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In the expansion of the ground-state energy of a polaron in a weak magnetic field, the zeroth-
order term is the polaron self-energy, while the first-order term is inversely proportional to

the polaron effective mass.
polaron effective mass as defined by Frohlich.

The effective mass so obtained is exactly equivalent to the free-

This equivalence principle is used to approxi-

mate the polaron effective mass by employing an approximate expression for the ground-state
energy of a polaron in a weak magnetic field obtained by applying Feynman’s path-integral
variational method. The resultant polaron effective mass is found to be higher than Feynman’s

result by less than 1%.

In a description of the motion of a single conduc-
tion electron in an ionic crystal, Froéhlich! developed
a model which depicts the electron as a Bloch elec-
tron of crystal mass m, interacting with the polar-
ization field which arises from the long-wavelength
longitudinal optical crystal modes characterized by
a single frequency w. The strength of this interac-
tion is determined by a dimensionless coupling con-
stant

a=3 (el - €Y/ nw)2mw/n)V?, (1)

where € and €, are the static and optical dielectric
constants of the crystal. The composite entity con-
sisting of the electron together with its accompany-
ing nonradiative polarization field is called the
polaron. The total wave vector, _K, of the system
consisting of the electron and the polarization field
is a constant of the motion. Based on this exact
conservation law, Frohlich defined the self-energy
E,(a) and the effective mass u(a) of the polaron by
the expansion formula?

Eoa, k) =Eg(a) + 3 pla) 2%+ 0(Y), )

where Ey(a, k) is the system’s least energy eigen-
value whose corresponding eigenfunction is simul-
taneously an eigenfunction of K with corresponding
eigenvalue k.

Various methods have been employed to approxi-
mate the self-energy and the effective mass of the
polaron. >* The weak-coupling result of Lee, Low,
and Pines’® yields

®3)
CY

These results are exactly correct to first order in
a, in the limit of weak coupling. The strong-cou-
pling variational approximation of Landau® and
Pekar? (LP) yields

Eyla)=-a,

pla)=1+%a.

(5)

Eyla)==-ad?,

2

prpla)=bat+1,

with

(6)

a=0.10, 7)

b=~ 0.02. 8)
The analytic form of Eq. (5) is asymptotically cor-
rect.® The effective mass given by Eq. (8) is
based upon an alternative definition of the effective
mass which is equivalent to Frohlich’s definition
only when the trial wave function employed is an
exact eigenfunction of the total wave vector K. The
trial wave function employed in the Landau-Pekar
approximation, however, is not such an eigenfunc-
tion. The Feynman-Schultz®!? results for the po-
laron self-energy and effective mass agree with the
Lee-Low-Pines results for weak coupling, agree
with the Landau-Pekar results for strong coupling,
and possess smooth transitional behavior for inter-
mediate coupling. Feynman’s method, however,
does not incorporate conservation of the total wave
vector and, consequently, the Feynman-Schultz
effective-mass calculation is based upon still an-
other definition.

It is the purpose of this paper to calculate Froh-
lich’s polaron effective mass by using the Feynman
path-integral approach. To accomplish this pur-
pose, the ground-state energy of a polaron in a
weak magnetic field is calculated using the same
method as Feynman uses to calculate the ground-
state energy of a free polaron. Use is then made
of a theorem proved by Marshall and Roberts, !
which states that the exact ground-state energy of
a polaron in a weak magnetic field B may be ex-
panded in the form

Eo(a, M) =Eq@) +3 (@) r+00?), (9)
where
r=eB/c, (10)

and where E (@) and p(a) are exactly the self-ener-
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gy and effective mass of a free polaron as defined
by Frohlich.

By following Feynman’s method, ? one may write
the exact ground-state energy of the polaron in a
magnetic field in terms of a Feynman path integral
as

Eq(@,N)==1lim Tn[ [ " eSDF(®)], (11)

T w
where

S= )7 (- 1 F24inya) dt
+8V2q [T [T ool=sl [[7() ~ F(s)| ] atds,  (12)

where the path integral is over all paths T(¢) sat-
isfying the boundary conditions ¥(0)=%(T)=0 , and
where x and y denote the components of T perpen-
dicular to the direction of B. This expression for
the ground-state energy reduces to Feynman’s ex-
pression for a free polaron for A =0. By the Feyn-
man method, the term in S containing A is obtained
by replacing the time variable ¢ by — it in the mag-
netic-field-dependent term of the action integral
for a polaron in a magnetic field.

It has not been found possible to evaluate the path
integral in Eq. (11). For a weak magnetic field,
one may obtain an upper-bound approximation for
Eg(a, A) by use of an extension of Feynman’s varia-
tional principle discussed in the Appendix. Accord-
ing to this principle, for a sufficiently weak magnet-
ic field,

Eo(a, N )2 Eg(a, ), (13)
where
E'y(a,\) =E®(a,)) - lim T°' (S-5’), (14)

T=w

where S’ purports to approximate S and is given by
s’ =f0T - éf.2+i7ky92)dt— ic fOT foT g lt-s!

X [T(t) -T(s)]? dtds , (15)

where C and w are variational parameters chosen
to minimize E{(a, 2). In Eq. (14),
8,7 g

Eé‘”(a,}\):—ii»rz Tt 1nfay’0 eS'DT(1);

(16)

the angle brackets denote the path average defined
by
> U ing - 6' T v -
GEOD= [0 " eSTIEODEF®/ [ e DE),
(17)

where f[T(¢)] represents a function of path. The ex-
pressionfor E{(a, ) givenby Eq. (14) approximates
E(a, \) in the respects that Eq. (14) can be regarded
as an expansion for Ey(a, 1) correct through first

order in (S-S’) and that the variational principle
may be brought to bear in order to optimize the re-
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sult.
For the purpose of evaluating E{(a, A) it is con-
venient to employ the identity

[F@) =T(s)| = [ (2n%%)

xeXp[foT i@, t, 7,0) - FOdt]d’k,  (18)
where
f(k t,7, 0)=ik[6(t- 1) = 6(t-0)]; (19)
and the definition
wk, 7, 0)= <exp[f0Tf(1?, t, 7,0) F@)dt]y  (20)
to obtain
Eg(a,\)=E(a,\) - (A +B), (21)
where
. 1g- T T g
A=;.‘lfILOZT 1g 1/zf0 fo PRIk
X (|¥(7) =F(0)|"') dr do
- 1i -1g-1/2 (T [T -l7-0l
lim 778 J; JTe
x [ (en??) 1wk, 1, 0)d’k d7 do, (22)
. 4 (T T i
B=lim T [ [ e
X(]Y‘(T)—f(o‘)iz) dtdo
=1lim %CT-IfoTe-wH'-lﬂ
Tew 00
x [~ v§ W(l:, 7,0) | o0 Jd7do, (23)
E(a, 1) =4 +foc c ! B(C, wdC . (24)

The last equation is obtained by differentiation of
Eqgs. (15) and (16) and by use of Eq. (23) and the
boundary condition that for C=0, E{’(a, 1) reduces
to the ground-state energy 3\ of the polaron in the
absence of interaction with the polarization field.

It is clear from Eqgs. (21)—-(24) that in order to ob-
tain a tenable formula for E{(a, 1), a simplified ex-
pression is needed for W(E, 7, 0), which may be
written out by the use of Egqs. (17) and (20) as

W, 7,0)= [T e{[ [ T &, 1, 7,0) - F)ar]
+§'} DEW)/ [T exp(s”) DE@).  (25)

This expression may be simplified by changing the
path-integration variable T(¢) in the numerator of
Eq. (25) to a new variable ¥'(#)=T(¢) - ¥(¢), where
T(#) is that path for which the exponent in the nu-
merator of Eq. (25) is extremal and for which ¥(0)
=7(T)= 0. The resultant numerator contains the
denominator as a factor, with the consequence that

Wk, 7, 0) = exp & fon(E, t, 7,0)- T@)dtt.  (26)
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Extremization of the exponent of the numerator of
Eq. (25) yields the following integrodifferential
equations for the components of T(£);

Ft)=2c [ e [x(¢) - x(s)]ds

N - £, ¢, T, 0), (27)
F@=2c [T e [5() - 3(s)] ds

-ix -f,k, ¢, 7,0), (28)
Z(=2c [T e'2![2() - 2(s)]ds

-f&, t, 1,0), (29)

where f,, f,, and f, are the components of f given
by Eq. (19). These equations may be solved con-
veniently in the limit 7'— « by the Fourier transform
method. Apart from transient terms [which are
appreciable only near the end points =0 and =T,
and which are irrelevant to the desired evaluation
of Egs. (22) and (23) in the required limit 7'— =]
and apart from constant terms, the results are

(1) = [ Golty ) £.0&, 1, 1, 0)dl + [T Gty 1)
xfy, t', T, 0)dt’, (30)

> T
T = [ ot V&, ¥, 7, 0)dt + [ Gyult, )

Xfx(ﬁ? t,’ T 0) dtl’ (31)
E(t) = ‘[\'JT Gee (t’ t,)fz(i, t’, T, U) at’ s (32)
where
Gulty 1) =Gt 1), (33)
G”’(t’ t)= -ny(t’ t'), (34)
1 [~ 2, 2 .
ng(t; t’):—ﬂ'PP ?%(l_elelt-t l)d£

- - %1)'2 [v-l(vz_WZ) (l_e-vlt-t’l)
+w?|t-t]], (35)

1 (" (2 +08)(E2+w?)

o - 52(£2+02)2+)\2(£2+w2)2

X(l_eillt-t'l ) dE

=Gt 1)+ (= t)Pw ™+ 00, (36)

Gt t) =~

where PP stands for principal part and

v=w?+4C/w. (37

The expansion in Eq. (36) may be obtained by ex-
pressing the integral representation of G, -G,

in terms of the residues of its integrand. The con-
tribution to G, - G, from residues which occur at
£+0 in the limit A~ 0 is of order A% and is there-
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fore not required in the present context. The re-
maining contribution may be evaluated easily to the
first order in A,

Substitution of Eqs. (19) and (30)-(32) into Egs.
(26) and use of Egs. (33) and (34) yields

Wk, 1, 0)=exp[(E2+%2) G| T o)
+k2G (| 7= a|)]. (38)

Use of this result for W(, 7, 0) in Egs. (21)-(24)
and performance of the indicated operations yields

Ea,))=E{’-A-B, 39
where
EY=3(v-w)+Pw?+00?), (“0

A =a7r'1/2vw‘lj<;m Jw)2 e tdu

+Eram 2yt [T Iw) Y 2utevau +0(2), (41)

B=201w?-w?) - Dt -w?+00%, (42)
where
J@)=u+v w(P-wd (A -e). (43)

In obtaining this result, it is helpful to change the
integration variables ¢ and 7 occuring in Egs. (22)
and (23) to the new variables u= [T—o| and 7.

In view of the inequality (13), the variational
parameters vand w are to be determined by mini-
mizing E{(a, A). Minimization of Egy(a, 1) as given
in expanded form by Eqs. (39)-(43) yields

Eja, M) =Eja) + 51/ (@) A +0(\F), (44)
where
Eya)=Eg(@)=3v (v -w)?

—ar 2yt j(;wJ(u)‘llze'“du (45)

(@)= [1-(1-w?v??
a2yt [T Jw) Y 2utetdul?, (46)

where the values of v and w are just those which
minimize Feynman’s polaron self-energy E (o) and
have already been evaluated numerically by
Schultz. ° Comparison of Eq. (44) with Eq. (9)
shows that Eqs. (44) and (46) give the polaron self-
energy and effective mass in the present approxi-
mation. For comparison Feynman’s polaron effec-
tive mass by be expressed as®

mp(a)=1+5amt/2y3y3 fow Jw)%utedu.  (47)

For small a, °

v=3+%a +0(a?), (48)
w =3+0(a), (49)
mF(a):l-;.l?a +-2—g% O£2+O(O£3), (50)

and consequently, from Eq. (46),
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p'(@)=1+ta +385 a®+0(a?). (51)

For weak coupling, therefore, my(a) and u’(a)
differ only slightly. Similarly, for large a,

v=4a%/91+0(aY, (52)
w=1+0(a"?), (53)
w'(a)~mp(a)=16a*/81712+0(a?). (54)

For intermediate values of @, numerical evalua-
tions are required for the two integrals occuring in
Eqs. (45)-(47). A computer program was written
to minimize E p(a) with respect to v and w and to
calculate the corresponding result for the polaron
self-energy E z(a) and the effective masses u’(a)
and mz(o) as given by Eqs. (46) and (47). The re-
sults are shown in Table I. The optimum values
of the parameters v and w have already been re-
ported by Schultz, !° but were recalculated accurate-
ly to eight significant digits in order to obtain the
percentage difference between p’(a) and my ac-
curately totwoplaces after the decimal. The results
shown in Table I have been rounded off and are ac-
curate to the number of significant figures reported.
The values obtained for v and « are in slight dis-
agreement with the values reported by Schultz, *°
but agree with the independent calculation of Mar-
shall and Mills. 2

In summary, Feynman’s method of approximating
the ground-state energy of a free polaron has been
extended to approximate the ground-state energy of
a polaron in a weak magnetic field. The result
provides a means of approximating the polaron ef-
fective mass based on a definition which is exactly
equivalent to Frohlich’ s definition of the free-pol-
aron effective mass. The effective mass u'(a)
thereby obtained is slightly higher (by less than
1%) than Feynman’s result, which was based on the
same two-parameter model, but which was deter-
mined from Feynman’s alternative, rather ad hoc
definition.

The present work is similar to a calculation of
the polaron effective mass by Hellwarth and Platz-
man. ¥ Their method, which is based on the same
two-parameter model employed here, involves ap-
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proximating the free energy F(6, 1) of a polaron in
a magnetic field as a function of temperature 6 and
of the magnetic field strength A. The free energy
has greater informational content than the ground-
state energy, but is more complicated to determine
accurately. Hellwarth and Platzman’s polaron ef-
fective mass w4 is defined by

m =24 lim x6[lim F(6, 1)/A?], (55)
6 -0 A-0
where k is Boltzmann’s constant. This definition
is also an exact prescription since for a weak mag-
netic field and for low temperature the free energy
is determined by the low-lying energy spectrum of
a polaron in a magnetic field, and since this spec-
trum has the same form as the energy spectrum of
the motion in a magnetic field of a particle with the
self-energy and effective mass of a free polaron.
Their result is slightly lower than the Feynman-
Schultz result (by at most 1.5%) and may be ex-
pressed as

m#E = (3mg— 2m JIm3®, (56)

where m, and mp are Feynman’s polaron mass as
calculated in zeroth and first order in (S-S’). For
the two-parameter model,

mo=v3/w?. (57)

For sake of comparison, the present result may be
written in the form

p (@)™ = (2mg— mp) my?. (58)

Hellwarth and Platzman also discuss a generaliza-
tion of the two-parameter model in which the terms
of S’ involving the variational parameters C and w
are generalized by replacementof C by avariational
function C(w) and integration over w. For this gen-
eralization, Hellwarth and Platzman point out that
Eq. (56) still holds. However, the numerical re-
sults would be much more difficult to obtain since
the corresponding ground-state energy now has to
be minimized with respect to the function C(w).
Hellwarth and Platzman further conclude that when
the generalized model is fully optimized, m,—~mp,
which upon use of Eq. (56) yields mp=mo=my. It

TABLE L. Numerical results for variational parameters, self-energy, and effective mass values.

Polaron Polaron
self- effective mass

a v w energy ¥ o(a) mp(a) -“'T_ZQE (%)

1 3.10962 2.87067 —-1.01303 1.19594 1.19551 0.04

3 3.421 29 2.56030 -3.13333 1.89530 1.88895 0.34

3 4.03434 2,14002 -5.44014 3.91976 3.88562 0.88

7 5.809 89 1.60365 -8.11269 14.5298 14.3941 0.94

9 9.850 25 _ 1.28230 -11,4858 63.0050 62,7515 0.40
11 15.4132 1.16209 —-15.7098 183.433 183.125 0.17
15 30.0822 1.076 29 —26.7249 797,845 797.498 0,04
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may be added that relation (58) can also be trusted
for this generalized model. Therefore, upon full
optimization, the generalized model yields m g
=mg=my=u’'. The method of Feynman’s zeroth-
order mass calculation can be readily extended to
yield

mo=1+4 [ w3 Clw)dw, (59)

for the generalized model.
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APPENDIX

It is to be proved that for a sufficiently weak
magnetic field, the inequality (13) holds, where
E(a@, 1) and E{(a, \) are given by Eqs. (11) and (14).

The path average of any function of path X E‘(t)],
defined by Eq. (1%7), can be expressed in the alter-
native form

X [x®1) = [ Xp, F(t)IDF (), (A1)
where .
P EB)]=eSY fg"'(f ¢S DE(t) . (A2)

The main basis of the inequality (13) lies in the fact
that for a real variable X, the curve f,(X)=e* is
always concaved away from the X axis. The tangent
to the curve f,(X) at the point X=Re(X)on the X

axis has the equation

foX)=eFe (X —Re(X)+1), (A3)
so that
eX2 e® (X _Re (X)+1). (A4)
Let
X=5-5', (A5)
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(which is a realfunction of path) and letI(}) be the
real function of A defined by

10 = [ {e*-e® ® (X -Re (X)+1)}

X Rep[r, ()] DT (#)}. (A8)

Then by multiplying the inequality (A4) by Rep
xp [\, 7(t)], path integrating and setting A =0, one
obtains

10)2 0 (an)

because Rep[0, T(#)]=p[0, T(¢)]2 0. I it is assumed
that I(A) is a continuous function of A at A =0, then
I(A)2 0 for sufficiently small X. Thus, for a suf-
ficiently weak magnetic field,
J e* Rep[\, ¥(1)] DF(t) 2 e™X [ (X —~ Re (X) +1)
XRep [\, T(£)] DT (#) . (A8)

By use of Egs. (Al) and (A2), this result can be
written in the more compact form

Re (eX>_>_eRs (X)’
which, by use of Eqs. (17) and (A5), becomes
g, T . 0,7 o >
Re(fa' esDr(t)/fa’0 e’ Dr(t))?.e“‘”s s
(A10)

By taking logarithms of both sides, by using Eqs.
(11) and (16) and the fact that both E(a, A) and
E®(a, 1) are real, and by rearranging terms, one
obtains

Eola, )2 E®(a,)) -1lim T Re (S-S').
T~

(A9)

(A11)

For a sufficiently weak magnetic field, (S-S’) was
calculated in the text and was found to be real.
Hence, by Eq. (14), E (a, 2)< Eg(a, ) for sufficient-
ly small A,
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