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The theory of parametric amplification of focused Gaussian beams in a uniaxial medium in the
approximation of no pump depletion is studied using the mode theory developed in previous
papers. We consider a Gaussian pump beam interacting with a Gaussian signal beam both pro-
pagating perpendicular to the optic axis of the medium. We show how the gain varies with
the focusing parameter of the pump, the relative focusing of the pump and signal, phase match-
ing, and a degeneracy parameter defined as p= (k3 —2ky)/k;, Where k3 is the wave number of
the pump beam and %, that of the signal beam. The conditions under which the resultant idler
field may be approximated by a Gaussian beam are then studied. It is shown that when the in-
teraction takes place in the near field of both beams, the idler field may be assumed to be
Gaussian with spot size given approximately by 1/ w%2= l/wﬁa + 1/w§1, and when the pump and
signal are focused for maximum gain the idler field is approximately Gaussian with spot size

given approximately by 1/w};=1/wi,+1/w}, .

I. INTRODUCTION

In this paper, the theory of parametric amplifica-
tion is developed using the theory of optical-mode
interaction in nonlinear media described in a pre-
vious paper, ! which will hereafter be referred to
as I. The problem of parametric amplification is
considerably complicated by the presence of three
optical fields and the three sets of beam parameters,
so in order to keep the theory as simple as possible
we will retain all the simplifications used previously.
The interaction is considered to take place with the
three beams propagating perpendicular to the optic
axis of a uniaxial crystal, which for definiteness is
taken to be lithium niobate. The coordinate system
is set up so that the fields propagate in the z direc-
tion and each of the fields is focused in the plane
2=0. The nonlinear medium is assumed to be an
infinite slab bounded by the planes 2=-2; and z=2,
(the entry and exit face, respectively) embedded in
a linear medium of equal refractive index so that
there are no reflections at the boundaries. Absorp-
tion has been neglected but can be included by a
trivial extension of the theory as indicated in I.

The following theory, although set out for the case
when the pump is propagated as an extraordinary
beam and the signal and idler as ordinary beams,
is relevant with minor modifications to other three-
field interactions.

We consider in this paper the amplification of a
Gaussian signal beam by a Gaussian pump in the
small-gain and no-pump-depletion approximation.
This analysis will apply directly to the singly res-
onant oscillator in the case when the signal field
is enclosed in a resonator. The actual field in the
resonator, and thus the gain in this case, can be
calculated by a simple self-consistent field calcula-
tion as for second-harmonic generation (SHG). 3

2

Boyd and Ashkin, * and Boyd and Kleinman® have
studied the restricted problem of the case when both
the signal and idler fields are enclosed in resona-
tors, so that the spot size of all three of the inter-
acting fields is defined. In general, in an amplifier
the idler field is created by the interaction of the
pump and signal beams and it is not possible to
define a unique spot size for the idler field. In the
first part of this paper we develop a general theory
which is independent of the form of the idler field
and show how the amplification of the signal varies
with the various parameters.

In the second part, the theory of the interaction
of three Gaussian beams is developed under the
same approximations and a comparison is made be-
tween the three-mode theory and the general theory
developed in Sec. I. We then show under what con-
ditions the general theory can be approximated by
the three-mode theory. This approximation is es-
sential in order to extend the theory into the regions
of pump deletion and high gain. The traveling wave
field at each frequency w; may be written in terms
of the modes!
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where
£,=2z/k,w§, , wy=wo(l +5?)1/2,

and W, denotes the spot size at the focus plane z
=0 of the field at frequency w; with wave vector &,
in the z direction, and H,(x) is the Hermite polyno-
mial of degree n. For the ordinary modes propa-
gating in the uniaxial medium o =1 and o = (€,/€,)/?
for the extraordinary modes propagating perpendi-
cular to the optic axis.
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We also define at this point 2o, = 3% w3, which is
one-half the confocal parameter of the mode. The
electric field due to the nmth mode is then given by
E=E2Hx,y,2)e oty 8ol x,y, z)e By, (1.2)

where @ is the unit vector in the y direction for the
ordinary modes and the unit vector in the x direc-

tion for the extraordinary modes. These modes of
the open resonator obey the orthonormality relation

f J é’ (x ¥, 2 z)& :’lm'(xyy’z)dxdy=5nn’5mm’ (1.3)
and the completeness relation®
Z) 8ﬁ(x’y,z)5:’:(x’,y',z')

Ok iky[o%(x = x")2+ (y = 9")%]
T 2mi(z’ - z) XP( 2(z' - z) )’ (1.4)

which reduces to the usual form of a completeness
relation in the case when z=2’,

20 Eukx,y,2)8pkx’,y",2) =8 —x")6(y=1»")
men

Using these relations, the signal and idler fields
which propagate as ordinary beams may be written,
in general, as

. (1.5)

=25 A28l 2(,"c,y,z)e"ml'z", (1. 6a)
myn
and the pump which propagates as an extraordinary
beam may be written
E®(t,y,2)= 1 Bpibmix,y,2)e™"*
myn
where in the linear theory of propagation the 4,,,
and B,,, are the mode amplitudes, which are con-
stants determined by the boundary conditions on
some initial plane.
From Maxwell’s equations, the equation govern-
ing the propagation of the electric field at frequency
w, in the nonlinear medium is

E®N2(x, y, z)

(1. 6b)

P . (1.7

2 2
UX(VXE“H - SL T e 4”;”
c c
Substituting Eqs. (1. 6) into the appropriate Eq.
(1.7), allowing the mode amplitudes A and B to be
slowly varying functions of z, the coupled mode
equations for parametric amplification in lithium
niobate may be derived?:

dAst

dz Cmm'sklA(“)Z*B“’3 s (1. 8a)
dA::z *

dz = c:m'sklA:)sl B:la 3 (1- 8b)
dB,3

dz = CmnrsklAwlA (1. 8c)

The summation convention is understood in these
equations, and the coupling coefficients C* are
given by
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where Ak=ky—k,~k, C“% and C*? are similarly

defined.

It will be convenient to calculate the signal gain
using the Manley-Rowe relation between the signal
and idler fields which is obtained as follows.

We note from Eq. (1.9) and the similar expres-
sion for C*? that

Uj leC:rllrskl =1 20:1Cranmer (1.10)

where &, =1,w,/c, ky="Nzws/c, T, and N, are the
appropriate refractive indices of the medium at
frequencies w, and w,, respectively. Multiplying
Egs. (1.8a) and (1. 8b) by Ap.l* and A2* respec-
tively, and then summing over m and » we have

Wik dA:’ull _ A“’Z* dA
2@y dZ

dz

Adding the complex conjugate of this equation to it
we have the Manley- Rowe relation

d “
a UPKE 2|2
w dz (,§ [ w, dz (QIA"‘"

N1 WA pmn (1.11)

(1.12)

We assume that at the entry face of the nonlinear
medium the idler field is identically zero, hence

¥ —z,)=0 forall m,n (1.13)
Thus, integrating Eq. (1.12) we have
LT (Aauken|*- [Apk -2, |3
1 myn
=0 7 Ak, |2 (1. 14)
wz myn

The signal gain G is given by
G=wm, 2 |42z ) |¥ waps & |Apkz) |2, (1.15)
myn myn

II. SIGNAL GAIN, IDLER FIELD UNSPECIFIED

We consider first the gain of a Gaussian signal
beam interacting with a Gaussian pump when the
pump is undepleted and the signal gain in small.,
Thus the pump field has only one nonzero amplitude
By, and this is constant.

The lowest-order (Gaussian) signal mode ampli-
tude may be written as

Agilz) =Agd + AL z) (2.1)

where
[AA®Yz)| < |Agd|

and all the other signal modes will be of order A A“!,
In this case Egs. (1.8) may be approximated in the
zeroth order in AA“! by one set of equations,



2
dA,2
# CrloonoAos B (2.2)
which can be integrated immediately to give
“2(z2,)=A“"*B“2 [* c:’,ﬁ(z)dz (2.3)

In this equation the supscripts 00 have been
dropped from the mode amplitudes and coupling
coefficient and the z dependence of the coupling coef-
ficient has been emphasized. The total idler-power
is given by

E[A %(2,) |

myn

-z At IB“’3|f J“* 2 Codz")CL2dz dz’

Cna
p=—t2
47

(2. 4)

Substituting for the coupling coefficients the sum
over them becomes

antwidd;
kit

ff ﬂ 8al(2) 850" (2") a3 (2")

-0  moo

8" L 8z

myn

- ‘-
e {1 AR(& -2)

2 Cu¥(2")C 2 (2) =

myn

)8u2*(2") dx dy dx’ dy’

Substituting from Eq. (1.4) for the sum over the
idler modes, this equation then becomes
-iAk(2’ -2)

w, 2nwidi.e
C 2 sz* - 1
%n mal(2) (2) ikoct(z' - 2)

fff " 8U(2) 8 (") 83 () B (2 )

ik (x= %2+ (y = v")]
X exp( 2(z"- 2)

)dxdx'dy dy’

The quadruple integral splits into two double in-

tegrals of the form ¥
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j_: j_” o~ sy gy ! 21/(4ac - B?)V?

on substituting for the explicit form of the mode

functions. After some algebra, we find that the sum
is given by
2 -iAk(2’ -2)
T CU%(2")CX(z) = Bﬂwzzd 150€
m,n k C w01w03

x {lay + azzz"+ iag(2"+ 2)]/?3[by + byzz "+ bs(2 "2+ 2)

+iby(z'+ 2)+ibg(z'2)z2 ]} V2 | (2.5)
where’
a=1/%8+1/wg (2. 62)

1 [ Ry 2 (@L LAY
%% ks [klwzﬁ* wEWE\ky "1 kg *kwa*s] ’

(2. 6b)
_ 4 1 N 1 2. 6¢)
b1=1/w61+ o /woa ’
1 [ ks 2 (h ozk;i)
by = — i -1+ — (2. 6d)
2 ky [lywhy,  wirwos \ kg ky
+ *WITOS(:—; +o2(o?- 1))] ’ (2. 6e)

4 ( (0% - 1)k§)
by=—7——3 (1+
Wo1Wo3 ks

1 (0®- 1)k ) 1
x| — 1+ ——3) 4 2. 6f
[k§ Wgs ( ky kl”’%l] o )

(02-1)
=—a 5 (2. 6g)
' ksk1w§1“’oa &
(0% -1) (1 02)
bs=—73 3|2+ (2. 6h)
57 Ryatwioy Wiy W(ZJI Wos

It can be seen that a,, a;, and az tend to b;, b,,
and b, respectively, as o tends to one. When this
sum is substituted into Eq. (2.4) for the total idler
power at the exit face of the crystal, we have

- .
e iAr(z ')dzdz'

pe Zuawzd 5o|A“11 B2 i i d i )
wiwd ” [a1+a32z +iag(z’ = 2)]V?[by+ byzz'+ bs(2"2+ 22) +iby(2" = 2) +ibyz2" (2" —2)]V2

A. Near Field

When the nonlinear medium lies entirely within
the near field of both the signal and pump beams,
we may approximate the integrand of Eq. (2.7) ex-
actly as for the case of SHG.? At the optimum
phase-matched position, the signal varies according
to the expression
_ 871w, w,d350l% | B
T nynacPwhy + w§3)1/2(02w§1+ Wgs)llz ) (2.8)
This expression has no absolute maximum as a

Ualz

(2.7)

[
function of the spot sizes of the two beams. It im-
plies that these must be as small as possible within
the limits of the theory (wy> X, X the wavelength
of the field). The output varies as the length of the
crystal squared, as in the plane-wave case.
B. General Case

In order to simplify Eq. (2.7) and integrate it,

we define new dimensionless variables. We change

the variable of integration to 7=2z/I, where [ is the
length of the nonlinear crystal, then the phase-mis-
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match parameter becomes ¢=Akl. The focusing
parameter of the pump beam is defined as u=1/z,
=21/kswi;. This is the standard focusing parameter,
and we also define a parameter v, = 2y, /243, which
describes the relative focusing of the pump and
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4 such that”
w= (k= 2ky) /Ry (2.9)

In terms of these parameters the expression for the

1/2 )

(2.10)

signal. Last, we define a degeneracy parameter signal gain is
i |
m2d% (1 — p)(1+ p)olu| B |2
B ning
fl/Z 1/2 Pl T 1T
)iy Lar+ a7 s iag(r’- )R+ Byr 7+ Bs(r 4 TR+ iBa(r = TV iy T (77 - 7))
[

where The gain computed from these figures will be in

a,=Q2u+1-p) ,
az=ul (1+ )1 = p)+ 0,3+ ud))/vy(1+ 1)
oz3=u2[2+ (1- ﬂ)%]/vx s
Bi=(20%n+1-u) ,
Bo=u[vfo?(20% — 1 )

+ 0,402 = 1+ p®)+ 1= ul/v,(1+ )
By =u?[(20% = 1+ p)(,(20% = 1= u)+ 2)]/v,(1+ 1) ,
By=u(0?-1)(20% = 1+ u)/v,(1+ ) ,
Bs=—u(0%=1)/vy(1+ 1) .

The integral has been evaluated numerically as
a function of u=1/z4, L, v;=20/24, and &=ARI,
and a sample of the results is presented in Figs.
1-8. In all the figures the squave voot of the gain
has been plotted as the abscissa, so that the small
side features in Figs. 1-5 show up and the figures
are in line with those for SHG published previously.?

(2.11)

0.6 L

05—

[}
GAINZ

04—
03—

0.21—

units of ndsk3| B“*1%/n5n5, which taking the ap-
proximate values dys=1.85X10°, 7, ,=2.23, ks
=2.46 X10°, 7=1, and pump power = 50 mW, has
the value

G=(1,1X107) X (figure value)? .

Figures 1-3 show the variation of the gain with
phase matching for the almost degenerate amplifier®
for various values of the focusing parameter. These
curves have the familiar appearance of the similar
curves for SHG. Figures 4 and 5 show the varia-
tion of the gain with phase matching for the nonde-
generate case when p=0.5 at two different values
of focusing. These two curves have slight differ-
ences from the almost degenerate case but the gen-
eral features are the same. Figures 6-8 show the
variation of the signal gain with the focusing param-
eter of the pump u=1/zy; for various values of the
relative focusing of the signal beam to the pump
beam v, = 2y, /2g3.

Figure 6 shows this for the almost degenerate

FIG. 1. Variation of the
total gain with phase match-
ing for relative crystal length
#=0.5, degeneracy parame-
ter =0, and relative focus-
ing of signal to pump v;=1,0.
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FIG. 2. Variation of the
total gain with phase match-
ing for relative crystal
length #=5.55, degeneracy
parameter k=0, and relative
focusing of signal to pump
v1=1.0.

-40 -20 o]
AkR

amplifier u=0. The maximum gain occurs when
both signal and idler are focused to the same degree
at the value #=5.56. It may easily be seen that for
any given value of the pump focusing there exists

an optimum focusing for the signal beam given by
the envelope of the curves in this figure.

As the degeneracy parameter moves away from
zero, Figs., 7 and 8, the maximum possible gain
decreases but the curves retain the same form and
the maximum gain occurs approximately at the same
values of the two focusing parameters. When
w=0.5, which corresponds to %, = 1%, and k= 3%,,
optimum focusing occurs when #=5.7, and when
w=—0.5 corresponding to &, = ks, ky=$k;, Opti-
mum focusing occurs when « =4, 8 for each case,
the optimum occurs when signal and pump are
focused equally.

I11. GAUSSIAN MODE IDLER

In order to see under what conditions the previous

-

|_GAIN

08—

04—

0.2—

theory may be approximated by a theory in which
it is assumed that the idler field is also a Gaussian
mode, we now derive the signal gain for this case
and compare with the expression found in IIB.

This approximation is important since it is a
necessary step towards extending the theory into
the regions of large gain and pump depletion. We
must then have some guide to which modes are
contributing significantly to the interaction. This
section will also apply to the case of a singly res-
onant oscillator when the idler field is enclosed
in a resonator and the signal field is not. The
doubly resonant oscillator should strictly be treated
via a standing wave theory, but the following theory
gives some guide to this case.

Since we assume small gain and no pump depletion
again, we need only consider Eq. (1.8b) for the
lowest-order idler-mode amplitude

wp
d;l;o = CS‘:)zuooo A:ol ng’

(3.1)

FIG. 3. Variation of the
total gain with phase match-
ing for relative crystal length
u=20.0, degeneracy parame-
ter u=0.0, and relative fo-
cusing of signal to pump v,
=1.0.

-40 -20 o]
Ak
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FIG. 4. Variation of the
total gain with phase match-
ing for relative crystal length
u=0.5, degeneracy parameter
u=0.5, and relative focusing
of signal to pump »=1.0.
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Dropping the subscripts 00 and integrating, the out-
put into the lowest-order idler mode is given by

Py Lt | g o3
z1 z1
Xf f C@2(z ') C%*(z) dzdz ' . (3.2)
-2 Yery

The coupling coefficient C“2(z) is defined by the
Eq. (1.9)

-27 iwg dlse-‘Ak‘

aC2

sz(z)z %
< [ os s syt acay .

the integration, we have

N

k2 Cwo3w oty
e-iAkz
x .
(aq+iagz) 2B +bgz%+ibgz)? * (3.4)
where
1 1 1
R T N (3.52)

ks ky
ag=2 < >3+ 23
kikowoy wop  Rgks Wos Wop

k ) ., (3.5b)

+ 2
Fykswos woy

(3.3)
_1,1 (3.50)
Substituting for the mode functions and carrying out T wh wg  whs -9¢
18
08— GAIN?
06—
04—
0.21—
! l | |
-40 -20 0 20 40

AkR

FIG. 5. Variation of the total gain with phase matching for relative crystal length «=5.55, degeneracy parameter
#=0,5, and relative focusing of signal to pump v=1.0.
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FIG. 6. Variation of the total gain with focusing of the pump beam for various values of the relative focusing of the
signal to pump, degeneracy parameter u =0,

)3 EB,+(0%-1)k -4(c%-1)
bg=2 3 1 3 by= — 55 (3.5€)
8 <k1kzw§1”}§a kokswis wgz 57 kikawhy wtz)zwtzja ’
2 and using Eq. (1.15), the expression for the gain
. By + (0 ;Dk > ’ (3.5d) of the signal beam due to the Gaussian mode of an
kykswos wy °

| idler beam with spot size w, is given by

_ 3271w,w di;01B% |

0 nmzczwﬁlwgzwgs
o 23 %2 e-iAk(z'-x) dz dz ’ ,
o L. [a2+aZzz" +iagaqg(z’ — 2) /2 [b2+ b2 22" +bybglz 2 +22) +ibybg(z ' —2) = ibgbgzz'(z ' —2) |72
= =21
(3.6)
[
where the term in b2 has been neglected since it is field can be represented by a Gaussian beam.
of the second order in ¢® -1 and thus negligible for A Near Field
normal values of focusing /23 < 10. - ear e
We now compare Eq. (3.6) with Eq. (2.7) to see When the nonlinear medium lies entirely within

under what condition Eq. (2.7) can be approximated the near field of both the signal and idler beams,
by Eq. (3.6), i.e., under what conditions the idler Eq. (3.6) reduces to
J

32mw,w, d2s01% |B¥3 |

Gy= 3.7
0 U nzczw?,zw%a wofs(l/w?n + 1/"1%2 +1/whs) (l/w%l + 1/"’%2 +02/w(2,3) (3.7)
[
Comparing this with Eq. (2.8) for the total gain to wq,, the idler spot size, at
we have 1 1 1\V2/ 1 o \V2
w-Emeam) @eg) - e
& _ 4(1/w31+ l/wgz)_a)uz(l/wtan*'o'a/wz )1/2 02 ) 0 ' 3 ) ‘
G~ wh(1/uk + 1/wl + 1/we) (L /why + 1 /wls + 02 wl) For thls. value of the idler spot §1ze,z the I:atlo of
the two gains to the second order in (0% - 1) is
(3.8) Gy (02 = 1)?

. R . . =l = , 3.1
This expression has the maximum with respect G 1 64(wss /why +1) (3.10)
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FIG. 7. Variation of the total gain with focusing of the pump beam for various values of the relative focusing of the
signal to pump, degeneracy parameter p= 0.5.

which is very close to 1. Thus when the nonlinear kywly +kywhy=0 . (3.12)
i ithin th field of both signal and

crystal hes. Wlthl{l ¢ near field of bo &n This certainly cannot be satisfied for normal

pump, the idler field may be represented by a . coe e .

Gaussian mode with spot size given by Eq. (3.9) to parametric amplification. However, it should be

a very zood approximation noted that it can be for backward wave amplification
Ve PP : when &, is negative. Thus, for normal parametric

B. General Case amplification there does not exist a relation for the

Equations (3.6) and (2.7) are of exactly similar equivalent idler spot size which is independent of
form, as was the case in SHGY; for the integrals to the degree of focusing of the pump as there does
be equal we require for SHG.® Writing Eq. (3.6) in terms of the param-
eters defined for the total output and the parameter
az/ar=ag/a;, as/a;=aj/aj . (8.11) P P
Substituting for these quantities we find that the
equalities can only be satisfied if we have

- _ 2 2
”z“zoa/zos—kzwoz/kswoa s

L
10— GAINZ p=-0.5
Maximum at V=148/Zy3=4,8
06—
04—

0.2

, . | A I . . J
O.l 1,0 10,0 100,0
244

FIG. 8. Variation of the total gain with focusing of the pump beam for various values of the relative focusing of the
signal to pump, degeneracy parameter u=-0.5.
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"
e-i(‘r -T )

fllz 1/2
X
/2 —[1/2 [f+alrr "+iogay(T = )2 [ B+ BrT "+BeBo(T 2+ 72) +iByBe(T ' = 7) —iBgByr 7 (v ' = 7)]'2,

where
a7 =200+ (L+ p)og+ (1 = w)o,,
Qg= u[2+ (1 = pog+ 1+ wvs),

Bq=20%010a+ (1 + 1W)vy + (1 = w)vg, (3.14)

Bg=u[2+ (1 — u+20)vy+ (L + p+20)v;),
BQ=_2u20'

This expression was integrated numerically and
the results compared with the previous calculation
for the total gain. Figure 9 shows the gain at opti-
mum phase matching when the pump and signal have
the same confocal parameter (v;=1) as a function
of vy the idler confocal parameter relative to the
pump for various values of the pump focusing u
= l/ 203

The maxima of these curves are very close to the
total output for this case, as shown in the figure.
For example, at #=5.5, very near the optimum val-
ue, the total gain is given by

G=(1.0370)% 7 d, 23| B“3|%/n}n% .

Then if the idler field is assumed to be made up

(3.15)

(3.13)

r

of a set of modes of confocal parameter equal to that
of the pump (v,=1), the signal gain due to the low-
est-order Gaussian mode of the idler is

Go=(1.0328)% 7 dy 23| B“3|%/n3nt, (3.16)

which is 99. 2% of the total gain. Thus the idler
field may be assumed to be a Gaussian of this con-
focal parameter to a very good approximation.

In Fig. 10, we show how the idler confocal param
eter, for which optimum gain occurs, varies as a
function of the pump focussing when the signal and
pump are focused equally (v;=1). This shows the
confocal parameter which should be assigned to the
idler for a given degree of focusing of the pump.
The curve is correctly asymptotic to the near field
condition given approximately by

1/wes=1/wei+1/uy

and note that for the optimum value of focusing (u
=5. 56) the value of the parameter v, is unity, which
is just the condition

1/w0§= 1/Wof"' 1/Wog ’

which was the case considered by Boyd and Ashkin, *

L2
L
GAINZ  n=0
1.0+
08— -
X/ZOQIO.O
¥Z43575.0
0.6
/245500
04—
12,510
0.2F=
2/Zy3=0.l
1 1 1 1 L | | I 1 | Il 1 1 |- LJ
O.l 1.0 v 100
2

FIG. 9. Variation of the gain due to the Gaussian idler mode with the confocal parameter assigned to the idler modes
relative to that of the pump for various values of pump focusing.
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FIG. 10. Variation of the optimum idler confocal parameter with pump focusing.

and Boyd and Kleinman. °

This condition is only approximately true when the
amplifier is nondegenerate, for example when u
=0, 5 at the optimum u=5.7, v,=1, the optimum
with respect to v, occurs at v,=1,02.

Lastly, it should be noted that if v, = v, the ex-
pression (3. 13) for the gain due to a Gaussian idler
field is an even function of u, the degeneracy param-
eter. Thus, for two Gaussian fields at frequencies
w; and w,, the gain if the field at w, is the signal
field is the same as that if the field at w, is the sig-

nal field, for a given signal and pump input power.

That the maxima in Figs. 7 and 8 do not occur at
precisely the same value of I/zy is a reflection of
the fact that the optimum condition »,=v,=1 is only
approximate, depending on u (the degeneracy pa-
rameter) and the crystal anisotropy.
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"In deriving these equations the approximation %3
=ky+kyhas beenused. Ak is only significant in the ex~
ponential phase-mismatch term e-#4k(2'=2),

%The case u=0, i.e., 2k =2k,=kyis referredtoasanal-
most degenerate amplifier, since the way the theory in
this paper is set up the signal and idler fields are always
distinct fields, whereas, of course, for a true degenerate
amplifier the signal and idler fields are one and the
same,



