoemission, we want R= (y, s) to be
outside of the crystal, and far away, in which case
we can use the form of the Green's function derived
above:

)P(R) =im
d P(( exp( —ip(('(o) cxp( —ip.s)
2m. o pe

d'r' exp(ip(( e') P(p. , s') X'4'(r').

The integral over d'yll is most easily performed by
changing integration variables. In the new variable
system, the "s" direction is along R. Since the length
of the vector p= (p(), p, ) is fixed,

p'= 2m(E, + o),( (2.7)

the new variables are the angles (v'=cos8', oe') that.

p makes with respect to R. The range of these vari-
ables is limited by the requirement p,)0. We get
that

imp
)P(R) =, dr' exp(ipse(.'v') doe'M(v', oo')

2~ (g—y2) 1/2 0

f
(3 „2)I/2

(y—v2) I

rjro

('exp((pe ') de'M( ', e')),
0

M(r', (/)') = fd'r' exp(ip)( ~ (o )(//)&(p. , s') X'(P, (r'),

COS 1
I

)Ir)/ ( 1 ro) 1/o ( 1 &)2) 1/o]

where v=cose is the angle that R makes with respect
to the normal to the surface. Now integrate by parts
on the dv variable, which gives

)P(E)=, exp(ipse) dy'M(1, oo')
2x'E

„2)1/2
(/)

' exp(ipRr') d(/)' —,M() ', oe')
BV

(i—l/2) 1/2

0'0

'& 'e"e('po') —, de')e( '
e'))

BV 0

The first term goes as p(eixpE)/8 and is the result
we want as E—~~. The remaining terms fall oB as
a higher power of R at large E. Since at v'=1 the

Of course, in this last expression, the direction of
p= (p((, p, ) is now along R (since r'= 1). At large E
the electron current for each initial state is, per unit
solid angle 8Q,

R'(2e/m) Im)P*(R) Va)P (R)

=(2e/m) (m/2 ) p I M(p((, p, ) I I1+O(1/z)].
Taking the limit that E—+~, and summing over
initial states, gives the result

dI/dn= (2e/m) (m/2x)' f I d'k;/(2%)']P
I M(p((, p, ) I'.

(2 9)

In evaluating (2.9), keep in mind that the direction
of the vector p is fixed in the direction R, which is
just the direction (8, (/)) at which the angular mea-
surement is being performed. The magnitude of p
does vary with k;, as is evident from (2.7).

It is now very simple to include many-body effects
in the derivation of the expression for the external
current. Assume that one can write the Hamiltonian as

X=Xo+V,

whcle Xo llas as 1ts clgcllstatcs tllc )P'(k, r) wlllcll go
into the Greens function (2.1). The interaction V is
the sum of all the perturbations of interest, including
the p A interaction X' in (2.6):

X +Xel-el+Xel-phen+Xel-imp

The additional terms represent electron-electron, elec-
tron-phonon, and electron-impurity interactions. One
may add anything of interest to this list. The multiple
scattering by many-body effects is described by a
T matrix

a= V+ &Go3.

We are only interested in term in 3 where the X'
interaction acts once, but other interactions may be
included as often as desired. After evaluating these
terms in the T matrix, the outgoing electron wave
function as E—+~ is simply given by

0 (~) = (m/2x&) exp(ip~) (&*exp(ipl I' t) I &14'&.

In analogy with (2.9), the current is given by

dI/dQ = (2e/m) (m/27r) '

x f Id'&,/(2-)'] p I
«*" '

I
~

I ~'& I' (2.1o)

If excitations, such as phonons or electron-hole pairs,
have been emitted or absorbed, then one must sum
over their wave vectors as well. This formula appears
to be a useful formula for starting actual many-body
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calculations. One can use the "golden rule" technique,
which employs the open-diagram method developed
by DuBois, Gilinsky, and Kivelson. ' They have amply
demonstrated that this is an efficient way of evalu-
ating high-order scattering effects. It appears much
more efficient than the usual closed-loop approach.
In this regard, we note that we have not yet been
able to derive a simple, time-ordered, correlation func-
tion which would serve as the starting point for a
closed-loop type of calculation. That is, we have not
yet found a "Kubo formula for photoemission. " Nor
do we accept the recent results of others who have
tried to derive one. 5 ' " Our result (2.10) is perfectly
acceptable for an open-diagram calculation.

Next we wish to discuss the modification of (2.9)
or (2.10) caused by the band structure of the solid.
Our starting point is still the Green's function (2.1),
except that now the wave functions |p, (lr, r) are plane
waves outside of the crystal and Bloch functions
inside. Outside of the solid the Green's function must
still have the general form of (2.3) and (2.5). So the
problem still reduces to finding the properties of a
wave of unit amplitude

exp(ip~~ y) exp(ip, z)+ reflected waves

which is directed at the surface. Of course, this is
just the situation in a low-energy electron diffraction
(LEED) experiment. In LEED calculations and ex-
periments, one is interested in the property of the
reflected waves. In a bulk photoemission experiment,
one is interested in the amplitude transmitted into
the surface. Otherwise, one can calculate as is done
for LEED. For example, following Pendry, " if the
reciprocal-lattice vectors 6= (G„6~

~
=g, ) of the solid

have g, as their component parallel to the surface,
then the reflected waves will have a s component
given by

&'= 2m& —(pii+g~)'
The reflected wave will be of the form

g R, exp t iR;z+—i(p, t+g, ) y5

Pendry discusses how to determine the reflected and
transmitted wave amplitudes by matching at the
surface. Inside the solid, one matches onto the set
of Bloch functions 4'(lr, , r)

g T,%(k,, r).

Included in the set %(k;, r) are all 81och functions
whose parallel wave vectors k;~~ is equal to y~~ or else
p~~+g, . This matching procedure couples to an in-
finite set of Bloch waves inside, and an infinite set
of reflected waves outside. But as in I.EED calcula-
tions, accurate matching may be obtained by in-
cluding only a selected finite set of g; values. In our
photoemission experiment, the matching to these g;
components has a simple physical interpretation. This
is discussed in detail in Sec. VII.

The number of electrons which are emitted must
be proportional to the Aux of photons incident upon
the sample. So expressions such as (2.9) and (2.10)
must have, as one of the factors on the right-hand
side, the photon Qux F (photons/sec)

F= (c/I) 8 (Ep/ V),

where 8, is the area of the sample, n is the refractive
index, and 1V&/V is the volume density of photons
in the solid. One can also express F as

F=F0(1—R),
where Fo is the photon flux incident upon the sample
in the vacuum, and E is the reflectivity.

These factors arise from the vector potential

which is contained in (2.6). Since only terms in the
T matrix 3 are retained which have X' acting once,
then (2.10) is proportional to

D e/mc) AI,5'= O.F (27rfz'/m'nld/, 0,)

where u=e'/Sc.

III. X-RAY PHOTOEMISSION

The conceptually simplest photoemission experiment
has the initial electronic states highly localized. This
is the case in x-ray photoemission, and also photo-
emission from localized valence states. We will derive
the distribution of those electrons which start from
such states and leave the solid without further scat-
tering. So we will evaluate (2.9). The first step is
to select a form for + inside the solid. The easiest
choice is

qP (p., z) = T(p„k,) exp(ik, z),

k z= p, '+2m VO.

(3.1)

The localized state P;(r—R;) is centered about the
lattice site R,. In this case the outgoing electron
wave function in (2.8) has the form

p(R) = (eA/2zrcR) exp(ipR) T(p„k,) e p~, exp(zlr R;),
pf; i' f d'r——exp(zlr r) VQ; (r) .

where

g exp( —2hz, ) =zzoaO! g exp( —2hz;),
zg)0

where eo is the density of localized levels and u is
the spacing between localized levels in the s direction.
The damping factor A, has two possible sources. First,
the vector potential (or equivalently, the electric

Now the sum over initial states involves just a sum
over lattice sites

dI/dQ= (2e/m) (eA/2zrc)'p
~
T(p„k,) ~'(s p&;)'

X Q exp( —2lw. z;),
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field) will decay exponentially in the solid as
exp( —aus/c), where ~ is the extinction coeKcient.
Second, the electron has a 6nite mean free path which
means that the electron wave vector k, =k,g+ik, r is
complex. So X is

X=k,r+ (zsi/c),
(3.2)

Q exp( —2Xs ) = $1—exp( —2za]-' (2zu)-'.
zg&p

The last step in the above equation is only valid if
Xu&&1, but we shall assume this to be the case. The
length l=X ' may be viewed as the thickness of the
surface layer which contributes to the photoemission.
Collecting all of these factors gives

dI/da= (enPplrs0/2~A'~em)
i
2'(p. , k.) i'(S pg, )'. (3.3)

This is our basic result for the angular dependence
of the photoemission from localized levels. In this
model all of the electrons come out at the same energy
E=E~+a&—V0. This is because our simple model ne-
glects the width of the initial state, and also many-
body scattering effects. The number of electrons per
energy per solid angle is simply given by

d'I/dQdE= (dI/dD) 0(E E; co+ V0) .— —
The total number of electrons emitted is obtained by
integrating (3.3) over aH solid angle in the hemi-
sphere:

dI ' ' dI
I(co) = dQ —= de di —.

dQ 0 0 dQ

An interesting result is obtained by changing vari-
ables to

dp =
0 0 Pp~

angular directions, then the answer is simply

I(~) =-',eE{(k./p, ) T'). (1+k*re/~~) '.
The factors of 02(si) cancel m numerator and de-
nominator. This result has a very simple interpreta-
tion. The various factors in the expression are I", the
photon Aux in the solid, since every photon gets ab-
sorbed somewhere and makes one electron energetic
enough to get out; —'„because of those electrons ex-
cited, half are going towards the surface, and half
are going away from it. (1+k,rc/six) ' is the fraction
of those going towards the surface, which actually
get to the surface without scattering, and (k,T'/p. &

is the fraction of those, which got to the surface,
which do actually get out to the solid. This result
has already been anticipated by Saertsch and Ri-
chardson. " The important point is that the photo-
emission need not depend signihcantly on the absorp-
tion constant. All of the photons in the solid are
usually going to be absorbed somewhere, and it is
really more relevant to know how close to the surface
this occurs.

IV. SURFACE EFFECT

%e will adopt the standard model for this calcula-
tion. ' The electrons in the solid are assumed to be
a free-electron gas, and the surface is given by a step
potential. This model has been considered often in
the past, and correct expressions have been derived
for the total emission current (yield) I(si), and the
energy distribution dI/dE. We will calculate the an-
gular dependence of these two quantities.

Our calculation can proceed directly from (2.9).
In order to simplify the evaluation of the matrix
element, we replace the operator C. V by the equiva-
lent result

—E'—(0

This gives for the photoemission current

where V(s) is the potential .at the surface. Wave
vector is conserved. parallel to the surface k;~ ~

=k~
~

= p)I.

M =abi„~t,,((((s e)/As)](eA/mc) (&*
~
BV/Bs

~
y;(0) ),

so that

dI/dn= t e~P('.e)'/2 'm 'n]

)& f d3k; B(k [ [
—p] [)p f

Qr *
f

BV/cjz
f +;) f

.
em~no~

I(G)) = d'k5(ep E; M)— —
27/ A (J08$ n )gap

This result should be compared with the definition
of the imaginary part of the dielectric function
02(si) = 2m~:

Sx'e'no d'k
02(~) = — ~("—E'—~) (& pr')'

m oP ~u0, (2m')0

Now if we assume that k,&/p, is a constant, or
alternatively use a value averaged over the different

The 8 function eliminates the integration over d'k')j,
but this step is slightly tricky, since p~~ depends upon
k~~,

. this arises because

P~~=sin8t k, +2m(~ —V0)] i,
where 8 is the angle at which the external current is
being measured:

f d k ii B(k, ii
—pii) =cos 8

p
—

t k '+2m(s~ —Vs) ]i"/costt
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(O'*I 8V/8
I
4'&= —Vo&(0) 0'(o) (4 2)

= (—2p,k;,/m) [(k.—p, )/(k, +p, ) ]'~'.

If (4.2) is inserted into (4.1), the integral over dk, ,
may be evaluated in an analytical fashion. This
result, which is somewhat lengthy, is given in the
Appendix.

The total current I(a&) is obtained by integrating
over the external solid angle:

I((a) = f dQ(dI/dQ). (4.3)

If we put (4.1) into the above expression, and shuffle
variables of integration, we obtain exactly the result
for I(~) previously derived by Adawi. For the step
potential, the integrals may be done analytically, and
these results are also given in the Appendix.

The current per solid angle per energy d'I/dQdE
is defined as

dI/dQ= f dE(d2I/(fE($Q).

This may be derived from (4.1) by inserting a delta
function for energy consevation under the integral.
The energy must be expressed in terms- of the in-
dependent variables, which, in (4.1), give the result

d'I enF(e z)' '& p 8V
dEd0 2n-2maPe 0 cos'8 Bs

k;.'/2m+ —V,

)(x»
cos'8

The integral over dk;, may be performed immediately,
and

d'I euF (e.z) gl/2

2~'($~) 'n (E cos'8+ Vo cu) '~'—

For the step potential, the matrix element (4.2) has
the form in (4.4)

I ( 4r *
I
8V/8s I @;& I' = 16 cos'8 (E/Vo) (E cos'8+ Vo —)

X [(Ecos'8+ Vo) '"—E"cos8]' (4 5)

At low photon energies photoemission is believed to
come largely from the surface effect. So a measure-
ment of d'I/dQdE at low photon energies provide a
means of measuring the square of the matrix element
I
(+*

I
8V/8z

I P,& I'. Also note that the surface effect
has a characteristic polarization dependence (e z) '

This gives for the angular dependence of the yield

dI/dQ= [enF(g z) /2x moPn j f dk;, (p/cos'8)

X
I
(&*

I
8V/8s

I y, & 12. (4.1)

This last integration can only be performed after
BV/Bs is determined from the properties of the sur-
face. For a step potential,

BV/Bs= —V05(s),

which appears unique among the mechanisms con-
tributing to the external current of electrons, so one
should be able to measure which fraction of the photo-
emission current came from the surface effect by
determining which fraction of the current had this
dependence. The volume contribution to photoemis-
sion, which will be discussed in Sec. V, has a polar-
ization dependence (e G)'. So if the sample is aligned
such that none of the important reciprocal-lattice
vectors 6 are in the s direction, then only the surface
effect will have the dependence (c ~ z)'. This discussion
assumes a specularly smooth surface. For a rough
surface, there will probably be absorption by the
surface effect even for polarizations not in the s
direction.

The energy distribution curves dI/dE are obtained
from (4.4) by integrating over the external angular
variables

dI/dE= f dQ(d'I/dQdE). (4.6)

This integral is the same as obtained previously by
Adawi. It may be evaluated analytically, and the
result is also given in the Appendix.

V. VOLUME EFFECT

We begin the discussion of the volume effect by
discussing the properties of the alkali metals. We as-
sume that they are a nearly-free-electron metal. By
this we mean that band-structure effects will be in-
cluded insofar as they cause optical absorption, but
not their effect on distorting the energy bands. A more
complete discussion, with the band distortions in-
cluded, will also be given below. But first we wish
to stress some simple ideas which are most clearly
presented for a free-electron gas. As will be shown
later, band distortions have little effect upon these
simple results.

In a nearly-free-electron gas, optical absorption may
be viewed as a two-step process. The absorption of
the photon provides the electron with the additional
energy it needs to get to the excited state. The crystal
potential imparts to the electron the additional mo-
mentum it needs to reach the excited state. This
momentum comes in multiples of the reciprocal-lattice
vectors G. So in a reduced-zone picture, the transi-
tions are vertical in wave-vector space. But in photo-
emission, it is more useful to think in an extended-
zone scheme.

First consider what happens inside of the solid,
during the ordinary interband absorption. Let K be
the final wave vector of the electron, and K—G the
initial wave vector. In an alkali metal, K—6 is within
the first Hrillouin Zone, and K is outside of it. Energy
conservation requires

E'/2m= (K—6) '/2m+co.

Solving this equation for K, we get, with Eg ——G'/2m,

(EG cos80) /m =a&+Eg= A,
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where 8p is the angle between K and G. Thus

E=K'/2m = A'/4Eg cos'80. (5.1)

This simple-looking equation contains most of the
physics of the angular dependence of photoemission
for a free-electron metal. To appreciate this equation,
think spatially. An electron whose final-state wave
vector K makes an angle 8p with G has an energy
given by (5.1). Alternately, all electrons have the
same energy which have the same angle 8p with re-
spect to G. So electrons with the same energy form
a conical distribution, where G is the center of the
cone. Those electrons with a larger cone angle 8p have
a larger energy. Furthermore, as will be shown later,
the intensity per unit solid angle of this internal
distribution goes as

dI/dQ E/cos8o 1/cos 8p.

So the intensity of electrons increases as the cone
angle increases. Therefore, in these cones of electrons,
both the energy and intensity increase as the cone
angle gets larger. The intensity of these cones in-
creases up to an angle 8, , at which the intensity
drops discontinuously to zero. The maximum initial
energy an electron may have is Ep, so the maximum
final energy is

E(Ep+/d.

If we use (5.1) for E, in this inequality, then

In the interband optical transition, let K—G be the
initial wave vector of the electron and K be the final
wave vector inside the solid. The wave vector K=
(k~~, k,) has components parallel and normal to the
surface. Let p= (p~~, p, ) be the electrons wave vector
outside the solid. Clearly, the final energy outside,
relative to the vacuum level, is

E=p'/2m.

Since we assume specular boundary conditions at the
surface, then k~~=p~~. Furthermore, the final energy
of the electron inside the crystal is

E= K'/2m Vo,—

from which we deduce that

k.' =p.2+2m Vp.

Lastly, the final energy is the initial energy plus or,

so that

E= (K—6)'/2m —Vo+a)

= (K'/2m) —Vo+A —(1/m) (kgG, +lr(( Gii).

The first two terms on the right-hand side equal E
and hence cancel the left-hand side. If we relate k,
and k~~ to E, and let q be the angle between p~~ and

G~~, then the remaining terms reduce to

'A =E "[Ecos'-8+ Vo]'/'+ (EE ) '/' sin8 cosy, (5.4)

1&cos'80& A'/4Eg (E/+w)

and the maximum cone angle is given by

8 = cos &[A/2 (E~+~) //&Eg&/2]

The inequahty (5.2) is quite familiar. If we take its
outer parts, then the statement that E=E(8 p) = (A/2D) 'I E "'(cos'8—4V D/A') "'

(5.2) where E.=G,2/2m and E~~=G~~'/2m. This result re-
lates the external angles (8, p) to the other parame-
ters E, ~, G, and Vp. One can solve it a variety of
ways. The energy E may be obtained as a function
of 8 and q..

1&A'/4Eg (E/;+~)

is well known for optical absorption in the alkali
metals. It provides the limits on or over which the
absorption exists:

(0m= 2(EgEp) / +Eg&(o& Eg—2(EgEp) / =cv~o. (5.3)

8, has the value of zero at the lower and upper
limit of absorption frequencies. For ~ values between
these limits, 8,„rises to some maximum value and
decreases again to zero. For 6=2~(1, 1, 0)/g lattice
vectors in the alkali metals, 8, , has a maximum
value of 26' at co~0.6Eg. Since nearby (110) lattice
vectors are 60' apart, this means that the cones of
electrons centered on these reciprocal-lattice vectors
never overlap.

The angular distribution of electrons in external
photoemission is determined by projecting these cones
outwards through the surface of the solid. We assume
that the orientation of the crystal, with regard to the
surface, is known. The reciprocal-lattice vector 6 has
components parallel G~~ and normal G, to the surface.

D=E, cos'8 —E~
~

sin'8 cos'y.

E~ ~"" sin8 cospI' —(5.5)

d=Ei
i

cos rp+E~. (5 6)

This latter form is quite useful for plotting contours
of constant energy for the external photoemission. It
has a simple form in the case that y=0. If 80 is the
angle G makes with s, and 8p is the angle K makes
with G, then for q =0

sin8= P(E+ Vo) /E]'/' sin (8g&8O) .

Table II shows some values of 8p and 8 for the case
p=0, 8g=45', and ho)=5.0 eV.

Some examples of these contours are given in Fig. 3.
This figure shows some calculations of contours of.

Alternatively, for a fixed value of E one may use
(5.4) to relate the angles 8 and q. For example,

A 4d (E+Vo)
sin8=

~

~"' cosy
2dZ~~2 A'



MAHAN

(~) (ill) (b) (loo) OH

0 M 40 50 80 70 80 900

5 =5.0 eV. The soM lines are contours of constantF 3 Anguhr dlstrlbutlon of thc prllnary conesesof external electronsfor Naat e= . e . s
0.25 eV.

XO.

e ed e of the cone, while successive ines ar ol' e lower in energy by increments o
E=Eenergy. e oTheouter lineis 8~~~=2.75 cV and ls the e geo, r o

lf cs a has E Eo, ~~ 3 o,The three cases (a)—('c) represent the three crysta ac . ( )

constant energy for Na with bee=5.0 cV. One can sec
that the conlcRl shape ls dlstoI'tcd GUtsldc the CI'ysta-
thc distortion Rrlscs froIQ thc rcfrRctlvc propcrtlcs Gf

t4.c surface. Thc dRtR Used ln coITlputlQg these cUI'vcs

are show'n in Tables I—III. Table III summarizes the
t f the reciprocal lattice vectors 2w {110)/a

vFlth thc three Hlaln crystal faces. Tk,c IITlpor tant
parameter is how the energy Eg is divided between
normal E, and parallel EIt components. External
photoemission is only carried by 6's which stick out
of the sUI'fRcc. PhoiocIHission &lay Qot GCCUI' cvcn I
the 6 sticks out of the plane. For example, the lattice
vectors with Z, =@Eg in the (110) face do not lead

to Iree p o Gt hotoclmssion in thc case show'D ln lg. 3 b .
F' 3 shows the angular distribution o p o o-

of theb t Gnc Gf th.c Irlaln 6 s ln cRC

f es (111) (100), and (110). Only half a dis-
3gbj~ because thetribution is shown in Figs. 3(a) and

TzaI,E III. Principal lattice vectors which projec t out of tlM

three crystal faces of the alkali metals. 8, and E|I
are the com-

ponents of EG which are normal and parallel to the surface.

Crystal
face

TARSI.X II. Some angular values (in deg) at Ace=5.0 eV. 80 is
the maximum internal cone angle, mMle 8sall 18 Qle an 1C Of theg
external cone edge at q =0. 8 and 5' are the changes in these
quantltles ln e wo-'t' the two-band Inodel. These results are for a (I )
face.

—i. j. 2, 7

—1.3 2.6



THEOR Y OF P HOTOEMI S SION IN SI M P LE METALS 4343

result is symmetric about @=0. The energy contour
lines are stepped down in units of 0.25 eV, beginning
with the maximum energy of E, =2.75 eV. So in
case (b) the three contour lines are 2.75, 2.50, and
2.25 eV. The absence of any other lines means that
all electrons are emitted in the range 2.00&E&2.75 eV.
8 „„is alwavs the outer contour line, since it defines
the maximum cone angle and the intensity disconti-
nuity at the outer limits of the cone.

The (110) face is interesting because G is exactly
normal to the surface. So the contours of constant
energy, which inside of the crystal are circles, are also
circles outside. Figure 3(c) only shows part of these
circles. The case with G normal to the surface has
an interesting characteristic. From the two relations

E= E'/2zzz =A'/4Eg cos'8o,

k, =E cos80= A(m/2Eg) ~

we see that k, is independent of 8p. All electrons in
the cone have the same value of k.. But since p.=
(k,'—2zrz Vo) '", they also all have the same value of p, .
In surface models with specular matching, the trans-
mission coefFicient T(p„k.) depends only upon p,
and k„and is therefore the same for all electrons in
the cone.

These cones of electrons will be called the primary
cones, and the name is applied to the shape of the
cones both inside and outside of the solid. Ke shall
see below that the crystal potential causes cones to
appear in other directions. These other cones are
much weaker in intensity, and shall be called secondary
cones. The primary cones are those which, inside of
the solid, have their center along the direction of the
reciprocal-lattice vector.

Now we wish to calculate the angular intensity of
the electrons outside of the solid. The first step is to
determine the initial. wave functions @;. Since the
electrons in this state are confined to the solid, the
wave functions must be a standing wave of the form

Jt, (k, , r) =exp(zlr, 'JJ Js) {exp[i(k;,s 5)]—
—exp[—i(k, ,s—5)]}. (5.7)

The wave-vector dependence of the phase shift 8(k)
depends upon the shape of the surface potential. We
will not need to know this detail for our discussion.

The crystal potential is assumed to be a sum of
screened local potentials, which are centered at each
atom site:

V(r) = g v(r —R;).
z;&p

The screened local potential has a Fourier transform

V(J7) = (1/00) f d'r iJ(r) exp(iq r), (5.8)

where Qp is the volume of the unit cell of the solid.
Again we employ the step-saving device of replacing
the matrix element of y A by the equivalent ex-

pression

(4v
* exp (zlr

J J

'
JJi) I

e v
I 4') = (z/&~) ( I

e &V (r) I )

(5.9)

Inside the solid the ingoing wave p~ has the trans-
mitted form

+(p„s)= T(p., k.) exp(ik, s) exp(ikJJ y).

So we may write for our matrix element (5.9)

exp( zirJJ'e)
I
' «

I @'&

= T(p„k,) g f d'r exp(ik r)C ViJ(r —R,)p,

=zfloT'(p*, k.) g exp[zy; (lr'JJ+lrJJ)]

X {exp[i(k,+k„s;—8)]& [kJJ+lr;JJ+s(k, +k;,)]
X V[kJ J+lr;J J+s(k.+k,,)]

—same(k;, ~—k,„b~ 6) }.—
The sum over R; sites parallel to the surface requires
conservation of parallel wave vector

2 exp [zPi' (lrJ J+~'JJ)] (~/t o) 2»JJ+&'JJ—oJJ

where 0', is the area of the sample and 0',p is the area
of a unit cell. One is left with the sum over 2';. This
cannot cause wave-vector conservation in the s direc-
tion because the sum only extends over the half-space
s,&0. We shall soon see that one still gets an effective
wave-vector conservation in this direction anyway.
If a is the lattice constant in the s direction Op=GO', p,

then the sum over s, may be performed to give

g exp [is, (k,+k„)]={1—exp [iiz(k,+k„)]}
Zl'

and

(0 exp(zlrJJ'JJi) I
' «

I
4')=zg~2 Z»JJ+&'JJ~JJ

X {e "s [GJJ+s(k,+k.,)]V[GJJ+z(k.+k.,)]
—same(k„—&—k„, Ji~—6) }. (5.10)

&ow the angular current in (2.9) is dependent upon
the square of this matrix element. The squaring
process actually simplified the expression. First con-
sider the factors

[~Z»J J+kilJ-oJ J] ~(2zr) Z ~(~J J+~~J J
GJ J) ~

Gl}

Next consider the factor

11—exp [ig(k,+k„)] I

—'
= [(1—e "')'+4e "~ sin' -'(k +k ) Jz] '

The damping factor X has been introduced. It has
two sources. First, the electron wave vector k, may
be complex. Second, the photon field may decay into
the solid at the surface

A (r) =A exp( —ebs/c),



G. D. M AHA N

where ~ is the extinction coefficient. So we take P to
be the combination of these effects

I '=X=k.r+x~/e (5.11)

If Xa«1 then one can write

~
1—exp I i (k,+k;,) a)

~

2= (ml/a) g 5 (k,+k;,—G,) .

(5.12)

JG(8, p) = (G/2m) f d%,8(K—lr; —6)p ~
T(p„k,) ~'.

(5.13)

We still need to examine the cross terms which arise
when we square the two terms in (5.10). In the limit
that Xa«1, these cross terms also give approximate
wave-vector conservation in the s direction, but the
coe@cient of the term is smaller by a factor of 'Aa

than (5.12). So we shall assume Xa(&1 and thereby
neglect this term. Of course, it should be included if
A.a&1, but then photoemission is a surface effect.

The result (5.12) has the appearance of a simple
theory which directly assumed wave-vector conserva-
tion. That is, if we started from our original matrix
element and just assumed bulk wave-vector con-
servation

(4 *exp(ilr(( 8) (
«vV

( @,)

=~2'(p„k.) Z ('6) VG8K—k;-G,
G

then we would get a result very similar to (5.12).
In fact, the result is identical to (5.12) except a factor
of 2 larger.

The distance l=) ' is the effective surface depth
which contributes to the photoemission process. It
may be determined by the depth of penetration of
the incident electric held, or else by the electron
mean free path, or a combination of both. Since
usually x««a/e(&1, the requirement that Xa«1 merely
means that the electron mean free path is large com-
pared to a lattice dimension. This must be true in
order that the wave vector of the electron be well
enough defined that one can talk about "wave-vector
conservation. " Of course, if Xa&1 then the photo-
emitted electrons all emanate from the surface, and
it is ridiculous to talk about a bulk photoemission
process anyway.

In (5.10) the square of the second term is the same
as the square of the first except that k;, is replaced
by —k;,. In the final integral over k; in (2.9), the
k;, values are limited to the space k;,&0, since this
is appropriate for initial wave functions of the form
(5.7). But the two terms of k,, and —k,, may be
combined into one term with limits of integration
—««&, «o. Considering these terms in (2.9) gives the
result for the angular intensity

(fI/dQ=[eaFL/vr(ku)«Njg D«6) /GjV JG«(G8q),

The integral in (5.13) may be evaluated by noticing
that the delta function eliminates the integration.
This step is more deceptive than it first appears
because K is a function of k;. This occurs because
the energy is E=kP/2m+co —V„recall that

k
I i
= Pl I

= (2') "' sin8,

k = (p '+2m V«) '~'= (2m) '~'(E cos'8+ V«) '" (5.14)

Not only the magnitude, but also the direction of K
depends upon k;. This is in contrast to the vector p,
whose direction (8, y) is fixed in the direction of the
experiment. Evaluating (5.13) gives

J,(8, ~) =.(8, &) ~
2'(p. , k.) ~'/cos8',

cos8'= L(p./k, ) cos8G, +sin8 cospG~~ j/G '. (5.15)

In this expression, k, and p, still have the meaning
given in (5.14), but now E has the meaning of (5.5).

The total external photoemission yield is obtained
by integrating the above result over solid angle:

I((u) = f dQ(dI/dQ).

The energy distribution curves, or current per unit
energy, are obtained by inserting a 8 function for
energy conservation in the integral for the yield:

dI/dE= f dQ(dI/dQ)8(E «(8, p)). —(5.16)

For a step potential at the surface, this integral for
dI/dE may be performed analytically. This lengthy
result is given in the Appendix.

One aspect of the result for dI/dE deserves com-
ment. Inside the solid, the distribution dI/dE is a
constant, independent of energy,

(dI/dE);„, = EenF//(ko)'j g [(«6)'/G]Vg'

=0
if Ep+cu&E& A'/4Eg

otherwise.

This can be proved quite simply by noting that

Jg(8, q);„g=A'/4Eg cos'8« ——', (d«; g/d8«) -(sin8«)

so that
f dQ Jg(8 v) -~ 8(E—«(8, v ) -~) =x

Figure 4 shows some calculated values of dI/dE for
the three crystal faces of Xa at her=5. 0 eV. Actually,
what is plotted in Fig. 4 is the dimensionless quantity
EG (E), which is defined as

KG (E) = f dQ Jg(8, p) 8 (E—«(8, v ) ),
(5.17)

dI/dE=fenFl/x(leo)'ej g L(«6)'/G)VG'EG(E),
G

which is evaluated in the Appendix. Figure 4 is closely
correlated with Fig. 3. For example, the range of
allowed E value correlates with the number of energy
contour lines in Fig. 3. The crystal face (110) has
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a step function distribution for Eo(E) because that
is the distribution inside of the crystal, and we already
noted that T(p„k,) is independent of E for the
special case of G normal to the surface. Indeed, for
G ~~8 we get

XO-
(a) (ii~)

{b) {ioo}
(c) (iso)

(c)

2.0—

if E )E)A'/4Eg —Vp. (5.18)

The result for 6 not normal is much more com-
plicated, as is shown in the Appendix. For the (100)
and (111) faces, the external KDC is more of a saw-
tooth shape, and has no resemblance to the internal
values of dI/dE We .note that the experimental
values of dI/dE for the unscattered electrons have
a sawtooth shape. ""It is not possible to give a com-
parison between theory and experiment because the
experimental crystal orientations were not known. We
just remark that the shape of the EDC does depend
upon crystal orientation, and in some cases has the
sawtooth shape observed experimentally.

The last subject we wish to discuss in this section
is the possible interference between the surface-effect
and the volume-effect mechanisms for ph'otoemission.
The total matrix element between the initial and final
state is

«*«p(»ii e) Ip «(p)14, &

=p s(( Vp&(s) ))+ pip GVg(( exp(iG r) )&.
G

When this total expression is squared and put into
(2.9), then the two terms in the above expression
will have cross products

(s s) (I Vp~(s) I&(' G) Vg(l ex@(iG r) I&

which are interference betw'een the volume and sur-

face mechanism of photoemission. In order that the
interference exist, both matrix elements must exist.
They must connect the same initial and final state.
For the surface effect one had y~~=k;~~, while for the
volume effect one has p~~ =k;~~+G~~. These can only
both be satisfied if G~~=O. So there will be inter-
ference between the volume effect and the surface
e6'ect only for volume-effect optical transitions which
have G~

~

=0, or G=Gi."In the case where interference
does exist, for Xa«1 the resulting term predicts wave-
vector conservation in the interband optical transition.
So the interference term sends electrons in the same
directions as do the pure volume effect transitions for
G~~=O. For Au&&1, the interference terms are smaller
than the volume-effect terms and just slightly alter
the intensity of the angular distributions. One cannot
evaluate this term without an explicit knowledge of
the phase shifts 5(k) for the electron wave functions.

VI. T%0-BAND MODEL

In Sec. V the volume photoemission was calculated
with the assumption that the energy bands were
completely free-electron-like. That is, the crystal po-
tential was included insofar as it caused interband
transitions, but not its corresponding influence upon
the shape of the energy bands. Of course, this is in-
consistent because the crystal potential causes the
bands to distort in the vicinity of the zone edge and
at other Sragg planes.

Now we proceed to estimate the influence of this
distortion on the external photoemission in the alkali
metals. For this we will use a two-band model. '~ '
In the ultraviolet (2.0&fop(8.0 eV), the transitions
mostly occur near one of the 12 zone faces of the
alkali metals. In the two-band model, one diagonalizes
exactly the Hamiltonian of the two bands contribu-
ting significantly near each of these zone faces. This
model has the virtue of simplicity, and it is certaintly
quite accurate over the photon energy range of in-
terest. One can solve it, and obtain simple expressions
for the band structure, the optical absorption, and
the angular dependence of external photoemission.

The two-band model has been described before. '
The energies and wave functions near the zone face are

K,{E)-

I.O—

I.O

(a)

/
I

2.0
E{eV)

3.0

l:xG. 4. Calculated energy distribution curves for iVa at
Ii~=5.0 eV. The ordinate is Eg(E), defined in (5.16), and is
proportional to dIjdE. The three cases {a)—(c) correspond to
the same labeling in Fig. 3.

Ek+= p (pk+pk-G) ~[-,'(pk —pk-G)'+ Vg'O'I' (6.1)

pk+(r) =XkI
~

pk —EP ~"' exp(ik r) a (Vo/( Vo ~)

pk Ek+ ~'" expLir (lr —G)]I, (6.2)

&k= I (pk —pk-o)'+4Vo'3 '"

where 6 is the reciprocal-lattice vector which charac-
terizes that face. Let us warm up to the problem,
and gain some appreciation of the amount of band
distortion, by calculating the ordinary optical absorp-
tion. The imaginary part of the dielectric response
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function is given by the formula

p2(~) =(g~'"/~ ~') f 2&'k/(2~)'j I' (O'I p I6 ) I'

X&(E2 +pl —Ep+)

WIth tile WRvc fuIlctlolls 111 (6.2) ollc obtRIIls tile
matrix element

FIG. 5. Energy-band structure for Li along a (110) axis near
the zone edge, The dashed lines are the free-electron hands; the
solid lines are the two-band-model results. The vertical lines
demonstrate that if the Fermi energy E~p is the same, then the
two-band model predicts a lower interband threshold than does
the free-electron model.

surprising conclusion is correct if we use the same
Fermi energy Ep in evaluating (5.3) and (6.4). This
Is 1Hustratcd 111 FIg. 5, wlle1'e tile solid (dashed)
vertical line is the threshold with (without) band
distortions. At threshold, k is parallel to 6. Fixing
Ep and introducing distortions tends to raise the value
of k at threshold, which overcompensates for the dis-
tortion. This difhculty is resolved by noticing that
the band distortions must lower the Fermi energy,
Ep=E2p+8EF. An approximate expression for the
amount of lowering 0Ep, correct to order Vo', is

8Ep = —Q (VG'/4(EI pEg) "]in(pp2p/pIIp) .

Values of JET are given in Table I.' If one uses the
adjusted Fermi energy EI =Epp+fIEp in computing
the threshold energies h~~, then the threshold does
become larger than the free-electron value h~j(). Of
course, the latter value must be computed using E~o.

The effect on p2(Ip) of this band distortion is shown

in Fig. 6. The solid line shows the two-band model
result, while the dashed line shows the Wilson-Butcher
result. Band-distortion effects are small in Na and K
because Vo has a relatively small value. At this point
one can forecast the effects of band distortion on the
external photoemission —they are going to be small in
Na and K. This conclusion justifies the neglect of
such distortions in Sec. V, but it is nonetheless dis-

couraging since such distortions may be used as a
measurement of the crystal potential parameter.

Let us proceed with the discussion of the photo-
emission. Again it is helpful to 6rst see what happens
inside the solid in the internal photoemission. Energy

0.2—

Evaluating the integral over wave vectors gives the
Anal result

p2(pI) (g2222/k4Ipp) Q I
(p. G) 2VG2/GB(pI2 4V 2) I/2]

X (Ip —col) (Ip2 —pI) (6.3)
0.4- I.Q

I
I/

2.0
I

5.0 4.0

ppI, 2
=Eg& 2 pZGE2+ VG211I2 (6.4)

This reduces to the Wilson-Butcher formula if the
crystal potential VG is set equal to zero in all of the
energy terms. "Of course, the %ilson-Butcher formula
is derived under the same assumptions used in Sec. V:
The inhuence of the crystal potential is included by
its causing interband transitions, but not by its caus-
ing band distortions.

Equation (6.4) predicts a result which is in fiat
contradiction to one's intuition. By comparing it with
(5.3), we observe that introducing band gaps and
band dlstol tloIls lo'R8fs 1k' fkr8$kol(7 ft'8gs822c'lI ppl. This

0.5—

Ol-
I

I.0

FK'. 6. Interband part of the imaginary part of the dielectric
function e2(u) for the Vhlson-Butcher formula I,'dashed line) and
the two-band model (so}id line).
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conservation requires that

p/=Ek+ —Ek = [(pk 2k~)2+4VG2]1/2 (6.5)

Rearranging this equation gives

(p/ —4VG ) =pk pk G= (KG cos8p')/m EG. —
Define

and we get

~~ —(~2 4V 2) 1/2+E

K2/2m= '/4EG cos'Op'.

(6.6)

This differs from (5.1) only in the substitution of
for A. However in this case the energy is not K'/2m,
but must be derived from (6.1). The final energy,
after the interband transition, is

Ek+ = -'/4Eg cos'Op'+y

1[~ (~2 4V 2)1/2]

This is the result which should be compared with
(5.1). Again the electrons of a given energy have a
conical distribution, where the cone is centered about
the direction G. This is not surprising when one con-
siders that the energy bands are distorted in the
direction of 6, which is the direction of the cone.
So the energy-band distortion only causes the cones
of internal electrons to have a slightly different cone
angle. But the basic circular symmetry of the cones
is maintained. This circular symmetry will only be
altered by the energy-band distortion when cones
from different G's start to intersect in space. The
initial energy of the electrons is given by

Ek = '/4EG cos'Op' —p/+r.

The statement that this initial energy must be less
than Ep leads to the maximum cone angle

1&cos'Op'& "'/4Eg(E/+ p/ —y) .

The outer limits of this inequality

1& '/4Eg (E/+ p/ y)—
provides the threshold condition for interband transi-
tions in the two-band model:

/d & p/1 =EG—2 (EGEST+ VG2) 1/2

The external photoemission is determined by how
these cones are projected outwards through the sur-
face. Again we let p= (p~~, p, ) be the momentum
coordinates outside of the crystal, and E=p'/2m be
the energy. Inside the crystal, let the wave vector
after the interband transition be K= (k~~, k.). Con-
servation of parallel wave vector gives k~~ ——

p~~ so that

k
(
)' ——2' sin'8'.

Inside the crystal, after the interband transition, the
energy from (6.1) is

Ek+=E+ Vp= pk —2(pk —&k-G)+2p/

= (k 2/2m) +E sin28'+y

which may be rearranged to give

k.2//2m =E cos'8'+ Vp —7.
These two equations determine k~~ and k, in terms
of E and O'. They must be inserted into one more
equation in order to obtain a result relating E and
(8', 22). This equation is (6.5):

p/
—[(pk pk G) 2+4VG2jl/2

which may be rearranged to give

= (EE~1)
'" sinO' cosp2+E "(Ecos'8'+ Vp —y) '/'

(6.7)

where Z is given in (6.6). The above result should
be compared with the free-electron result (5.3) . Equa-
tion (6.7) may be solved a number of different ways.
The external energy E may be expressed as a func-
tion of the angles (8', 22):

E(8' 22) = ( /2D)'IE ''[cos'8' —4D(Vp —y)/"']'"
—E((1/' sinO' cos22I' (6.8)

D= E, cos'O' —E~
~

sin'0' cos'y.

Another result, which is useful for plotting energy
contours, is to express 8' as a function of E and y.
sinO' =

I E~ ~1/2 cospp

&E '/'[4d (E+Vp —y) /~' —1]'/'I /2dE'/' (6 9)

d=Eii cos p1+E~.

Now we are in a position to see how much the
directions of the external electrons are affected by
the energy-band distortion. The maximum energy at
which electrons will come out is still given by

E =E/+ p/ Vp. —

This maximum energy still de6nes the edge of the
cone—the point at which the intensity drops to zero.
Since this is a readily measurable quantity, let us
see how much this contour of maximum energy is
changed by the band distortion. Inside the crystal,
let. Op be the free-electron cone angle, and Op+8' be
the cone angle with the band distortions. Outside the
crystal, let 0 be the angle at the free-electron cone
edge, and 8+8 be the angle at the cone edge in the
two-band model. So 8 and 6'. are the shifts in angles
caused by the band distortion. Table II shows the
values of these parameters for a (100) face of Na
and K at Geo=5.0 eV. There are essentially two kinds
of contributions to 6 and O'. One is the effect of the
actual band distortion, and the second is due to the
shift of the Fermi energy caused by this band dis-
tortion. The latter effect turns out to be the most
significant by a substantial margin. So the angular
deviations in Table II really reQect shifts in the Fermi
energy rather than the band distortion itself. Angular
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where p ls thc angle between p»» Rnd 6»», E»» =
G~

~

2/2ts. This equation may be solved to give the
cxtclnRl cIlcI'gy Rs R fuDctlon of angle;

E(8, y) =
» 8 sin8 —$8' sin'8

+D(&'—E.VD+E.Eit') 7"»'D '
'.~+(EiE ')" o (y—y')

8=),(Eii)'~2 cosy+E. (Eii')'" cosy',

or alternatively the angle 8 as a function of E, q, and q'.

sin8=d(E) '"»8+$8'—d(X' —E.(VO+E—E~~'))$'~2».

Figures 7 and 8 show some plots of the external
distribution of secondary cones for a (001) face of Na
with A'~=5.0 CV and 10.0 eV. The solid line in each
figurc ls thc contour linc of Eggax fox' thc prllnary
conc. Thc dRshcd llncs RI'c thc CODtouI' of z~~ fox'

the secondary cones. The primary cone has the com-
ponents G=2~(101)/a, and the values of G~~'=

(G,', G„') for each secondary cone are shown in pa-
rentheses. In Pig. 7, at Re=5.0 eV, only onc secondary
cone is allowed. In Fig. 8, at h~= 10.0 eV, many more
RI'C PI'CSCQt.

This integral is a standard forxn which equals

Ig(8) = »-,'xsg' —(5/24) ag'x'+sesa'xga (5—/64) a'xl

+Vo (-',x'N' —-,'axl'+ —,',a'xu)

+P,La'V0 —(5/4) a'g ln{x+N) ——',(x'—-,'b) R'

——,', (2x'+b) L(5/4) O' —Voa)R

+—:e~'L(5/4)&'—«03»(N+ (++Vo) '")» i"*"

N = (x'+a) '", E.=N(d+ V0) '~'

2. I(&o). From (4.3) and the above results we get

where. thc lRst step comes fI'OIQ 1QtclchRnglng orders
of integration. Evaluating the ds integral yields

Many of the results for the external electron cur-
x'cnt RI'c cxpx'csscd ln tcl IQs of lntcgI'Rls ovcI' wRVC

vcctox' oI' RQglcs. Thcsc 1QtcglRls usuRHy contain, Rs a
factor, the surface transmission coeKcient

»
T(p„k,)»2.

One needs to knovr this factor before the intcgrals
Inay be evaluated. It has a simple form for the model
where the surface is a step potential:

V(s) =0, s&0
= —Vo, S&0.

Theo vre get that

&(p* k*) =2p*/(k*+p*) = (p./~VO) (k*—p.)
It is possible to evaluate RnalyticaHy most of the
integrals in this paper when this choice is made for
T(p„k.}.These results will be listed here.

A. Surface Effect

1. dI/dQ. From {4.1) and. (4.2) we get that (~=cos8)

dI/do= $16emF (s e) '/7r'(%co) 'nVO 1/(1/v') Ig(8, y),
Ig(8, y) = {1/16m') J dk;.p,'k;,'Lk, —p,j', (Ai)

k.= (2mu+k;. 2) "', p.= (k.'—2m Vo) "'.
If we change variables to x=p /(2m)'~' and dehne
x '=E =Ed+au —Vo and xg= maxLO, (&o—Vo}'"j,
we get

This is the same result obtained by Adawi and others
for the total yield. Changing variables to y=x' gives

8 eaF(e.e)'I((o) = —,I2(a)),

dy y'"(y —y) (y+ Vo—~) '"

X L2y+ V.—2y"'(y+ Vo)'"j

ye=max(0, a)—V0).

The integral is a standard form which equals

I~= »8'N'Le(2y- —V0) —:(y——:a)j
+Kea'+ sa(2y- —Vo) —V y-3

&& t a' ln(y'~'+N) —y"'N(2y+a) j
+~'s'Lly —(5/12) &——:y-j—B&'—-'Voa+by-3

)& -', [co' ln(N+rt) Nv(2y+b) )—
» p",

N = (y+a) "' e= (y+ V ) '"

3. dI/dE. We get from (4.4)-(4.6)

(dI/dE) (E, a)) = (8/s. ) LenF (c 8) '/(ko') eVoJI3,

I —2ES/2 dp pR(Eps+ V ~}1jm

X» 2x'+Vo —2x(x'+Vo)'"j. (A2)
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Changing variables to y=Ev' yields

dy y'i'(y+ V.—~) '"L.2y+ Vo—28'(y+ Vo) '"3.

This is very similar in form to the integral Ii(&u)

given above. It equals

Ig = I 'I'(y-"' w') +—-'ut (2y+a}y" b(2—y+b) ii'$

——,'coLa' in(y'"+I)+crib in(N+s} )»„P.

B.Volume Effect: dI/dE

From (5.16) we get that

dI/dE= Penp//ir(5co}'n] g L(8 6)'/G]Vo'Eo(E),

fractions to the form

&o(E) = (2/Vo') {6nv9' —(n+y) '3

X L55P'+50n' —29''jI4

+ I
3P'+4n'+12n'P'+y'(-'y' —2P' —4n') jI5

+L-,'n'y(55P2+50n~ —29&2)

+3ny'(16P'+ 19n'—10'') ]I6»

-(&/V') {9-(y- )g~

~ L~ (&—n)'+~nb' —n)'+2 (y —n) (n' v'+—-,'p')

+2 (2 '—y'+~p') j+«s-'L(y, —)/pj

~ L3p4+3-2p2+-4--F2-ip2"j»,

where the elliptic integrals are"

Eo(E) = dq dv Ig(v, y) b(E—e(v, p}).
0 0

The quantities Jo(v=cose, p) and e(v, y) are defined
in (5.4) and (5.13). Now, if 6()=0, this gives the
simple result (5.18).But, if 6~ ~40, we first evaluate the
dq integral to cliIQlnatc thc 8 function. After a lengthy
bit of algebra, we get, with y=fEv'+ Voji",

VO

QO

dyI:(y —y) (y+y)'(y —y ) (y —y) 3 '"

=2(+y) 'L(y —) (yo+y)?'"
~{&(}—L(y —)/(y+ ) jE(.}»,

ydy L(y' —y') (y —y) (y—yi) 3 '"

Ly' —Vol'" I:y—(y' —Vo) '"1'
Z'o(E) = —, y dy

~0' ~O L(y—y ) (y —y}j'"

p= (Eii/Eg) "(E+Vo ~'/4Eg) "'

n = 'AE "'/Eg-
and yo is the maximum of (y, yi}. One has the con-
dition that y~&yo. This may be reduced by partial
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