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A theory is presented of the Raman scattering of infrared light by the modulation of the ionic
contribution to the polarizability of a crystal by the displacements of the atoms from their equi-
librium positions. It is applied to the calculation of the scattering efficiency for the scattering
of light by the localized vibration modes due to H U centers in CaF2. The results of these
calculations indicate that such scattering should be readily observable when a CO or He-Ne
laser is used as the source of incident light.

It is convenient to regard the Raman scattering
of light by the elementary excitations of a crystal
as the scattering of light by the inhomogeneities in

the refractive index, or the polarizability, of the
crystal caused by the elementary exeitations being
probed. In the ease of the inelastic scattering of



SCATTERING BY '

light by the lattice vibrations of a crystal, the po-
larizability contains two contributions, an ionic con-
tribution and an electronic contribution. In standard
treatments of the theory of the Raman effect, ' the
ionic part of the polarizability is neglected in com-
parison with the electronic part, because the fre-
quency of the incident light is large compared with
the transition frequency between the vibrational
states of the crystal corresponding to the electronic
ground state. However, with the introduction of
infrRx'ed 1Rsers, such Rs the COB laser ) which emits
at 10.6 p (943 cm '), we now have sources of light
for Raman scattering experiments whose frequencies
are comparable with the transition frequencies be-
tween vibrational states of a crystal. Consequently,
it seems worth while to investigate the contribution
to the Raman scattering of light arising from the
modulation of the ionic part of the crystal polariza-
bility by the atomic displacements.

In this paper we study this contribution in isola-
tion from the contribution arising from the modula-
tion of the electronic part of the polarizability by
the atomic displacements, and from possible in-
terferences between these two scattering mechanisms.
Although our purpose in doing so is to focus attention
on the ionic Raman effect and to display some of its
features, it is also t'he case that the scattering arising
f'rom the modulation of the electronic part of the
polarizabilty by the atomic displacements is expected
to be very weak for incident light in the infrared
range. This is because the scattering efficiency
is proportional to the fourth power of the frequency
of the scattered light. ' For incident light in the
visible, the difference between the frequencies of
the incident and scattered light can be neglected
with little error. In going to the infrared, the fre-
quency of the scattered light decreases by a factor
of as much as 20, so that the scattered intensity
decreases by a factor of 1.6&&10'. If the scattering
is weak to begin with, a decrease in its intensity by

a factor of this magnitude may render it unobserv-
able. In the ionic Raman effect, on the other hand,

there exists the possibility of resonance denomina-
tors occurring of such a type that the proportionality
of the scattered intensity to the fourth power of the
scattered frequency is cancelled. Consequently, the

possibility exists that for incident frequencies in the
infra, red the ionic Raman effect dominates the elec-
tronic effect.

The starting point for our discussion is the ex-
pression for the intensity pex unit solid angle of

light scattered into the frequency interval
(~s ~ ~8+ d~s) i

CO

1(I'd~)d&8 =
3 5 n~ttg t~„gg (Q)E„Egad,'~, (1)

mC'
opyx

where c is the speed of light, n is a unit vector which
selects the polarization of the scattered light, and

E and E' (= E *)are the amplitudes of the negative
and positive frequency components of the electric
field of the incident light, respectively. The fre-
quency 0= v, —& is the shift in the frequency of the
light on scattering where M is the frequency of the
incident light. The coefficient i „z,(Q) is given by

where v and v denote initial and final vibrationa, l
states of the crystal corresponding to the electronic
ground state, p„ is the Boltzmann weighting factor,
and &u„„.= (8„-8„.)/h, where S„and 8„.are the ener-
gies corresponding to the eigenstates lv) and Iv ),
respectively. The function P"

~ (~) is defined by

(vlM&lv )(v IM„lv )
+

Qp ~ e y
—Ctp + $y

(3)

In this expression M is the crystal dipole moment
operator, which possesses an expansion in powers
of the displaeements of the atoms from their equi-
librium positions,

(4)

In particular, the coefficients [M „(tz)] are the trans-
verse effective charges of the atoms, which govern
the strength of the fundamental lattice absorption
by the crystal. The dRmping constant y is intro-
duced into Etl. (3) to describe phenomenologically
the anharmonic damping of the vibrational levels.

Combining Eqs. (2) and (3) we find that t „~~(A)

can be expressed equivalently as

i~„,„(a) ~ f d~e 8&f dtf dtie &~c rc &~)
m@ - o o

x([M,(s —t), M, (s)] [M',(0), M'„( t')]) (g)

where the angular brackets ( ~ .) denote an average
with respect to the canonical ensemble described
by the vibrational Hamiltonian corresponding to the
electronic ground state of the crystal and M (t) is
the dipole moment operator in the Heisenberg rep-
resentation.

It follows directly from Eq. (5) that if the crystal
has only a first-oxder dipole moment, and if the
atomic vibrations are treated only in the harmonic
approximation, then because in the harmonic ap-
proximation the commutator [M,(t~; t), u~(t ~; t )]
is a c-number function of t-t, the expectation val-
ue in this equation is independent of s, and there-
fore there is no inelastic scattering of light. Con-

sequently vibrational or electrical anharmonicity
must be present in the crystal for the ionic Raman

effect to take place.
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In this paper we evaluate i &1(A) for a particular,
simple kind of system of physical interest. We
consider a crystal containing a number N~ of sub-
stitutional impurities, each of which occupies a
site of T„symmetxy, and each of which gives rise
to a triply degenerate localized vibration mode.
%Ye consider the ionic Raman scattering of light by
these localized modes. The systems to which the
px esent discussion applies include crystals of the
zinc-blende structure containing substitutional im-
purities, e. g. , GaAs: P. However, we will focus
our attention on the case of CaF, containing H or
D impurities (U centers) in the fluorine sublattice,
because all of the parameters entering the theory
are known from independent experiments.

%'e base our calculation on several assumptions
and approximations. The first is that the concentra-
tion of U centers is so low that we can obtain the
total scattering cross section by multiplying the
result for an isolated U center by the number of U
centers. The second is that in a localized mode
only the U center itself is vibrating. This seems
to be a rather good approximation for the calcula-
tion of several properties of U centers in alkaline-
earth fluorides. The third is that we can restrict
our attention to scattering at the absolute zero of
temperature. This is also a reasonable assumption,
because the high frequency of the localized mode
(966 cm ' for CaF0: H ) has the consequence that
even room temperature can be considered a low
temperature for the kinds of experiments we study
here. Consequently, only down scattering (Stokes)
spectra will be considered in this note.

The vibrational Hamiltonian for the U center can
be written in the form

ff =p'/m+-', (m(00')(x'+y'+ ~') + Lxyx+ &1(x'+y'+ x')

+M0(x'y +y'z'+& x )

through quartic anharmonic terms. In this expres-
sion M is the mass of the U center, p=(p„p, ,p, )

is its momentum, and x, y, z are the Cartesian com-
ponents of the displacement of the U center from
its equilibrium position. The anharmonic terms
will be regarded as a perturbation on the remainder
of the Hamiltonian, which we denote by IIO,

ff, =p'/2~+-, '(~~,') (x'+y'+z') .
The eigenstates of IIo can be represented by

In(n0n, )= ln, ) ln0) In3), (6)

n = (M(00/)I) '"
and H„(x) is the nth Hermite polynomial. The en-

where n„n2, n3 are any three non-negative integers,
1/2

(12)

where z = 5(d —i'.
As a check on calculations based on Eq. (12) we

note that for large Iz I, P","0 ((d) can be expanded in
powers of ) z )

' according to

P"",'((d) = —(e*)' —, &uP &~

82
+ 0(z ')

8+~Bxg

where V represents the potential energy terms in
the Hamiltonian, Eq. (6).

We denote by In(n0n0) the eigenstate into which the
state In,n0n, ) goes in the presence of the anharmonic
terms in the Hamiltonian (6), and the corresponding
energy by S„,„„.The calculation of the matrix
elements [(n,nIn, I x I s,'n0n0)] and the energies
(h„,„„]is greatly simplified if we take as our un-

tty tt2tt3

perturbed wave function not the (In,n0n0) ].of Eqs.
(6) and (9), but the —,'n(I+ 1) linear combinations of
these functions for a given n=n&+n2+n3 which com-
prise basis functions for the irreducible represen-
tations of the point group T~ of the impurity site.
These linear combinations and the corresponding
energies lh„,„„]have been given by Elliott ef ((&.

'
tt y tt2tt3

for n=0, 1, 2, 3, and we shall make use of their
results.

The first example we consider is scattering with
a frequency shift equal to the fundamental vibra-
tional transition frequency of the localized mode.
We therefore require the matrix elements
P(00011001( ) P(00010101( ) and P(000I 001)(~)~g Qp t ~g co t an @g
culating these quantities we will consider only vi-
brational transitions which yield matrix elements
(() I x I()") and (()"Ix0I()') of which one is indepen-
dent of the anharmonic coefficients L, Mj, and M2,
while the other is linear in I . Thus P"„"(I((0)will be
lineax" in I, and higher-order anharmonic contx ibu-
tions will be neglected as small in comparison.
The element of the tensor P"„0((0)we consider is

ergy E„„ofthe eigenstate ln, n0n, ) is223
E„,„=-,'e(u0+ (n, + n, + n, ) K(00 . (»)

The scattering processes we consider are those
arising from the first-order dipole moment associ-
ated with the localized mode, which in the present
case is given by

M~ = 8+x~ t

where e* is the transverse effective charge of the
U center. The function P","~((u) therefore takes the
fol m
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&ggg;gg~&, , /(000 I x (011)(011 I y 1001) (000 I y I 101)(101 l x ] 001) (000 l x ) 100) (100 ( y (001)+ +
~011~001+~ ~~or ooo &~00; 00~+&

(000ly) 010) (010 tx)001) 28 (do

Sgyg. ggg
—8 2M(dg (AQJg+ 8) (2SQPg —8) Z(%0g —8) (14)

This result is in agreement with the expansion given
by Eq. (18). In obtaining this element we have made
the approximation of neglecting the anharmonic con-
tributions to the transition frequencies (d „"„.and

v„"„, inasmuch as the matrix elements

(000
~
x~ Ol1) = (000

~ y ~101)= (I/2M~, )' (u, /sh~, )

(100
l y I 001) = (010

~
x

~
001) = —(II/2~~g)' (2r /i-~g)

are already linear in I.
Combining these results with Eq. (2), we find

that

1
[(~g+~)'+~'][(2~g- ~)'+I']

X
4(dg6 (0 + QJg)

(~'+~') [(~g-~)'+1"] '

This tensor corresponds to scattering processes in
which the incident light is polarized in the y direc-
tion and the scattered light is polarized in the x di-
rection.

If we define the scattering efficiency S as the ratio
of the power scattered into unit solid angle in the
frequency interval (&o„&o,+dgg, ) to the power inci-
dent on the crystal, we find that

temperatures. The variation of the integral of ~

over 0 with the fl equency of the 1ncident light M 1n

the neighborhood of the resonance at ~= 2+0=1962.2

cm is plotted in Fig. 1. Inasmuch as a scattering
efficiency of 10 or greater can be detected at the
present time, even for scattered frequencies in the

infrared, we see from this figure that for 1815 cm '
& + & 2110 cm"' the scattering from localized modes
with a frequency shift (downward) equal to the lo-
calized mode frequency should be observable. In

particular, the use of a CO laser, which emits at
wavelengths in the interval 5. 2 p, to 6. 0 p, (1923-
1667 cm '), as the source of incident light, should

result in a resonance enhancement of the scattering
eff1clency.

The second scattering process we consider is the
one in which the initial and final states Jv) and [g )
in Eq. (12) are the states ) 000) and l 110), respec-
tively. The shift in the frequency of the scattered
light therefore is essentially twice the localized
mode frequency. Of all possible intermediate states
( v") we consider only those which yield contribu-
tions to Ptgg '"g'(ar) which are of second order in

I or of first order in M, and M2. In this way we
obtain the result that

lO

COs=c„l—f i„, (II),
0

g + ~ 4LR

1

[(~g+ ~)'+y'][(2~g- ~)'+~']

4(0g(gd —Q)g) 6(0+(dg)
(~'+ r') [(~g —~)'+ y']

where c~ is the impurity concentration and l is the
thickness of the crystal along the light path through
it. To evaluate the coefficient of 6(Q+vg) in this
expression, which is the integrated intensity under
th p ak tQ= —, p ity
centration c„=10'/cm', I = l cm, e*=e, the elec-
tronic charge, and the values of M, uo, and I ap-
propriate to H" U-centers in CaF2 at 20 K. A

value of 1 cm ' was chosen for y, which is approxi-
mately the width associated with the fundamental
and first harmonic of the localized mode at low

lOIO

lO-ll

l.6 l.8 2.0
QJ/(8

2.2 2.4

I"IG. 1. Scattering efficiency for Haman scattering
from the fundamental of the localized vibration modes
due to H U centers in CaF2 is plotted as a function of
the frequency of the incident light (&0= 981.1 cm ~).
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(000. 110) 0 (QQQ I x}] QQ) (10Q I y I 11Q) (000 I y }010)(010 I x}110) (000}x}011)(011}yI 110)
~F21 ~010' 000 ~011' 110

(000)z)101)(IDl I «)110) (000)«)120) (120)z I llD) (000)z)210) (210 I «)110))
~101;OOO ~120' 110+ ~ ~210/000

I

(18)

In the harmonic approximation the first two terms
of this expression cancel each other. Because the
matrix elements in these terms are nonvanishing
in the harmonic approximation, we have to obtain
the anharmonic corrections to them in principle,
as well as the anharmonic corrections to the transi-
tion energies in the denominators. In the remaining
terms the matrix elements are of O(L ) or O(M, 0),
so that the transition energies in their denominators
can be approximated by their values in the harmonic
approximation. The nontrivial matrix elements
entering Eq. (18) are found to be'

4/2~ 2

(k(dp —z)' (h(dp+z) (3h(dp —z)

0'(0' — 22z«DIP|«'„)
)3M(dp z(z —28(dp)

(26)

2

2

20

~ ~
~

0

0

20
1

2L 4) —2(octo+ 3coP
X 4M2+

3M(dp (d((d —2(dp)

which satisfies Eq. (13). If, for simplicity, we
neglect the small damping constant y, we obtain
for i„„~(Q) in this case

4 ff 6 16C00

2M(d 0 ((d p
—(d ) ((d 0 + (d ) (3(d 0

—(d )

2L
2M&d0 9(k(dp)'

=(ooolylolo)

(
2 )' (~K )

12M, +DM,

3 4L2

2M(dp 9(S'&d0)

=(olol xlllo)

(19)'

5(Q+ 2(dp+ 6(d110 000) (2&)

where

6(d]10 ppp
—

(2 10 (24M1 + 12M0) —
0 4 12L

2Mo 24M coo

(as)

The scattering efficiency for this process is given
by

(000(~«(~DII)=(M 20 =(000(l«IIDI).
2Mco0 3%80

(011
I y I

110)= —
@

= (101
I
x

I
110), (22)

2L
2M&so @no

=(oool ylalo) . (23)

The required energy differences are

~110;100=@(dp+ (12M1+RMp) —
0 4 8L I24M uo

(24)

(21)

S 2 I'
6010 ppp 8(dp + (12M1 + 4M0) 3 4 4I«

2Mcoo 24M coo

(25)

}0

-7
IO

IO

IO

2.4
I

2.6 2.8
l

3.0 3.2
I

34 3,6

Substitution of these expressions into Eq. (12)
yields the result that to lowest nonvanishing order
in the anharmonic force constants

I0&0001110)(
) ( 2z)0

I 3

FIG. 2. Scattering efficiency for Raman scattering
from the second harmonic of the localized vibration modes
due to H U centers in CaF2 is plotted as a function of
the frequency of the incident light (~o ——981.1 cm ').
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4 @ 6 16~,'I "f a, ~~0 (~0-~)'(~0+~)0 (»0-&)

—2QPQPO+ 3400

3M(dO QJ((d —2(00)

(01 2000 ~01110'000) 6(fl+ 2010+1 1d110 000

The variation of the integral of & over A with m for
m &2(do=1962. 2 cm"' is plotted in Fig. 2 for the
case of H 0'-centers in CaF~. %e see that the
scattering efficiency for scattering with a frequency
shift equal to the second harmonic of the localized
mode frequency is an order of magnitude larger
than it is for scattering with a frequency shift equal
to the localized mode frequency. Due to the reso-
nance enhancement of the scattering efficiency Eq.

(29), for frequencies of the incident light in the
vicinity of 3m~, scattering by this mechanism should
be readily observable if a He-Ne laser which emits
at 3.39 i1 (2950 cm ) is used as the source of inci-
dent light.

It should be pointed out that the Hamiltonian de-
scribing the vibration of a U center in a crystal of
the rocksalt or cesium chloride structure differs
from that given by Eq. (6) only in that I = 0 in this
case, because the impurity site is at the center of
inversion symmetry. Consequently, the results of
the present payer can be applied to the ionic Raman
effect due to localized modes in such crystals by
setting I.=0 wherever it appears.

The results of the present analysis indicate that
the ionic Raman effect should be a useful tool for
the experimental study of the vibrational properties
of impurity atoms in crystals.
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