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ing ion charges equal to the chemical valence, quite
accurate values of the ferroelectric polarization can

be calculated from the ion displacements which
occur at the ferroelectric phase transition.
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The strongly repulsive interaction between electrons and He or Ne atoms, or H2 molecules,
gives rise to the existence of electronic states localized near a condensed medium consisting
of such units. The attractive image potential binds the electrons weakly near the surface; the
binding energy ranges from 0.4meV for liquid He to 22meV for solid D~. Motion parallel to
the surface is nearly free-electron-like. An exploration of the interaction between electrons
and oscillations of the medium's surface reveals a breakdown in perturbation theory which

may be remedied by correct treatment of long-wavelength oscillations. A determination is
made of the temperature-dependent mobility of electrons for fields parallel to the surface.
We find that the surface waves scatter more for the liquid than for the solid. A transition
occurs in the mobility as the temperature increases to a point where scattering by atoms of
the vapor becomes dominant over other mechanisms. A second transition occurs when the
electron in the vapor becomes localized in the bubble state, and the present treatment loses
its validity.

I. INTRODUCTION

This paper attempts to elaborate the character-
istics of a new kind of electronic state recently
proposed by Cohen and the author. ' The electrons
are localized near, but primarily external to, a
condensed insulating medium which satisfies certain
criteria. The media we shall discuss are composed
of atoms which have a primarily repulsive inter-
action with electrons. Outside of the medium, the
interaction is the attractive image potential. The
balance between these opposing forces results in
localization of excess electrons in the vicinity of
the surface. Motion parallel to the surface is es-

sentially unrestricted and, in fact, becomes two-
dimensional in character.

The question of the existence and character of
electronic surface states in general has been in-
vestigated theoretically and experimentally for
nearly forty years. Tamm and later Shockley
showed that termination of a one-dimensional Kro-
nig-Penney model potential of a one-dimensional
crystal may yield solutions for electronic states
localized near the "surface" in addition to the usual
delocalized states of the bulk material. Bardeen
subsequently hypothesized' that surface electronic
states played an important role in determining the
electrostatic-potential configuration at the inter-
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face between a semiconductor and another material
(or vacuum). More recently, Schrieffere described
a kind of surface state localized in discrete energy
levels with respect to motion normal to the surface
but delocalized with respect to parallel motion.
This general description has been appropriate to a
variety of systems of current interest. These in-
clude states localized in inversion layers at semi-
conductor surfaces, "and magnetic-field-induced
surface states. ' An important question in all
surface-state investigations is the relationship be-
tween properties of the bulk material, for example,
electronic band structure, ' bonding, "and trans-
port, ' arid their manifestation at the surface.

The electronic states under discussion were used
in I as a basis for explaining experimental results
on electron ejection from liquid helium. ' We pres-
ently believe that another explanation is appropriate
to that phenomenon. The type of state proposed
then and discussed here should nevertheless exist
and be observable at surfaces of liquid and solid
helium, neon, and hydrogen.

In Sec. II we develop an explanation of the origin
of the image-potential-induced surface bands in
terms of interaction between an electron and an
isolated atom. Section III describes the eigen-
functions and eigenvalues of the surface states. In
Sec. IV, we study the effect for the liquid prob-
lem of the interaction between the electrons and
quantized capillary-gravity waves at the liquid sur-
face. We discuss as well the electron-Rayleigh-
surface-wave interaction for the solid. In Sec. V,
we calculate the mobility of the electrons in an elec-
tric field parallel to the surface. Section VI sum-
marizes our results.

II. ORIGIN OF SURFACE STATES

In this section, we describe the interaction be-
tween an electron and an isolated neutral nonpolar
atom' of the kind under consideration. We then
describe the modification of this interaction in the
presence of other atoms ina condensed medium. '
These characteristics will be important in under-
standing the origin and properties of the surface
states.

We shall consider as specific examples helium,
neon, and hydrogen, although other systems may
satisfy the criteria we develop. These atoms have
a tightly bound core in the ground state and a large
excitation energy to higher states. They are non-
polar and only weakly polarizable. When an elec-
tron is incident upon the isolated atom, the scatter-
ing is determined by competition between a short-
range repulsion and a long-range attraction. The
repulsion arises from the requirement of the ex-
clusion principle of orthogonality of the scattering-
electron wave function g, to the atomic core orbitals.

cr, = 4ma, (2)

Both theory and experiment find that the scatter-
ing length a, decreases monotonically among the
rare gases from a fairly large, positive value in
He to a large and negative value for Xe, primarily
because of increasing polarizability. For the sys-
tems we are considering, He and Ne, the repulsion
predominates in determining g, .

In the transition to a condensed phase, the long-
range term is considerably modified, but the re-
pulsive term is not. An excess electron injected
into a rare-gas solid is subject to a periodic po-
tential in the absence of lattice distortion. It
occupies a state gg(r) in a conduction band, where
k determines the translational properties required
of this delocalized state by the Bloch theorem. Be-
cause of the large energy gap between valence and
conduction bands, the effective-mass sum rule
gives an effective mass reduced to only slightly
less than the free-electron mass mo. Those near-
ly free-electron states centered about the conduc-
tion-band minimum at the point I' of the Brillouin
zone have an isotropic parabolic dispersion re-
lation,

E(k) = Vo+@ k /2m .

The quantity Vo, the negative of the electron affin-
ity, represents the minimum energy required for
electron injection into the medium. Calculations
which we describe later reveal that Vo is positive
for both He and Ne.

We next review briefly the present picture of the
electronic states of disordered systems. Foldy
and later Lax ~ and Levine and Sanders have
treated the problem of an electron moving through
a hypothetical random lattice of n scattering centers
per unit volume. In the weak-scattering approxi-
mation (na,'«1), they find that the real part of the

This forces g, to oscillate rapidly in the core re-
gion, contributing a large positive term to the
energy. An effective repulsion results ' with a
range approximately equal to the Hartree-Fock
atomic radius.

At large interparticle separation x, the electric
field of the electron polarizes the atom; the induced
dipole moment attracts the electron with a polariza-
tion potential

V~ (r) = —ue'/2(r + ro)'

where a is the atomic polarizability. ' We have
introduced the parameter ro to provide a reasonable
extrapolation of V& to the region of small r.

Experiments in which an electron is scattered by
an atom in the gas phase are capable of revealing
the delicate balance between these two opposing ef-
fects. The low-energy cross section is given by
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electron energy increases because of scattering by
an amount

V, = (k'/~) 2vnn. .

Additionally, one finds ' that statistical fluctua-
tions in density lead to potential fluctuations which
may localize electrons.

We note that for higher n, Eq. (4) must be cor-
rected for multiple scattering. In particular, it
has been found" that for a quasi-free-electronic
state near k = 0 in the conduction band, an accurate
value of Vo can be obtained from the Wigner-Seitz
model. ' In this model, which we employ later,
the polyhedral unit cell is replaced with a sphere
of radius r, given by

~, = (3/4vn)'", (6)

and the Schr'odinger equation is solved within the
sphere subject to appropriate boundary conditions.
The important consequence for the present discus-
sion is that in this long wavelength (k = 0) limit, the
result Vo depends on r„but not on details of struc-
ture. "

Experiments involving electron injection into
liquid and solid helium, for example, have been
performed by Sommer, Woolf and Rayfield, ' and
Onn and Silver. ' Their results indicate an op-
posing barrier Vo of order+1 eV, in agreement
with theoretical calculations using Wigner-Seitz'
and other methods.

Outside of the medium, on the other hand, the
electron experiences an exclusively attractive
polarization potential. Adding together this latter
contribution from all of the atoms gives the well-
known image potential energy V, ~,. If z is the
distance between an electron in vacuum (or dilute
vapor) and the surface of a medium occupying the
half-space x &0, this potential is classically'

,V.„.( )x=-Z 'e/x, Z=-,'(e-I)/(e+I) (6)

where & is the static dielectric constant. The
force derived from this potential pulls the electron
toward the condensed medium. In the case Vo&0,
the classical penetration is impossible, and quan-
tum-mechanical wave functions tail exponentially
into the medium. The net effect is a binding in
the vicinity of the surface, the details of which we
shall explore.

For several reasons, the expression (6) loses
its validity for some region of small g. Most sim-
ply, the surface plane x= 0 is a mathematical arti-
fice which at best might be chosen post hoc to fit
Eq. (6) asymptotically. Proper quantum-mechan-
ical treatment shows that the image potential
arises from correlation terms in the interaction
which will certainly not fit such a simple form.
Moreover, the solution (6) is a static potential,
while the polarization interaction, in general, has

to include dynamic behavior, as has been employed
in the electron-atom scattering ' and polarization
problems in solids. Even a phenomenological
description would require a frequency-dependent
dielectric function e(&o). In particular, for close
approach to the surface, the polarization will not
be able to follow the electron motion and the adia-
batic approximation breaks down.

Finally, deviation of the surface from its assumed
form, either by static roughness or surface oscil-
lation, precludes the possibility of a simple de-
scription in this region. We shall explicitly discuss
some aspects of these effects later. For the pur-
pose of actual calculations, we shall cut off the
potential (6) at a point x= b and continue it to the
origin as a constant, —V, = V, m«~(b). As a simple
estimate; we take b to be the average interparticle
distance in the medium, but later results are not
sensitive to this choice.

It is interesting to note that many years ago,
Shockley suggested that the image potential might
play a role in surface-state formation. Of course,
for most kinds of surface-state calculations, the
image potential is simply the tail end of the binding
potential and is not essential. Such states are
localized primarily within the medium. The image-
potential-induced states, on the other hand, lie
primarily outside the medium, and the image poten-
tial plays a fundamental role.

III. EIGENFUNCTIONS OF SURFACE STATES

We shall use the effective-mass approximation '

to describe matching of the internal solution in the
medium to the vapor solution external to it. Ben-
Daniel and Duke have justified the use of this ap-
proximation at an "abrupt" junction, where the po-
tential changes discontinuously, and the method
has been used extensively to treat surface prob-
lems. We expect it to be valid here for states
near the conduction-band minimum. In this model,
the eigenfunctions in the presence of a perturbing
potential are expanded in unperturbed Bloch states
of a given band. The Fourier transform of the
expansion coefficients becomes an envelope func-
tion g(r) which obeys a wave equation in the pertur-
bing potential. For the present problem, that po-
tential V(x) depends only on the coordinate x along
the surface normal. Surface reconstruction will
be small for the Van der Waal's solid, ' so the
Bloch theorem will apply to translations by a prim-
itive-lattice vector in the surface plane.

g(r) separates into product form

gt-, (r}=A '~'e'"'ay (x) ( f)

where k is the eigenvector and p a radius vector in
the surface plane. We obtain two-dimensional
bands of states, nearly free-electron-like for
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parallel motion but localized (for energies & Vo)
nea. r the surface x=o.

The two-dimensional character of surface states
has been studied theoretically and observed experi-
mentally in various systems. Within the parabolic
band approximation, each two-dimensional band i
makes a contribution &,(E) to the total density of
states% (E) that is constant above the band edge
Eit ~

st (z) = 2,. (v,m,./~e') e{z—z„.),

lAsulator vacuum

b

0

where v& is the band degeneracy, m& the effective
mass, E~; the eigenvalue for perpendicular motion
for the jth band, and 6 the usual Heaviside step
function.

For the interface between two media having
parabolic conduction bands with isotropic effective
masses m& and m&, BenDaniel and Duke have ob-
tained9 the continuity conditions for g:

(sa)

E„=E—5 k /2m . (10)

The effective potential is shown schematically in
Fig. l. It is the sum of the perturbing potential,
in this ease, the external-image potential, sup-
plemented by the energy V~ of the conduction-band
minimum in the insulator. We omit consideration
of the image potential in the medium, g &0, be-
cause it is negligible there ' in comparison to Vo

except within the outermost atomic layer. There,
complications similar to the ones mentioned pre-
viously for the small positive-x region necessitate
such an approximate description.

The equations to be solved are

0 "+~04 =o,

y"+ {2m/I')(E, + Ze'/x)y = O,

x & O {1la)

0&x&& (lib)

x) b {llc)

y' = (2m/5')(V, —Z,),
p,,' = (2m/8')(E, + V,),
V, =Ze /h .

~(o ) = 0(0')

For the materials considered here, m, is approxi-
mately equal and m2 identically equal to m, the
free-electron mass. The matching conditions (8)
are supplemented by the usual requirement that P
be finite at infinity. The function P(x) satisfies
the one-dimensional Schrodinger equation corre-
sponding to an effective potential V(x):

+, (E,-V(x))y =O, (0)

FIG. l. Effective potential for motion normal to the
surface, drawn schematicaIly. The mathematical sur-
face is the plane x = 0.

We must also satisfy the usual continuity relations
and the boundary condition at infinity. Let us de-
fine a qua, ntity r& from

Z, = (- Z'/2x')E„, Z„=me'/I' .
We note that Eq. (llc) is of the same form as the

Schrodinger equation for x times the 8-wave radial
wave function of an electron in the Coulomb field
of a charge Z nucleus. For that "hydrogenic" prob-
lem, P is required to vanish at the origin. The
resulting eigenvalues are then ~ equal to some
integer n. We shall compare, in a later section,
that result with the results of the present problem.
Let us note in advance, however, that in the case
of helium, Z is of order 10, so the binding energy
will be small in comparison with Vo, implying
little penetration of the wave function into the me-
dium. We then expect the hydrogenic approxima-
tion to be relatively good.

Equations (1la) and (lib) have simple decaying
exponential and sinusoidal solutions, respectively.
The general solution of (llc) is the confluent hyper-
geometric function. One particular form, the
Whittaker function W„,&3(2Zx/xao) is appropriate
here because it vanishes at infinity. Here ao is
the Bohr radius. The solution in the vicinity of
the origin has been studied by Wannier for a
similar problem. Wannier introduced two indepen-
dent functions J "(y) and N"(y), which in certain
limits behave like Bessel and Neumann functions
J', (y) and K, (y), respectively':

iim Z"(y) =Z, (y) as ~-~, (12a)
lim J'"(y) = Z, (y)[l + O(y~/16g2)]

and similar relations between N" and N, . The ap-
propriate linear combination which is finite at in-
finity and solves (llc) can then be written

Z„=y[ J"(y) coszm+ N" (y) sinew],

y = (8Zx/aa)'i' .
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Note that I"„is nonzero but finite at the origin ex-
cept when w equals an integer, in which case the
N" term disappears and the right-hand side van-
ishes.

The method we shall use is to substitute the
Bessel and Neumann functions themselves into
(13) when computing the continuity conditions.
This is equivalent to omission of terms beyond
the first in (12b). We shall discuss later the ade-
quacy of the approximation.

The unnormalized solutions to Eels. (11) are

P = Te"", x&0

T(cospQx + 6 ' sinpox), 0 & x & b

y = F„[(aZx/a, )'~'], x&b

(14)

~= IE,/v I, y, = (azb/ao)'" .

This system of equations can be studied for
various values of the parameters to elucidate the
nature of our results. As we increase the barrier
Vo from a finite value to infinity for fixed b, the
denominator of Eq. (15) passes through zero, and

z changes from below to above an integer n. This
integer is the "hydrogenic" limit discussed earlier
which occurs for b-0, Vo-~, with energy eigen-
value

Eo = (- Z /2n )E„, hydrogenic limit.

Wannier studied ' the special case Vo=~, b&0. In
that limit, the present results agree except for his
additional approximation of p«1 in Eq. (16).

We note that the right-hand side of Eq. (16) is
dependenton«(or E,) almost exclusively via the

factor (1+@) ~' in M. However, the parameter q
is in fact the value at the matching position of the
neglected higher-order term in Eq. (12b). For the
consistency of this calculation, it should be small.
In that case, we obtain the result that Bll eigen-
values z undergo a uniform shift from their hydro-
genic value Ij," = integer.

Hartree has studied the normalization of the
Whittaker functions for application to atomic prob-
lems. He obtains the following result:

where T is a constant, determined from conti-
nuity and normalization.

The eigenvalue x is obtained from the matching
condition at g = b. After algebraic manipulation
and use of well-known properties of derivatives of
Bessel functions, we obtain

d.(y.) —d, (y.)~(y, ) (15)t a«n7T= -N
( ) N ( )~( )

M(yo) = (1+t))'~2(cot gob —6)/(1+ 5 cot gob), ,(16)

where

This agrees with the known normalization of gen-
eralized Laguerre polynomials" which are related
to the form of Il„ in the limit x- integer.

If one neglects the change in contribution to the
normalization integral arising from replacement
of W by the sinusoidal function in the region
0 & x & b, then the ratio R of integrated probability
density for x &0 to that for g & 0 is

R= f dxT e ""/f dxF
~00

= ZT 2/ay«', (18)

where

T„=F„(yo)/(cosy.ob+6 ~ sinpob) . (20)

The constant N„by which we must multiply Q„(x)
of Eq. (18) to obtain a function normalized with re-
spect to the complete x axis is found from

N„= [Z/4«'(1+ R)]' ' . (21)

The small penetration limit (R«1) will apply to
most of the systems we discuss.

For the present calculation, we shall use the ap-
proach of Springett etal. to obtain Vo. These
authors use the Wigner-Seitz method and a highly
idealized model pseudopotential. Specifically, the
potential in each cell i is taken to be the sum of a
hard-core repulsion plus a negative constant polar-
ization term Vypg.

V(r —r,.) =~,

= Vy„,

r —r, &a

a& r —r,.

The length a is a theoretical estimate of the scat-
tering length for the fictitious problem of electron-
atom scattering in the absence of polarization. The
constant V„, is assigned the value at the cell center
(r = r,.) of the polarization potential due to all other
atoms j&i of the medium, plus an average over
the cell of the polarization potential from the ith
atomic core itself.

This representation of the potential as a sum of
individual atom contributions, and division of each
of these into two parts, repulsive plus polarization,
is artificial and oversimplified. Miyakawa and
Dexter have criticized this procedure and pro-
posed an alternative method for treating polariza-
tion, but their results for Vo differ little from
those of Springett etal. '

In Table I, we show values of the various param-

f, dx W„',q, (2Zx/«a, ) = [«'r '(«)/Z], (17)

where I' is the y function. Thus, the Whitteker
function normalized with respect to the positive
x axis may be taken as

P„(x)=[z/«1' («)] W„~ (2zx/«a )

(Z/4«3)'~aF (x)
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TABLE I. Description of wave functions for normal motion.

]0~22

(cm 3)

10 Z V, (eV)
Theor Expt

]02' 102 E~
(meV)

&x» 04&

(A)

(liq)
(sol)

1.64
2.56

5.14
8.00

0.90
1.61

1.3
1.8

4. 2

5.2
0.39
0.96

103 0.9
66 1.3

He4

Ne

D2

(liq)
(sol)

(»q)
(sol)

(liq)
(sol)

(liq)
(sol)

2. 18
Q. 01

3.72
4. 60

2. 17
2. 66

2.59
3.08

6.82
9.39

22. 12
27. 16

26.00
31.62

30.82
36.37

1.30
2.01

0.47
0.61

2. 20
3.27

3.11
4.44

1.0+0.2 '4 35

0 3+0 2'

1.6
2.0

6.7
7.7

6.8
7.6

7. 5
8.3

4. 6
5.0

24. 1
24. 2

10.5
10.0

10.0
9.4

0.69
1.32

11.5
17.5

ll. 5
16.7

16.0
21.9

78
56

24
19

20
17

17
15

1.2
1.5
80
95

13
12

12
11

eters we have chosen' and the corresponding re-
sults of the calculation. The "effective-charge" Z
has been derived from the Clausius-Mossotti rela-
tion, which is valid for atoms such as these which
have small polarizability. The quantity p is ap-
proximately equal to the magnitude (relative to
unity) of those terms neglected when we substituted
in the matching-equation Bessel and Neumann func-
tions for the true eigenfunctions. If the classical
turning point for the ground-state eigenvalue had
been selected for b, g would be 1.

The quantity 5K given in Table I is the shift of
the eigenvalues from integral values. As we have
seen, all the ~ undergo the same shift. I E~ t is the
binding energy of the ground state. The quantity
(x) is the expectation value of the electron coordi-
nate. This value is approximate, having been ob-
tained from hydrogenic wave functions. The small
values of R confirm the expectation tha, t there is
little electron penetration.

We note here that the results are not sensitive
to the choice of cutoff b that we have made. In all
cases shown in Table I, variation in E~ was less
than 5% for variation of b between —,'r, and 2r, .

We have some basis for analyzing the calculation
of Vo. Electron-injection experiments have been
performed for both liquid helium and liquid hydro-
gen with results shown in Table I. The discrepancy
for hydrogen is not surprising in view of the over-
simplified model employed here. Each of the sys-
tems listed in Table I have Vo&0, which is certain-
ly sufficient for localization. However, even a
negative Vo would permit localized surface states
if Z is sufficient to create a bound state with E & Vo.

We observe that hydrogen has the strongest bind-
ing in terms of both binding energy and size of
(x), which is only 20 A. Helium has the weakest
and neon falls intermediate between the two. On
the other hand, we note that the fractional penetra-
tion A for Ne is the largest (0. 009) as is the eigen-
value shift (-0.25). Ne is perhaps the most in-
teresting system in this respect.

IV. SCATTERING AND LIFETIME OF SURFACE STATES

~'(q) =gq+ (old)q', (28)

where g is the gravitational constant, o the surface
tension, d the liquid mass density, and q the wave
vector in the surface plane. The gravitational
term becomes unimportant in (23) for q&10 cm '.

We note here that the Pitaevskii method is based
on a hydrodynamic approximation and is hence
strictly correct only for long wavelengths and low
frequencies. In addition, the liquid has been con-
sidered ideal and incompressible; more realistic
treatment will yield both damping and coupling to
phonon modes.

The electron-ripplon interaction represents the

The eigenstates we have discussed arise from a
static attractive interaction between the electron
and a uniformly dense medium bounded by the plane
x = 0. Bulk-density fluctuations (phonons) will
modify this interaction but, because of small elec-
tron penetration into the medium, will not play an
important role in scattering. Additionally, the
attraction may be enhanced if the surfa, ce deforms
to some other configuration u(p, r, ) in the presence
of an electron. Here u(p, r, ) denotes the amplitude
of the surface displacement at a position p in the
surface plane and r, is the electron position. The
perturbation will affect both the lifetime and the
energy of the state we have disucssed.

The displacement at the surface is opposed in
the liquid case by both gravity and the surfa. ce ten-
sion. In the absence of the electron, the normal
modes of vibration of the free surface are known as
capillary-gravity waves. Atkins' has discussed
their quantized form as ripplons and calculated
their contribution to the surface free energy, and
hence surface tension, of liquid helium. In Appendix
A, we quantize the ripplons and derive their dis-
persion relation using a technique developed by
Pitaevskii. The resulting eigenfrequencies are
given by the classical formula
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change in electron-Quid polarization energy which
arises when the surface deforms. This change
can be expressed as a sum of interactions between
electron and atoms of the fluid. However, because
of dielectric screening, it is not permissible simply
to add up individual terms of V~(r) in the form given
in Sec. II, Eq. (6). Lekner ha, s studied'2 this
screening for the case of a charge in liquid argon.
For distances r greater than a small multiple of
the atomic hard-core diameter, he finds that the
local fields set up by atoms near the one at r re-
duce the potential to the value given by classical
Lorentz local-field theory:

V'"(r) = V, (r)/(I+'mnn) .

This applies to an atom deep within the medium.
Near the surface, however, the screening will be
incomplete. For simplicity, therefore, we com-
pletely ignore the screening and remember that
subsequent work will be valid only to lowest order
in the local field (i. e. , n). In the cases of liquids

He, Ne, and H~, the quantity 3 mn& takes the values
0.03, 0. 12, and 0. 15, respectively, which gives
some estimate of the uncertainty involved in the
assumption.

The additional electron-surface interaction V„,
in the presence of surface perturbation is then

V„,(r,)= —C fd p'f dx'{I/[(r, —r') +2.2] },
C = —'nne

We miy expand the integrand in a Taylor's series
in powers of x'/x, = b., valid if I 6 ( & 1. Only the
first two terms will be considered, a valid approxi-
mation since the wave function is small in that re-
gion anyway. Similarly we shall take ro = 0. The
result is

Id p r.- -~)2 2i2
[(p8 p J +X8 J

j. I( — ')/ I')

We expand the surface displacement in ripplon
normal modes as described in Appendix A:

u(p)=A '"Z'g q-„e'"'",

where k is a wave vector and p a radius vector in
the surface plane of area, A. The lowest-order
interaction term is

V(1) A-1/2P q fd2 (elk 2/[(p pl)2+ x2]2]

A-1/2+„q„e f2 P+ f d2p[ei2'P/(p2+ x 2)2]

The integral becomes

2~ e Z2(kp)
dp i 2 22 271 dpp I 2 2}2

(p +x~ ~p +x, .

= (vk/x, }K,(kx,}, (25)

where we have used the integral representation of
the zero-order Bessel function:

Z2(y }= (I/x) f ' d8 cos(y cos8)

and a representation of the modified Bessel function
of the second kind" (for positive argument):

K, (u}=K,(u) = 2u f,
"

dt[tZ, (t)/(t'+ u')'] .
The second term requires evaluation of

v,".,'( )

[(p, —p')'+x,']'(x,f1+ [(p —p ')/x ]2))
2C

, $fet ~ y

p —p +g 1+ p -p x

where

k"=k+k' .

'([(k")2/6x']K, (k "x,) },
2

(26)

We arrive at the total electron-ripplon interaction
term from (25) and (26):

(- I/O) V„,=A-"' Z q-e""' [(~k/x. )K,(kx. )]
k

+A-1P q q ef2" Pz

k, k'

&& ([(w(k"}'/2x.]K2(k"x.)] + ~ ~ ~

The boson amplitude operators Q„are replaced
by creation (a2) and annihilation (a„-) operators via
the transformation developed in Appendix A, Eq.
(AVb):

Q„-= (kk/2d(o2) / (a „+a2)

The first-order term in the electron-ripplon inter-
action is then, in second-quantized notation,

f, m

~g „=w&(kq /2dA&u, )'/ ( k+ q, /
~ [K,(qx)/x]e"'~

~
k, m) .

(28)

Here c „-, and c -„are creation and annihilation
operators for the electronic states g„. = Ik, m) .
Note that the interaction term is Hermitian and
conserves quasimomentum in the parallel direction,
given by

P„=—z@'V,
)
+

q a; ag@q,

where V() denotes differentiation with respect to p, .
Thus, P„ is a good quantum number and may be
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qg
= 2Z/Go = 2 Z52 e /@

For q/qo«1, we may then use the small argument
expansion for E, when computing M:

K,(qx)= (qx) ', qx«1 .
If we make the (approximate) substitution of

"hydrogenic" wave functions for the true ones, it
follows that

&qolff (qx)/tqlqo) = ql/2q, q«qo- (30)

No cutoff of the interaction for small g is neces-
sary in this calculation because of the vanishing
of the approx1mate wave funct1on 1n that reg1on.

The real and imaginary energy shifts caused by
the electron-ripplon interaction may be investi-
gated using perturbation theory. This investiga-
tion turns out to yield anomalous and interesting
results which arise from both the ripplon disper-
sion relation and the dimensionality of the calcula-
tion.

The rate of scattering by interactions in which
a single ripplon is created is

I (k, ~)=(2./k)Z, ~~, ~
(;+1)

~ ~(-2's[k2-(k- q)2] —k~, )

= (A/2vk) fq™dqq(n,+1)
~
fif, ~'

x f 'd8 6(akqcose —aqS, (q)),

where a, n„and S,(q) are given by

a=@2/2n,

(e82 ez 1)-1 P-1 k ry
)

S&(q) = 2qkB2Q) /Aq .

Integration over 8 gives the general result,

fo d8 5{gkq cos8 —S,(q))

= 2e(k'- S,'(q))/sq(k'-S', (q))"',
I'(k, q)=(~~/~k')f dq(.,+1)l~, l'/

{k2 S2(q))1/2

(32)

(33)

where the limits of integration correspond to the
range of ripplon wave vector that can be created.

used to characterize eigenstates of the full problem.
All possible single-boson processes are included.
Higher-order processes arise from the neglected
terms H,",,', g +~, which the present treatment
ignores.

The matrix elements M may be calculated by
numerical integration of the expression (28) using
known series expansions for K, (qx). Subsequent
calculations we shall perform tend to depend most
sensitively on small values of the argument. In
particular, the characteristic wave vector for per-
pendicular motion in the unperturbed problem is

If the denominator has zeros for q less than the
Debye cutoff q, then these define (q;} through

IS(q)l =k

This cRse ls depleted scheIQRtlcRlly ln Flg. 2.
Otherwise, the integration is carried to the limits
0 and/or q . For the ripplon case, there are two

q& satisfying this equation only if k exceeds a
threshold value ko, which equals the minimum of
S,(q) as a function of q (see Fig. 2). For the acous-
tic phonon case, in contrast, the emission thresh-
old occurs for phonons having q= 0, so q, =0 and
the sound velocity becomes the threshold, as is
well known.

Integration of E11. (33) indicates that as k passes
from below to above ko, T'~ jumps discontinuously
from zero to a finite value

I'(k,', &) =am(n„+1)
~ ~„~'/vn'[2k, S,"(q,)]"',

where the primes indicate differentiation. The dis-
continuity occurs because of the zero of the denomi-
nator Bt threshold. It does not occur in three di-
mensions because there the sine phase-space term
suppresses it at the emission threshold (8 =0). Un-
fortunately, the discontinuity that occurs in the
present case is not experimentally accessible be-
cause ko corresponds to much less than thermal
energies.

The rate I'" at which the electron scatters via
ripplon-annihilation processes is obtained similarly:

I""(k Z) = ( ~/.~')J"dq&,
~

Ji'f, ~'/[k' S'(q)]"&-,
Of

where the (q,) are defined with respect to S
Since the minimum of tS ) is zero, no threshold
occurs, and the process will always occur for
finite T.

We have numerically evaluated the rates. I'" 3nd
For temperatul es of most expel imental in-

terest (T & 0. 1 'K), the most important contribu-
tions to the scattering of thermal electrons (k= 10'
cm ') arise from ripplon wave vectors 10 & q & 10

0
C3
UJ

Kp

Ko -- ——-T ———
D

I

LIJ

LIJ q

FIG. 2. Schematic depiction of wave-vector relation-
ship which determines ripplon emission. Electron having
wave vector k& is below the emission threshold. With
wave vector k2, it can emit ripplons with wave vector q
between @ and q&.
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cm '. For these q and T, the distribution function
reaches its classical high-temperature limit

n, =ksT/h&o, » 1,

and I""becomes identical to I" . The total scatter-
ing rate ean then be evaluated analytically:

1.(k, T) = 21" '= (r/k) [m~'C'q,'k, /8@'(gd )"']. (34)

For T = 1 'K and k = 10' cm ', we obtain an ex-
tremely high scattering rate I'= 10' sec . This
is a consequence of the small excitation energy as-
sociated with the ripplons. In fact, the author has
shown elsewhere that the modes are so "soft" that
in the thermodynamic limit only the weak gravita-
tional force prevents a long-wavelength divergence
predicted by Widom' fox' the surface-vibration
amplitudes.

Two comments are appropriate here. The re-
sult we have obtained relies on perturbation theory,
a situation we explore below. Additionally, since
the important q'8 are much smaller than k, the
momentum-transfer rate important for mobility
calculations will be much less than kl . In Sec. V
we evaluate the mobility more realistically.

We may calculate the real energy shift from
perturbation theory. To lowest order, the energy
shift is

of different wave vector. The other kind of term
contributes little for the same reasons that made
~Z"' small.

We conclude that this simple perturbation ap-
proach does not provide a good description of these
scattering processes. A more realistic treatment
is currently under investigation. This uses time-
dependent wave functions which adjust adiabatically
to the long-wavelength low-frequency surface oscil-
lations which created difficulty for the method used
here.

The same failure of perturbation theory occurs
in the solid case, except here an actual divergence
occurs. We consider in particular Rayleigh suxface
waves. The interaction-matrix element can be
obtained by analogy to the ripplon case:

~„(q)=BsCwq02[@q/BdA&o„(q)]"',

&a{q)= czq

Here Bn and $ are constants of order unity, and
C, is the bulk transverse sound velocity. Except
for the modified dispersion relation, this is of the
same form as the ripplon matrix element. Inte-
gration of the scattering rate here gives a loga-
rithmic divergence arising from q-0 modes.
Thus, the same problem occurs for the solid case
as we encountered previously for the liquid.

V. MOBILITY

+,
—,'a[ka —(k + q)'] + hv,

The integration over 8 is a principal-part integral:

f d8/[k cos8 —S(q)] = 0,

—w sgn(s(q))
(S2 kR)1/8

k' & s'(q)

k &S(q).

For a thermalized electron of wave vector 0,
the approximate result is

aE'" = (- wC'mqo/16N' apk')(1 —4k /q')"',
which is a very small value, of order a few milli-
degrees in energy. Thi.s occurs because the q
vectors of long wavelength that contribute strongly
to I" do not contribute at all to AE~ ~, because of
the angular integration above. To check if this is
accidental, we may explore the next term of per-
turbation theory, which is of fourth order and of
the form

In this section, we determine the mobility of
electrons in image-potential-induced surface states
for dc electric field, parallel to the surface . The
scattering arises from several mechanisms we
have not described as well as from ripplons and
Rayleigh waves for liquid and solid, respectively.

First we modify the transition-rate calculations
of Sec. IV to obtain a xesult appropriate to mobility
determinations. We define a fractional momentum-
transfer rate ~ which is a sum of the rates for all
momentum-transfer processes, weighted by the
fraction (with respect to k) of momentum trans-
ferred in the direction of the electron velocity
vector:

X=(2~/k)Z-(-q 1/k') ~m ~'((n, +1)a(aq[kcos8

—S„(q)])+n, O(aq[k cos8 -S (q)])] .
The angular integration gives

fo d8cos86(aq[kcos8 —S,(q)])
= [-2S, (q)/akq] [k' -S',{q)]-"'e[k'- S ',(q)] .

The result of the integration over q for the ripplon
Case 18

B (4) p l'ar l'in''~n p'na

, „„(z, z, )(z, z.)(z, z-„) '--
Examination of these terms reveals that one kind
of term (corresponding to a "crossing" diagram)
contributes very strongly to the energy shift. For
this term, the states }f) and In) include ripplons

&, = (mw C qo/Sk'o)(l/Pk ) .
This result depends mostly on large q values, for
which the present t1 eatnlent 18 valid 8o 1t should
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yield the correct mobility. The rate X, is of order
10' sec ', much smaller than I" itself. For the
Rayleigh wave case appropriate to the solid, we
obtain

mvC'q044I„' [k' —(mc„/5)']"'
s 2K%3c pp2

which is only of order 10 sec ' for typical values
of the parameters. We obtain the interesting re-
sult that the liquid surface reduces the mobility
more than the solid surface does. Although we
have not included other modes present at the solid
surface, similar small values occur for these be-
cause of the linear dispersion relation at long wave-
lengths.

One contribution to the mobility that we have not
discussed yet arises from perturbation of the po-
tential Vo itself, which contributes a direct short-
range interaction with the electron. Similar prob-
lems have been considered by Greene and O'Don-
nell ' and Prange and Nee. ' Those treatments,
however, take Vo to be infinite, to keep electrons
in the medium, and the formulation is somewhat
different. The matrix element M„(q) for scatter-
ing an electron from a state Ik, n) to a state
)k+q, m) is

M, (q) =A ' J d'p f"d px*(x) p„(x) V, (p, x) e

V, (p, x) = V [0 (x) —8 (x -u (p))] .

If the Q„, and P vary slowly near x = 0, we may
expand the integrand and find

M~ (q) = Vo P A„ I, (q),
4+1

4* (x) 4„(x) „=0,

I„(q)=A ' f d' p
e'~' ~ u (p)

We may examine these equations for several
kinds of deformation. For both liquid and solid
cases, we may expand the u's as before in the nor-
mal modes of surface oscillation. The matrix ele-
ment for lowest-order scattering becomes

where L is the energy of vaporization (sublimation
in the solid case)per particle, and Pais arelatively
slowly varying function of T which, in the low-
temperature limit, can be obtained by integrating
this equation in conjunction with the ideal-gas law.'

where M is the atomic mass and g, the spin degen-
eracy.

Interaction with the vapor atoms has the effect of
raising the zero of energy according to Eq. (4), as
well as scattering of the electrons. The first ef-
fect is unimportant to lowest order' because the
gas density is uniform. The second contribution,
however, becomes the dominant scattering mech-
anism for T greater than some T,. We can antici-
pate this with confidence because we know that for
He the dynamic electron-atom interaction in the
gas phase at densities of order 10 ' cm causes
localization of electrons in a, cavity (bubble) from
which the He atoms are evacuated. This density
occurs in the saturated vapor of He' at a tempera-
ture of 3. 5 K and for He' at 2. 3'K. This impor-
tant difference between results for the two isotopes
should be experimentally observable.

Scattering of surface-state electrons from impu-

rity potentials has been discussed by Kawaji and

Kawaguchi" and Stern and Howard for the Coulomb

potential. We will employ instead the coherent-
parallel-plane theory of Duke. In this model, self-
energy diagrams corresponding to the electron-atom
interaction at a fixed distance from the surface are
analyzed to include multiple scattering within each
plane of constant x. Then an integration over x is
performed. The interaction is taken to be a contact
pseudopotential interaction

V(r-r, ) =(h /m) 2m'a, 6 (r-r, ) .

The scattering rate that results is given in the
present notation as

&.=(2~„/h)[@'/m2ma ] Jo dx ( g„(x)('

A comparison with the comparable expression
developed earlier for the long-range polarization
term shows that M~(q) is a factor of 10 2 smaller
than the previous expression for wave vectors of
interest, given the eigenfunctions obtained earlier.
Higher-order terms turn out to contribute negligi-
bly as well, so we shall consider this direct inter-
action no further.

One unrelated contribution to the lifetime that
should be considered here is scattering by isolated
atoms of the vapor. The Clausius-Clapeyron equa-
tion along the phase-equilibrium curve gives for
the saturated vapor pressure

Because of orthogonality of the eigenfunctions, the
term m=n in the sum will contribute most. Taking
only this term and using hydrogenic eigenfunctions,
we find

&„=3m n„a, Aqo/16m.

For the example of liquid He at 1 'K, this gives a
rate of order 10' sec ', which is comparable to
rates for scattering by surface waves discussed
earlier.

In Appendix B, the mobility of a two-dimensional
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electron gas is calculated using the Boltzmann equa-
tion and a relaxation-time (7) approximation. The
resulting mobilltp 18 given ln EQ. {84)as

f dp I/Sr(1/)e Bh-0 /2m/ fd'~ y8 -8'0 2k /Rm
2m 8

We have calculated in thj, s section several contribu-
tions to the scattering rate. For both liquid and
solid, the quantity can be expressed as the inverse
of a sum of scattering contributions from gas-phase
atoms and surface oscillations which we have sepa-
rately evaluated.

In Fig. 3 we show the mobility for electronic
states at the surface of liquid He', liquid He, and
solid He . These suffice to illustrate the various
regions of interest. At low T, surface-wave scat-
tering dominates. For the solid case, this becomes
very small as few electrons exceed the emission-
velocity threshold. In the liquid case, the mobility
is T independent because of the torm of {37).
As the temperature increases, the transition occurs
to scattering primarily by vapor atoms, so the mo-
bility becomes approximately exponentially T de-
pendent, At some point, in the vicinity of the ver-
tical arrows in Fig. 3, this treatment fails as the
electron becomes localized in a "bubble" state and
the mobility drops rapidly.

7IO:

IO =
Solid He (x ~ )

~

5lO:

O

Liqu

IO

I'IG. 3. Mobility as function of temperature for elec-
trons bound near the surface of liquid and solid He~ and
liquid He3. . The vertical arrows indicate a transition
to the localized bubble state of much lower mobility.
Note reduction by a factor of 4 of the mobility shown for
solid He'.

VI. D ISCUSSION AND CONCLUSIONS

We have exploxed in detail the image-potential-
induced surface bands. In paxticular, we have found
that the wave functions for normal motion corre-
spond closely to those of simple form which solve
the hydrogenic problem. The fractional penetration
of the wave function into the medium is small. It
increases, however, for the most strongly bound
states,

We have obtained results for the interaction be-
tween the surface electrons and oscillatory modes
of the liquid surface which are important for the
present study in addition to being of more general
theoretical interest.

Experiments are currently being performed in
several laboratories to test for the existence and
pxoperties of these states. In particular, we have
made predictions regarding the mobility which
should be readily accessible to experiment.

We note that further theoretical work is in pro-
gxess with the aim of improving upon the perturba-
tion method employed here. In addition, the theory
is being extended to apply to the dielectric film on
a metal substrate, for which case the binding is
strongly enhanced,
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APPENDIX A: RIPPLON QUANTIZATION

Ripplons are quantized capillary-gravity waves
at and near a liquid surface, the motion extending
to a depth of order the inverse of the wave vector
k. No density oscillation is associated with these
modes, which are well-known classically. The
present derivation describes an ideal incompres-
sible semi-infinite fluid bounded by the plane x= 0
of area A. We shall impose periodic boundary
conditions to quantize k. The hydrodynamic tech-
nique we employ was used earlier by Pitaevskii
to derive the density-fluctuation excitation spec-
trum of liquid helium.

In an ideal fluid, the velocity is the gradient of
a potential p. Incompressibility implies that p
satisfies Laplace's equation. Thus, the kinetic
energy is given by

T= ,'d f (Vp)'d~-
,'d f 9

V'—y —dr+,'d f d S q~—q.
= 2d f dS'IpV(p q

where we have used the divergence theorem.
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If we take G(r, r') to be

G(r-, .-)=I/I.- -, I,
v'G(r, r')=-4&6(r--r-) . (A2)

d ~ ~

Z ~»= Z' q»qr,4yAp p.

i(k 8+tt' ~ I')
~8dS dS

But from the integral representation of the Bessel
function and an appropriate integration formula,
we obtain

In the case that r lies on the boundary, the 0

function in Eq. (A2) will contribute only one-
half of the full value to the expression

y(r) =(-I/2v) f d'r'y(r')v"G(r, r')

where the prime denotes differentiation with re-
spect to the primed coordinates. We next add a
term of zero value to the right-hand side and use
Green's theorem:

y(r) = (- I/2v) f d'r'[y(r')v' G(r, r')

-G(r, r')V"qr(r, r')]
= (I/2v) f dS '

~ G(r, r')v'p(r, r')

=(I/2v) fdS'[a(r')/Ir r'I-]

Here the dot denotes time differentiation and we

have used

0= [V'G(r, r') n']t q. „e.,
ic(r') = [V'p(r') ~ n']p. .. 8 .

Here n' is the unit normal and u(r) the surface
displacement. We consider here oscillatory mo-
tion associated only with the upper-bounding sur-
face. From Eqs. (Al) and (A3), we obtain

T= (d/4v) ff dSdS' [tt(r)u(r')/Ir —r'I]. (A4)

The potential energy V arising from surface de-
viation from planarity has contributions from both
gravitational and surface-tension forces:

V= f dSf dedge+af dS[l+(Vtt) ]
= y, + f dS[dgu'/2+(o/2)(vu)'], (A6)

where V~ is the equilibrium value, 0 the surface-
tension coefficient, and g the gravitational con-
stant. We have assumed the displacement gradient
small, |V'g I «1.

We next expand the displacement and its time
derivative in ripplon normal-mode coordinates k
quantized by the requirement of periodic boundary
conditions:

u(r) =A '"Pgq;e'"'"

it(r) =A '"P»q»et~

The Lagrangian of the system is given by

dSet(»+I') P4'
= (d/2k)q„-q -„.

Similarly, we evaluate V„" and find

J»=(d/2k)q»q -„——,'(dg+ak )q„q „-.
We derive the canonical momentum g"„and Hamilto-
nian by the usual method:

II;= (d/k)q ~,

H = pgII„-II „-(k/2d) + q„-q -„[-,'(dg+ ak')]} .
We quantize H by imposing the boson commutation
relations upon the operators Q, II:

I.q» II» ]=t'MI, e
and then transform to a form diagonal in creation
and annihilation operators a-„, ap:

II"= t'(Kd(uf/2k)'" (a- —a -) .

q" = (kk/2d(d-)'~»(a -+ a")
(A7b

H = P» @to»(a j",a»+ ~2);

(A7a)

td» = gk+ (o/d)k (A8)

n, (k) =n-„-n, (k),
n, (k) =(k'Pv jm) Xe

where N is the total number of electrons per unit
area. If we assume that E does not strongly per-
turb the distrubution no (k), then the lowest-order
terms of (Bl) give

We thus recapture the classical dispersion relation
as one would expect. However, we have obtained
in addition the transformation equations (A7) which

provide a normalization necessary for computing
electron-ripplon interaction. Furthermore, the
Hamiltonian (A6) has been used elsewhere by the
author to study properties of the liquid-vacuum
intel face.

APPENDIX 8: MOBILITY FOR TWO-DIMENSIONAL GAS

We investigate here two-dimensional transport
for a system of electrons characterized by Maxwell-
Boltzmann statistics. In steady state, the time
rate of change of the distribution function eg is
zero:

eE sn»
v» n»

k sf Iscatt (III)
where E is an electric field along the z axis which
perturbs an equilibrium distribution n, (k). The
second term arises from scattering processes. We
associate with these a relaxation time r (k) which
gives a measure of the rate at which any nonequi-
librium electron distribution nt (k) would, in the
absence of f, relax toward equilibrium. We have

sn» ) n, (k)
I Scatt
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., (k) = I'P'I h,
"'"'~.-'"'"& '- . (»)

The current density Jz associated with this nonequi-
librium distribution is

7, = fd'k e n, (k) 6 (k) .

%e define the mobility as

p, = J, /N'e E .
Then we obtain

lt = ef" dh h r(h)e " ~"' /2' f" dh h'e s" ' » (&4)
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High-resolution measurements at the E-center in-gap mode in KI and KBr have revealed a
threefoM structure in the absorption spectrum with lines at 82. 62 +0.02, 81.98+0.02, 81.19
+ 0. 05 cm ~ and at 99.60 + 0. 03, 99.07+ 0. 04, 98.50+ 0.05 cm, respectively. This structure
is interpreted as due to the presence of two stable isotopes, K39 and K4~, in the crystal. In a
three-dimensional-model calculation which uses as parameters changes in the force constants
between the defect and the first nearest neighbors +01) and changes in the force constant be-
tween the first and fourth nearest neighbors (A14), we found that the in-gap mode frequencies
are extremely sensitive to the value of the latter. The position and splitting in the absorption
lines can be explained in the calculation by using A01 = —0. 50, A14 = —0.060 for KI and A01
= —0. 50, A14=+0. 002 for KBr. Stress experiments on the strongest lines in KI are in agree-
ment with our model. Extending the calculation to Cl and Br centers in KI, it is shown that
the measured isotope splitting for Cl 5, C].3~ and Brve, Br ~ centers can be explained by taking
into account not only changes in A01 but also changes in A14.

I. INTRODUCTION

The far-infrared absorption spectra associated
with very light substitutional defects in alkali ha-
lides like H, D ions (U centers) and E, E' centers
were recently reported. ' These vacancy-type
centers give rise to resonance absorption in the
upper acoustic band for H, , D,, and F' centers and
to gap-mode absorption in the region between the
optic and acoustic phonon branches for the F cen-
ter, respectively. The different absorption fre-
quencies of these defects are mainly an effect of
local force-constant changes. The amount by which
the perturbed force constants differ from the un-
perturbed value can be obtained by fitting the ex-
perimental results to model calculations in three
dimensions. Calculations of the infrared-active
modes in perturbed lattices on the basis of "realis-
tic models" for the lattice dynamics are given,
(..g. , by Klein, Page and Strauch, Benedek and
Nardelli, and some others. Recently, Benedek and
Mulazzi calculated the F-center gap-mode absorp-
tion based on one of Hardy's deformation dipole
models.

The measurements and calculations reported in
this paper should provide further clarification of
the dependence of the optical response of perturbed
lattice vibrations on mass and force-constant
changes. As a "model case, "we have chosen the
E center for the following reasons: (a,) Some lat-
tice dynamical. properties of the F center are al-
ready known. They could be studied indirectly
through the electronic transition because of the elec-
tron-phonon interaction. 8 ' (b) The vibrational
absorption associated with F centers in KBr and
KI is in the phonon gap. Therefore, the corre-
sponding absorption lines are sharp, and small per-
turbations of the surrounding lattice can be mea-
sured.

After a short description of the experimental ap-
paratus (Sec. II), wepresentin Sec. III the experi-
mental results. High-resolution measurements at
the F-center in-gap mode in KI near 83 cm ' have
revealed a threefold structure of the absorption
shape. Quite similar lines occur in KBr (Sec.III A).
Stress experiments at the strongest lines in KI,
those at 82. 62 and 81.98 cm", are reported in Sec.
IIIB.


