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A modified shell model developed earlier by the authors which included the effect of three-
body forces has been used to study the lattice dynamics of sodium halides. The model has
been ascribed a fundamental basis by pointing out that amongst the current phenomenological
models, this one makes the nearest approach to the shell model recently derived by Sinha on
rigorous quantuln-mechanical considerations. Excellent agreement has been obtained with
experimental data on phonon dispersion relations, specific heats at constant volume, and the
infrared absorption and Raman scattering spectra of the solids.

I. INTRODUCTION

The shell model of ionic crystals proposed by
Dick and Overhauser' presents a simple description
of the electronic polarization in these solids. The
basic ideas of this model were developed by Woods
et a/. into a theory of lattice dynamics which, with
its various modifications, ' ' has since proved to
be the most successful among the current theories.
Woods et al. (see also Cochran~ and Cowley') further
observed a certain degree of similarity between the
mathematical description of their theory and that
formulated by Tolpygo' and Tolpygo and Mashkeviche
on quantum-mechanical considerations. This fact
provides a fundamental basis to the apparently
phenomenological model, so that it can be accepted
as a convenient representation of a relatively exact
theory of lattice dynamics.

The shell model begins by assuming that every
ion is divided into a rigid spherical shell of a por-
tion of the electron cloud and a rigid spherical core
of the nucleus and the rest of the electron cloud.
The two are coupled together by an isotropic spring
and have a common center in the equilibrium con-
figuration. This departure from the rigid-ion pic-
ture produces a different response to the long-wave
optical (electromagnetic) waves, but does not make
any impression on the long-wave acoustical (me-
chanical) vibrations, with the result that while the
model permits a better description of the dielectric
polarization in ionic crystals, it does not go beyond
the rigid-ion model with respect to the elastic be-
havior of these solids. In particular, the shell mod-
els employing only central interactions lead to the
Cauchy relation c]2 c44 However, the low-tem-
perature measurements of elastic constants, now
available for a large number of ionic solids, do not
support this result.

Phenomenologically, the Cauchy discrepancy can
be accounted for by including va, rious kinds of non-
central interactions amongst the ion pairs. In fact,
some of the later modifications of the shell model
include noncentral short-range interactions and give
a better description of the vibrational properties of

the solids under consideration. However, in gen-
eral, these modifications are not based on the ex-
isting knowledge about the nature of the interaction
responsible for the Cauchy discrepancies in ionic
solids. Thus these modified models effectively re-
place a part of the operative forces by others of an
entirely different nature. This replacement of one
force by another could modify the parameters of
the rest of the interactions also, particularly when
the model is constrained to give agreement with ex-
periments. This is exactly the observation of Cow-
ley et al. ' and Dolling et a/. ,

"who find that some
of the parameters of their best models attain unreal-
istic values when they are made to give an almost
exact agreement with the experimental dispersion
curves.

The theoretical investigations into the basic cause
for the Cauchy discrepancy in ionic solids have been
made along two different lines. One of these is due
to Herpin, ' who begins by deriving the Coulomb
interaction between electronic clouds of polarizable
particles in the adiabatic approximation. He used
the quantum-mechanical perturbation theory and ob-
tained the forces in the form of a series in powers
of the distance between ion pairs. The successive
terms in this series can be identified as dipole,
quadrupole, etc. , coupling between ions. In solids,
with every ion situated at a center of inversion
symmetry, the dipole coupling does not contribute
to the Cauchy discrepancy, while the quadrupole
term does. Herpin suggested that the entire Cauchy
discrepancy in ionic solids is due to this quadrupole
coupling between polarizable ions and found a fair
amount of agreement in some cases. But, in gen-
eral, the theory does not give a satisfactory ex-
planation of the Cauchy discrepancy in the class of
compounds under consideration and has even the
wrong sign for many solids.

The second approach is that due to Lowdin' and
his school and is based on a quantum-mechanical
calculation of the cohesive energy of ionic crystals
in the Heitler- London approximation. The calcula-
tion leads to a many-body potential apart from the
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central two-body terms. This many-body inter-
action owes its origin to the nonorthogonality of the
free-ion one-electron wave functions and accounts
for a Cauchy discrepancy which is of the right sign,
although it is somewhat larger in magnitude. It is
possible that the observed discrepancy is the re-
sultant of both the effects mentioned above, but it
could also well be that the large value of the dis-
crepancy obtained by Lowdin is due to the fact that
his calculations refer to a static lattice and in this
respect are only approximate. Accepting the latter
point of view, we may ignore the quadrupole terms
of the polarizability forces and modify the magni-
tude of the many-body energy term so as to give
the correct value of the Cauchy discrepancy without
affecting the functional dependence of this energy
on the nuclear coordinates.

The many-body energy term can be expressed as
a series of terms of successively decreasing order
of magnitude and the first important member of this
series is a three-body potential of the central type.
Lundqvist' gave a simple expression for this three-
body potential, which in the harmonic approxima-
tion gives three distinct contributions. One of
these contributions adds to the Coulomb interaction
and the second goes with the nearest-neighbor over-
lap potential. The third term has been put in the
form of a slowly convergent series and represents
a purely three-body interaction, long-range in
nature. Since the nearest-neighbor overlap poten-
tial is always taken as an undetermined function
whose parameters are to be evaluated by letting
the theory give correct values of certain experi-
mentally measured quantities, the modification of
this term by the three-body potential contribution
is trivial. Verma and Singh" (hereafter referred
to as I) studied the exact nature of the purely three-
body potential term of Luridqvist and evaluated the
contribution of this potential to the dynamical ma-
trix of alkali halides. These authors then injected
these elements into the shell model and thus devel-
oped a new modified shell model'8 (hereafter refer-
red to as II), which has given excellent results with
many alkali halides

The model described in II differs from the shell
model of Woods et al. only in as much as the Cou-
lomb interaction matrix is modified to the form
C = Cy + V, where y is a function depending on the
overlap integrals of the Heitler-London wave func-
tions and V is the purely three-body interaction
matrix. This matrix enters the shell-model equa-
tions in the form ZC Z= ZXCyZ+ ZVZ= ZCZ+ V,
say. Recently Sinha'8 gave a quantum-mechanical
derivation of the shell model based on a systematic
self-consistent Born-Oppenheimer perturbation ex-
pansion. He showed that the equations of the shell
model could be obtained rigorously, with minor
modifications in the meanings of the different terms.

The equation of motion of the shells in this scheme
appears as a self-consistency condition. The ionic
charge Z is modified to the value less than 1, and
additional terms appear with the short-range in-
teraction matrices R, T, and S, so that they cease
to be equal. However, a matrix X, which repre-
sents the bonding coefficients between ions due to
the short-range exchange and correlation correc-
tions to the bare interaction between the valence
charge distributions, can be considered together
with the Coulomb interaction matrix modifying it
to the form (ZCZ+ X). Apparently X replaces the
three-body interaction matrix V' of the Heitler-
London scheme, which itself represents the inter-
action between charge deformations produced at the
ion sites and other ions in the lattice regarded as
point charges. Apart from the matrix X, the dif-
ferences in the three short-range matrices R, T,
and S are due to terms which are quite small.
These terms involve certain overlap integrals and
a possible dependence of the polarizability tensor
on the wave vector q. For well-localized wave func-
tions the overlap integrals vanish; further, if we
ignore the qdependence of the polarizability tensor,
the short-range matrices assume the same forms
as used in the conventional shell model. In the case
of alkali halide crystals these assumptions can be
regarded as approximately true, so that the
assumption R= T= S should be a good approximation.
We have retained this assumption in our model also
because otherwise the number of parameters of
the theory would increase without possibly giving
any significant improvement. It is clear that among
the current phenomenological models the modified
shell model described in II is the nearest approach
to the model derived by Sinha. We give a brief
description of the model in Sec. II and the results
obtained by applying this model to the four sodium
halides in Sec. III. In these calculations we have
ignored the effect of anharmonicity, including that
due to the zero-point vibrations of the lattice. A
look at the work of Plendl" shows that the anhar-
monic effects in sodium halides should be rather
weak except possibly in the case of NaF. We have
compared our results with those of Melvin et gl. ,
obtained on the basis of a radially deformable shell
model; we observe that our model gives better
agreement with experimental phonon-dispersion
curves. Section IV of this paper consists of a dis-
cussion of these results and the conclusions.

II. BRIEF DESCRIPTION OF METHOD

Lundqvist's expression for the potential energy
per unit cell reads as

((r)=e'( "(1~ 12f(r))~ 12) (r)),
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TABLE I. Input data for calculation of model parameters. Elastic constants are in units of 10 ~ dyn/cm, po-
]arizabilities of ions in 10 4 cm, long-wave optical vibration frequencies in 10' sec, and interionic distance in
10 cm; calculated values refer to least-squares-fit values of the model parameters.

Property

C(2

&44

n,
O.' 2

Vl,

Pp

NaF

Obs Ref.

11.039 23
2. 242 23
2. 947 23
0. 255 24
0. 908 24

12.650 25
7. 510 25
2. 3025 26

Calc

11.040
2. 243
2. 946
0. 355
0. 808

12.708
7.405
2. 3025

Obs

5. 838
1.194
l. 327
0.255
3. 008
7. 830
5. 173
2. 7935

NaC1

Ref.

27
27
27
24
24
28
28
23

Calc

5.807
1.306
l.351
0. 255
0. 038
7. 805
5. 160
2. 7935

Obs

4. 010
1.090
0. 990
0. 255
4. 133
6.345
4. 051
2. 9870

NaBr

Ref.

29
29
29
24
24
30
30
31

Calc

3.855
0. 873
0. 970
0. 155
4. 233
6.416
3.952
2. 9870

Obs

3.530
0. 852
0.767
0. 255
6. 009
5. 170
3.600
3.2875

Nar

Ref.

32
32
32
24
24
10
10

2

Calc

3.445
0.761
0. 774
0. 155
6. 109
5. 104
3.650
3.2075

= —1.165 y~ (2)

where we have put (1+ 12f(a)j= X~. The suffix 0 has
been used to indicate the equilibrium values and a
is the equilibrium lattice constant.

The elements of the dynamical matrix can be con-
veniently expressed as a sum of three components:

where e= lelectronic charge I, e = l&~„&I (& «~= +1
denotes the sign of the charge on the zth ion in any
cell), n„(= —1.7476) is the Madelung constant,
V(r) represents the non-Coulomb interaction poten-
tial, which is supposed to be significant between
the nearest neighbors only, and x is the interionic
distance.

For the equilibrium of the lattice we must have

(
I

=B —3 n„{1+12f(r))0= 0
dv Q

which gives

B= Sa —+ — = —1.165(l+ 12f(a))
dV en~ d

in terms of the usual parameters B and A related
to the first and second space derivatives of the
short-range potential [V(r)+ (en~/r) f(r)j, and

V,~(vv') is the long-range three-body interaction
matrix V which can be computed by evaluating the
sums involved by a method due to Born and Brad-
burn. Expressing the long-range interaction ma-
trix then as C = C y + V, the shell-model equations
of motion take the form

4w v mU= (R+ ZC Z)U+ (T+ ZC Y)W,

0= (T + YC Z)U+ (I+ YC Y)W,

(3)

(4)

where U and W are the column matrices specifying
the displacements of the (two) cores and the (two)
shells, respectively; m, Z, and F are diagonal
matrices representing the mass, ionic charge, and
the charge on the shells. & = S+ e'Y n '; T is the
transpose of T.

Solving these equations for long waves, we obtain
the following expressions for the elastic constants
and the long-wave optical vibration frequencies:

D„~(KK ) = C~8(KK )+R,~(KK )+ V~~(~~'),

where C z(zx ) represents the Coulomb interaction
matrix C as defined by Kellermann ' multiplied by
the factor y, R„~(~~ ) is the nearest-neighbor
overlap repulsion matrix R and can be expressed

c» —— 4
—5. 112X +2+9.3204 a-

4a da

c,z= 4 0. 226' +B+9.3204 a-
4a da

(5)

TABLE II. Values of parameters obtained before and after the least-square fit (LSF).

Parameters
Initial

NaF

LSF Initial

NaC1

LSF Initial

NaBr

LSF Initial

NaI

LSF

A.

X

fa (df/da) ]
di
d2

F(
F2

11.p019
—1.2029

1.0325
—0.0369

0.0054
0. 1440

—l. 7957
—2. 2564

11.0020
—1.2029

1.0320
—0. 0368

0. 0074
0. 1459

—1.6892
—2. 1913

11.4548
—l. 1736

l. 0074
—0. 0151

0. 0124
0. 2748

—4.3073
-2.2866

11.4550
—l. 1736

1.0174
—0.0051

0.0237
0. 2648

—l. 983
—0. 7359

10.4193
—1.1445

0. 9812
p. 0148
P. 0050
0. 2342

—0. 7784
—2. 3260

10.4190
—1.1445

p. 9712
—p. 0143

0. 0075
0. 2344

—0.4723
—2.7512

11.5459
—l. 1790

1.0120
0.0114
P. 0050
0.4084

—0. 6698
—2. 0826

11.5450
—1, 1793

1.0170
—0.0026

0.P150
0.3664

—1,4385
—2. 2830
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FIG. 1. Dispersion curves for NaF. Dot-dashed
curves from Melvin et al. (Ref. 20).

FIG. 3. Dispersion curves for NaBr. Dot-dashed
curves from Melvin et al. (Ref. 20).

g2
e44= 4 (2. 556)( +B);

4w'p(v't), 0=80- e'l(~+ ~
(a& e2

Sw (eZ'}e I, ( (6)

~d ~d 4m (eg')

Na Cl NEW MODEL

WITH L. 5 FIT
WITHOUT L.S.FIT

EXPERIMENTAL POINTS[28]
0 LONGITU DI NAL
~ TRANSVERSE

5.0,-

~,4.0
I

3.0:
aI

Ill

O

2.0-

fq, o,o] rq, q, o] fq,q, q]

~ \L

where p, is the reduced mass of the two ions in the
unit cell, v is the volume of the unit cell, and

fx =1+ (o, +o.2) 6&, df
II + 6 a, &0 =—4+ 2&),

v 3

y2 e2

kg+Ro '

f28"-k.' R.

3 1RO

kj+Ro '

d = y2Ro
k, +R, '

(6)

e, and a2 are the electronic polarizabilities of the
positive and negative ions, respectively. k, is the
core-shell force constant and y, the shell charge of
positive ions, while k2 and y2 similarly refer to
negative ions.

As discussed in the Introduction, we take the
function {1+12f(a)] and the derivative [a(df/da)] as
parameters of the theory. The other parameters
are A. and B, belonging to the short-range repul-
sion; d, and d2, the distortion polarizabilities of
the positive and negative ions, respectively; and

y, and yz (or k, and kz). A knowledge of the lattice
constant, the elastic constants, the optical vibra-
tion frequencies, and the electronic polarizabilities
enables us to determine these parameters through
the relations expressed in (5)-(9). Once the param-
eters are determined, all the matrices of Eqs. (3)
and (4) can be evaluated and the equations solved
for any desired wave vector. In those cases in

which the experimental dispersion curves are avail-
able, through neutron spectroscopic experiments,
a method of least-square fit can be used for further
refinement of the parameters, and final solutions
can be obtained using these values.

I.o

(o,o,o) (I.o,o,o)(I.o,I.o,o) (o,o,o) (0.5, 0.5,0.5)

FIG. 2. Dispersion curves for NaC1. Dot-dashed
curves from Melvin et al. (Ref. 20).

III. APPLICATION TO SODIUM HALIDES

In Table I are given the input data for the four
sodium halides with relevant references, while the
values of the parameters Z(= 1), A, B,X, [a(df/da)],
d„d2, y„and y2 are given in Table II obtained be-
fore and after the least-square fit.
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FIG. 4. Dispersion curves for NaI. Dot-dashed
curves from Melvin et aE. (Ref. 20).
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FIG. 6. Combined density-of-states curve for NaF.

%e have solved the equations of motion for the
48 irreducible wave vectors of the first Brillouin
zone corresponding to a division in 10& 10 x 10
equal parts. The dispersion curves obtained with

and without least-square fit (LSF) in the symmetry
directions are shown in Figs. 1-4.

The complete spectra have been used to compute
the specific heats in the usual way, and 9~- T
curves so obtained are shown in Fig. 5. The two-
phonon combined density of states (CDS) curves,
shown in Figs. 6-9, have also been worked out
following the method of Smart et al. , ' and the
maxima have been compared with the positions of
infrared (ir) absorption maxima" and Raman scat-
tering shifts. 34'3'

EV. DISCUSSION

Lattice dynamics of sodium halides has been
studied by various workers (NaF, ~'M NaCl,
NaBr, ~0 and Naf "'o' ) Recently Melvin et gl. '0

investigated the ionic form-factor changes in NaCl
using a radially deformable shell model which goes
by the name of the breathing shell model. They,
however, used the model to compute the vibration
spectra of the four sodium halides. The dispersion
curves obtained by these authors have also been
shown along with the curves obtained by us and the
experimental ones in Figs. 1-4. These figures
show that the over-all agreement between theory
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FIG. 5. Debye characteristic temperatures as func-
tions of temperature for sodium halides. FIG. 7. Combined density-of-states curve for NaCI.
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FIG. 9. Combined density-of-states curve for NaI.

FIG. 8. CoInbined density-of-states curve for NaBr.

is not expected to undergo the desired change (from

I y I
& 1 to I y I & 1) unless the interaction potential is

extended by including an additional term contributing

significantly to c44. Such an interaction is the sec-
ond-neighbor overlap repulsion which is capable of

producing the desired effect. Another point that
warrants the necessity of including the second-
neighbor repulsion is the fact that the largest devi-

ation from the experimental curves is observed for
the longitudinal optical branch in the [q, q, q] direc-
tion in the case of NaI, which has the largest ratio
between the radii of the negative and positive ions

amongst the four alkali halides under study.
In general, however, our model gives good agree-

ment with the dispersion curves, the specific-heat
data, ' and the infrared absorption and Raman scat-
tering spectra, and has a smaller number of pa-
rameters than those used in similar models giving

no better results. These agreements between

theory and experiment also prove the validity of our
contention that the equality of the short-range force
matrices R, T, and S is a sufficiently good approx-
imation. The results obtained in this study and

those of similar studies with other alkali halides B'"

show that our model presents a good description
of this class of solids, and can perhaps. be developed
into an excellent model by introducing the effects
of anharmonicity of vibrations and by including
second-neighbor overlap repulsion.

and experiment is much better in our case. The
small differences observed at places, however,
show that the model deserves to be refined further.
A possible direction of improvement is perhaps the
consideration of anharmonic effects.

A look at the LSF parameters given in Table II
shows that these parameters do not change in a
systematic way as we go from NaF to NaI. Most
of the values which do not fit in the sequences cor-
respond to NaC1. This is, however, not quite un-

expected because our model is strongly based on

the Cauchy discrepancy which does not form a sys-
tematic sequence for the four halides under study

and has the maximum value for NaCl.
The breathing shell model, which is supposed to

be the best amongst the deformable shell models,
is obtained by introducing a radial expansion rate
of the shells as an additional parameter. However,

the basis for the introduction of this additional de-

gree of freedom is not clearly understood. In con-
trast to this, our model is based on taking a more
realistic account of the long-range interactions by

including the contribution of the three-body forces,
whose existence in ionic crystals is well founded.

This contribution has been computed exactly and

satisfies the symmetry requirements in reciprocal
space. The injection of these forces into the shell
model is somewhat intuitive but is strongly sup-

ported by the quantum-mechanical derivation of the

shell model by Sinha. There is, however, an

important difference between our model and that of

Sinha: While the charge parameter IZl in Sinha's
model is necessarily less than 1 (I Z [ & 1), the pa-
rameter )X ~

in our scheme is generally greater
than 1 ( I y I

& 1). This parameter is fixed by the

equilibrium condition and the shear constant c44 and
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A theory is presented of the Raman scattering of infrared light by the modulation of the ionic
contribution to the polarizability of a crystal by the displacements of the atoms from their equi-
librium positions. It is applied to the calculation of the scattering efficiency for the scattering
of light by the localized vibration modes due to H U centers in CaF2. The results of these
calculations indicate that such scattering should be readily observable when a CO or He-Ne
laser is used as the source of incident light.

It is convenient to regard the Raman scattering
of light by the elementary excitations of a crystal
as the scattering of light by the inhomogeneities in

the refractive index, or the polarizability, of the
crystal caused by the elementary exeitations being
probed. In the ease of the inelastic scattering of


