
After multiplying on the left by d-„'
R and summing

over a11 K, the above equation reduces to

Z, (seas),,~, (k) = E„-~,(k), (24)

where the matrix H«appeari ngin Eq. (24) is given
by

&&a= ~ &o, R &R,R, do, R, ~ (25)
rrt&

the rows and co1umns of H«being labeled by band
indices.

It should be emphasized that the matx ix 8„& defined
in Eq. (20) in terms of a sum over reciprocal-lattice
vectors is numerically identical to the matrix 8&
obtained by Zak using the kq representation. 8„J
in no way depends on the particular choice of kq
or kK„representations.

The single-band part of the Hamiltonian II)~ may
be separated out with the help of the definitions:

1 - ie
IJg =5) 2' 2C'

~k ——IIx vg - geE - v'-
k ';

5 E~
sx R, + V(K —K,) do R

and using Eqs. (13) and (14)

$8 3
HX g~ —geE

2m 2c Q

ie
+ I . Sk -—Hx V'- m.ftl

A single-band effective Hamiltonian may be ob-
tained by transfox ming away the interband terms
in Eg. (29). In the absence of external fields, this
can be accomplished by xneans of the matrix 8 de-
fined in Eg. (20), for in this case it is easily veri-
fied that

(s'as) „=z!s„. (30)

Nith nonmero fleMs, Rn Rppl opl 1Rtely symmetrized
matrix [S,„(k)] may be used, as discussed by Hoth6

Rnd ZRk. Acce1eration theorems mRy Rlso be
proved using the symmetrized 8' tile cR1culRtlons
in the R K representation are however identical
to those in the kq representation, inasmuch as the
matrix 8 does not depend on which representation
18 CIlosen.
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It is shown that the approximate variational calculation of Gutzwiller predicts a metal-insula-
tor transition as the intra-atomic Coulomb interaction is increased for the case of one electron
per atom. The susceptibility and effective mass are calculated in the metallic phase and are
found to be enhanced by a common factor which diverges at the critical value of the interaction.

Several years ago, Gutzwiller' performed an ap-
proximate variational calcu1ation of the ground-
state wave function for a model Hami1tonian with a
single tight-binding band and with only intra-atomic
Coulomb interactions between the electrons. This
model Hamiltonian, introduced earlier by Hubbard,
Gutzwlller~ Rnd Kanamorlq ls generR11y known R8

the HubbRI'd model RQd hRs been studied by many
authors. Using Gutzwiller'8 notation, as we shall
in this paper, the model Hamiltonian has the form

If =+rl~rI(+r&+r&+upY~+I&) + ~~g~it+c&~b+Pr» (1)

where a„- RQd cy Rre the cx'6Rtion opex'Rtors fo1 61ec-
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p=-,' (1-c/co),

q =1- (c/c, )',
(4)

(6)

and the expectation value of the energy in the (para-
magnetic) ground state

(a)„=v{1-c/c, )'.

6 =2 Q cf(0
0 & ky

is the average energy without correlation and Co
=- 8~. Thus, at a critical value of the interaction
strength C = C~ the number of doubly occupied sites
and the discontinuity in the single-particle occupa-
tion number at the Fermi surface go to zero. The
value of the energy (6) also approaches zero, the
expectation value of the energy of a paramagnetic
localized insulating state. However, it is clear
that some magnetically ordered insulating ground
state wQl have a lower energy than the paramag-
netic insulating state and a transition to an insula-
ting magnetically ordered ground state will occur

trons in the Bloch state Pk) and the Wannier state
respectively» C 1s the intra-atomic Coulomb

repulsion, and &p is the kinetic energy, with the
zero of energy chosen. so that g;~p=0.

Gutzwiller~ constructed a trial wave function by
starting with the conventional Bloch state for non-
interacting electrons and reducing the amplitude of
all components in which v atoms are doubly occupied
by an amount q", where 0&g& 1. He calculated the
needed matrix elements by neglecting the kinetic
energy of the down-spin electrons, arguing that
this procedure should be a good approximation to
an optimally chosen generalization of his wave func-
tion. This led to an explicit and spin-symmetric
expression for the energy as a function of q. This
expression was then minimized with respect to g
and the ground- state energy obtained. Gutzwiller
used his results to obtain a criterion for itinerant
ferromagnetism. In this paper we wish to apply
his calculation to the problem of the metal-insulator
transition.

We consider only the ca,se in which there is one
electron per atom. (For any other number of elec-
trons per atom Gutzwiller's variational state is
always metallic. ) With one electron per atom, Eqs
(BV) and (B8) of Gutzwiller's give q and q in terms
of 7»(= (n)»ng, )„):

n=p/(l- p),
q=16v (—

' —v) .
Here q is the discontinuity in the single-particle
occupation number (nf) at the Fermi surface. Sub-
stituting these results into Eq. {86) for the energy
and minimizing with respect to v, we find for the
lowest-energy state

~, = e+ g'/p(er),

q, = 167» (-', —v) {1+g' [4- —,
'

(-,
' —v) ']),

(8)

(8)

where p(e~) is the noninteracting one electron den-
sity of states at the Fermi energy. Upon substituting
(8) and (9) into the expression from the ground-state
energy we find

, 1- {c/c,)', 1+(c/2c, )
Xs p(+ ) P r [1 (C/C )]3

Therefore, as C approaches Co both the suscepti-
bility and the effective mass diverge in proportion
to [1—(C/Co) ] '. This result is quite different
from the type of result obtained from parama, gnon
theory6'7 near a ferromagnetic instability. In that
theory the mass is proportional to the logarithm of
the susceptibility, and although both Xo and m~ di-
verge, the ratio of the two goes to infinity. In the
present case this ratio goes to a finite value. %'e

note that if range effects are ignored in paramagnon
theory, corresponding to a uniform enhancement
of the static wave- vector-dependent susceptibility,
then Xo and m~ would scale as we find.

Examining Eqs. (7) and (10), it is clear that the
susceptibility enhancement is not coming from the
usual Stoner enhancement factor [1—p(er)C] ', but
rather from the effective mass. The Stoner factor
has been replaced by the expression in the bra, ckets
in (10). This expression becomes small only if
p(er) is considerably larger than the average den-
sity of states in the band. Therefore, the possibil-
ity of itinerant ferromagnetism prior to the metal-
insulator transition is greatlg reduced. We have
not been able to calculate y(Q), the static wave-
vector-dependent susceptibility. However, if we
accept that X(Q) is roughly independent of Q, as one
naively expects for a localized instability, then it

for a value of C less than Co.
Nevertheless, it is interesting to calculate the

properties of this trial wave function in the metallic
state. If we assume that the effective-mass renor-
malization m*/m is due to the frequency dependence
of the self-energy only, as for example, in the
electron-phonon and paramagnon problems, ' then
m*/m equals the reciprocal of the discontinuity at
the Fermi surface in the single-particle occupation
number,

m+/m =q-' = [1-(C/C, )'] -'.
The effective mass, therefore, diverges as C ap-
proaches C&. Gutzwiller also calculated the mini-
mum energy for states with differing numbers of
up- and down-spin electrons and the static suscep-
tibility X, can be obtained by expanding his results
to second order in the magnetization. Defining the
magnetization 2l =((N, ) —(Ã, ))/N, we find
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is interesting to speculate that the correlation ef-
fects could possibly also suppress itinerant antifer-
romagnetism and lead to a first-order transition
between a paramagnetic metallic state and an anti-
ferromagnetic insulating state.

The results obtained from Gutzwiller's method
are to be contrasted with those found by Hubbards
using a Green's-function decoupling approximation.
%'hile Hubbard's approximation is reasonable for
the insulating phase, it certainly is incorrect for
the metallic phase since it does not properly de-
scribe the Fermi surface as emphasized by Herring
and by Edwards and Hewson. Further, ln the
Hubbard approximation the density of states at the
Fermi surface approaches zero as C- Co. The
Gutzwiller calculation, on the other hand, builds
in the Fermi surface from the start and gives an
appealing description of a metallic state in which
the discontinuity in the single-particle occupation
number at the Fermi surface becomes small as the
system becomes closer to the metal-insulator tran-
sition.

In conclusion, it is interesting to compare the
above results with the experimental properties of
the metallic state of V203. '0 '~ This type of com-
parison may be meaningless since VQO3 is surely
a complicated many-band situation for which the

simple model studied by Gutzwiller is not applicable.
Nevertheless, the Gutzwiller results are not strongly
dependent on the density of states, and it is interes-
ting that the specific heat and the susceptibility ap-
pear to be enhanced by roughly the same amount.
In V30, the susceptibility and specific-heat density
of states of the metallic phase both appear to be
quite large. An extrapolation of the susceptibility
to 0 'K gives a value for y, , expressed as a den-

sity of states, of 35 states/eV molecule. A rough

estimate of the specific-heat density of states
N(c~), canbe obtained as follows. If we assume
that the diffexence between the metallic and insula-
ting specific heats is of the form DC„=y T+ PT,
then the parameters y and P can be estimated by
setting (a) I, N d C„dT/T = &8, the change in entropy
at the metal-to-antiferromagnetic-insulating phase
transihon in pure V20, at 1 atm, and (b) r C„(TN
= 170 'K) = 0, in agreement with Anderson's's ex-
perimental results. This gives X(ez) = 20 states/
eV molecule, which is quite large. However, the
ratio y, /N(~„) is only I. V5, so that the two quan-
tities appear to be roughly equally enhanced.
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Irj. a recent Letter, ' the first observation of a
magnetic-field-induced circular polarization (MCP)
of the emission of E centers was reported for potas-
sium fluoxide. Two things were remarkable about
the effect: It was quite small, and it appeared to be
independent of temperatuxe. The small size im-

plied a strong reduction of the orbital g value for the
emitting state, while the temperature independence
implied that any spin-orbit contribution to the effect
was negligible. In a subsequent paper, it was
shown that the E-electron spin polarization had been
completely quenched by the intense optical pumping


