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Approximate polaron effective-mass trial functions are constructed to describe 2P hydro-
genic polaron levels in weak magnetic fields. Breakdown of the effective-mass description
due to level crossing of the 2P effective-mass states with 18 one-phonon states [denoted (18,
1)]necessitates admixture of (18, 1) states to the initial effective-mass state in order to
achieve lowest cariational energy. The effect of mixing in the (1S, 1) states is to produce,
effectively, a double-values 2I' energy and to reduce considerably the linear Zeeman split-
ting near the point of level crossing. Level crossings with (1S, n) states for g&1 are ex-
pected, on the basis of a heuristic argument, to produce similar discontinuities near the
respective crossing energies. Perturbation theory is used to find expressions in the weak-
coupling limit for the Zeeman splitting in the limit of weak binding, and, for stronger binding,
near the (1S, 1) level crossing.

I. INTRODUCTION

A slowly moving electron in the conduction band
of a polar crystal finds itself surrounded by lattice
polarization charge induced by the electron's own

Coulomb field. Treating the lattice as a polariz-
able continuum one can show' that in the simple case
of a parabolic conduction band the electron-lattice
(or more precisely, electron-LO-phonon) coupling
strength is characterized by a dimensionless con-
stant n, given by

1 1 1 e
2 e„eo (rob&) '

where ro= (h/2m&) I~. The length ro turns out to be
essentially the radius of the polarization charge
distribution surrounding the slowly moving electron
(unless n is very large). This complex of electron
plus polarization cloud is the so-called polaron.
%e have used m for the electron band mass, h for
the energy of a long-wavelength LO phonon, and

c„andco for the high-frequency and static dielectric
constants, respectively, of the lattice.

If & ls not too lalge, the polalon energy, which
in the absence of interaction is simply P /2m, be-
comes with interaction

E ) = —nN&0+ P 3 P
2m(i+ n/6) l60 I'a~

(2)

Thus, carriers in a nominally parabolic conduction
band will behave as if the band were, in fact, non-
parabolic, due to the terms in {2)proportional to
P', P', etc.

Polaron-induced nonparabolicity has been clearly
demonstrated by cyclotron-resonance experiments
in InSb ' and CdTe. In these experiments, the
magnetic analog of E{p) is probed by measuring
the n =0 to n =1 Landau-level energy separation as
a function of magnetic field.

Perhaps the most striking aspect of polaron non-
parabolicity is the pinning phenomenon' observed
at fields large enough to bring the unperturbed
(n =0) cyclotron frequency close to &. At such
fields, the cyclotron resonance appears to split
into two branches, one always lying above I in
energy, the other always below. The lower-branch
energy approaches I'w with increasing field, while
at the same time the upper-branch frequency be-
comes close to the unperturbed cyclotron frequency.
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We describe the lower-branch behavior by saying
that the n = 1 Landau-level energy becomes pinned
to the n = 0 energy plus 5. Likewise, the upper
branch becomes pinned in weak magnetic fields.

The pinning phenomenon just described for polaron
Landau levels is expected on theoretical grounds to
have an analog for any pair of discrete polaron states
which, for &=0, are separated by an energy close
to Sco. An important special case is the 1S and 2P
states of hydrogenic donors in some of the II-VI
semiconductors. We expect to find the 2P level
split into two components when the hydrogenic
Rydberg 8 obeys

unperturbed 1S—2P energy difference = —,
' g = @u

(3)

much as the n = 1 Landau level is split when the un-
perturbed cyclotron frequency lies close to . In
addition, the Zeeman splitting in a magnetic field
of each of the two components of the LO-phonon-
split 2P level can be profoundly affected by the
electron-LO-phonon interaction. This effect is a
major subject of the present investigation.

The experimental motivation for the study of the
polaron Zeeman effect is the observation by Brandt
and co-workers that the AgBr Zeeman mass, that
is, the mass associated with the orbital Zeeman
splitting of the strong S to P transition in AgBr, is-

19%%uo higher than the measured cyclotron mass in
this polar insulator. In the parabolic-band picture,
the orbital Zeeman mass is equal to the cyclotron
mass, as we shall show. Unfortunately, the transi-
tion observed by Brandt could not be attributed to
a simple hydrogenic donor; the exact nature of the
underlying states is not understood at this writing,
although the hydrogenic model appears to be quali-
tatively correct.

The Hamiltonian for an electron in the Coulomb
field of a donor impurity ion subjected to a uniform
magnetic field in the z direction can be written

2 2

H„= — + ,' ~,L,+-,'m~', (x'+y')-,
2m E'p'v

where ~, is the cyclotron frequency eX,gmc in
the field X «, and L, is the z component of the
orbital angular momentum, given by

I.,= (xp, -yp„)=—.
s

where P is the polar angle in circular cylindrical
coordinates. Since L, commutes with H, &, we can
take the eigenfunctions of H, &

to be simultaneously
eigenfunctions of L, . These eigenfunctions have
the form

X., (r) = e'"' P. (p, «),

where p = (x'+y')'~ . Writing P in the form

8 1 9 1 g g

we see by inspection that if )(„„(r)is an eigenfunc-
tion of H„with eigenvalue E„„,then )(„.„(r)= e
&&)„(p,«) is likewise an eigenfunction but with eigen-
value -Mh&, +E„„.Thus, for example, the fre-
quency separation between the M = +1 components
of the hydrogenic 2P state in a magnetic field is
just the cyclotron frequency.

This result, derived for the simple parabolic-
band case, does not hold for nonparabolic bands.
In particular, when polaron nonparabolicity is im-
portant, one expects to observe a shift of the Zee-
man splitting from the cyclotron splitting at the
same field. In fact, different P levels will have
different Zeeman splittings. Conventionally, m„
the cyclotron mass at the bottom of theband, isde-
fined by

[&.,(1)—&.:(O) lc
mc xm«0 ~m«

where hL, ~(N) is the energy at the bottom of the
Nth Landau band. Likewise, the "Zeeman mass"
m, for the 2P state can be defined as

1 . (h„—$)c
m+ ~ „0 58Xm«m«

where 8& is the energy of the 2P state' withM = + 1.
In this paper, we attempt to calculate the energies

8„,and thereby, the linear Zeeman splitting of the
2P state of a polaron bound to a fixed Coulomb cen-
ter in a weak magnetic field.

Because the essential qualitative features of the
bound-polaron problem for moderate electron- LO-
phonon coupling strengths can be understood by
treating this coupling as a small perturbation, we
first explore polaron corrections to the 2P levels
in second-order perturbation theory. Expressions
for the perturbed energy are obtained for weak
binding and for binding strong enough to produce
level crossing. Arguing that the 2P states can be
well described by polaron effective-mass wave
functions (when the binding is not very strong) ex-
cept near the level-crossing region, we construct
approximate polaron 2P effective-mass trial func-
tions and study the variational energies obtained.
Next, we discuss the level-crossing phenomenon
from a general point of view and finally produce
2P polaron trial functions which take account of the
effect of level crossing on the 2P effective-mass
energies. The Zeeman splitting is calculated as
a function of binding from these wave functions and
compared to the AgBr measurements of Brandt.

We treat this problem in the single-impurity ap-
proximation (SIA), that is, we assume that the en-
ergy levels of each impurity can be calculated as
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if no other impurities were present in the crystal.
In the absence of electron-phonon interactions, this
approximation can be justified if the wave functions
of electrons bound to nearest-neighbor impurity
centers have, on the average, very small overlap.
However, with electron-LO-phonon interaction
present, it is not clear how dilute the impurities
have to be before the SIA is valid, because several
additional physical effects are possible at nonzero
impurity density. These include (a) renormaliza-
tion and broadening of the phonon levels themselves
(the latter effect due to elastic scattering of phonons
from impurity electrons), (b) broadening of impu-
rity levels in processes involving the transfer of
excitation from one site to another via virtual emis-
sion and absorption of phonons, and (c) shift in im-
purity-level energies due to forces between nearby
impurities arising from the exchange of virtual
phonons. One expects that processes (a) and (b)
will be strongly enhanced when the unperturbed
single-impurity ground state and some discrete
excited state (such as the 2P state) are separated
by an energy close to I&.

A number of dimensionless parameters will be
introduced in this paper. Some of these are
dimensionless Frohlich electron-phonon coupling
constant [see (1)]; P=2((R/5~)'~'; y= —,'h~, /(R; X

= &u,/&o; M, quantum number for angular momentum
along the magnetic field; and R = (R/Sv.

II ~ PERTURBATION THEORY

A. Vfeak Coulomb Binding

The Frohlich Hamiltonian for our problem in the
SIA is given in polaron units by

treating H2 as a perturbation on the eigenstates of
Kp+H, in second-order perturbation theory. We
expect that the perturbed energies so calculated
will be qualitatively correct even for & as large
as 3 or 4.

The eigenstates X& of Hp+K, have the form

where

lk, ".k.&=b-'„" b'-„10&
1

so that X& is an m-phonon eigenstate, and Q& (r) is
chosen to be simultaneously an eigenfunction of
—V —2R'I /r with eigenvalue E& and of L, with
eigenvalue M, . Thus,

(H3+Hg)X( ——[Et+ 3X M(+m]X),

where Ep will denote the ground-state energy —R
and M3=0. Let Q, (r) denote any of the thr~c 2P
eigenfunctions of Hp and let

L,P, (r) =M Q, (r) (M = + 1, 0) .

To find the perturbed eigenvalue corresponding to
the unperturbed state P, {r)I 0& with unperturbed
eigenvalue E„3(&) given by

E„3(X) = —4R+ 3)PM,
we write for the energy correction

AERs ws(X )— Q Q va
fl

E3+ 2 ~ (Mn M) ERs,wB(0) TRs, wB+1

H = Hp+H) +H2+H3

H, =- v'- m"'/r,
H, =Eb-„by+—,

'
X L, ,

H3=+ v3(e '"'b.„+h. c. ),
H3 f/' (X+y)

where

X =&8 /(d,

(8)

where the subscripts RS and WB refer, respectively,
to values appropriate to Rayleigh- Schrodinger per-
turbation theory (RSPT) and Wigner-Brillouinpertur
bation theory (WB). Thus, T„3=0and

Tws = b, Ewe(X ) —AEws{0),

which is the field-dependent part of the energy cor-
rection in WBPT. From WBPT and (11), one finds
that

Ewe(X)= —4R+3X M+EEws(X) . (12)

N,4g 4 cp1 p 5 +p

0 is the crystal volume, and lengths, energi'es,
and wave vectors are in units of r3, h&u, and 1/r3,
respectively. The operator b- creates an LO pho-

non of wave vector k.
Unless otherwise indicated, we will. neglect H3,

since we are interested only in the linear Zeeman
effect. (Terms of order ~,/& and higher will be
consistently neglected. )

Of course, we cannot expect to be able to calcu-
late the eigenvalues of H or even H - H3 exactly.
For n «1 accurate results can be obtained by

Our neglect of H3 restricts us to the weak-field
range defined by

We take y fixed in the following discussion.
When 4 R «&, we expect &E~s to be more accu-

rate than ~E&» since it is known that for R = 0
(free polaron), &Ewe for low-lying excited states
gives a much too large contribution in order a .
On the other hand, when 4 R + ~ X M approaches
Ep+ 1, the energy denominator vanishes in RSPT
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giving a divergent energy correction. In this situa-
tion, WBPT gives a reasonable energy correction,
producing the polaron-pinning phenomenon described
earlier.

The Zeeman splitting using either form of per-
turbation theory is calculated by expanding the en-
ergy denominator of (ll) giving

Eas ws( ) = as, wa(0) + o E,,as,ws, (14)

s )(4'|ie'"'(4.&('
Eas,wa(0) L ~s E E (0) i 1 t (15a)

Ec (BS,Wg))

s i &4 ie'"'i 4.& i'&A. i(L.-M - (2/~') Tws) i 0"&

~0 (En —Eas,ws(0)+ 1)
&on

(15b)

AEas(0) = —o.'- o u4 R+O(R') . (17)

The term —& is the ground-state energy of the free
polaron and —6 &4 R arises simply from the mass
renormalization in RSPT. We find no surviving
term in order 8 .

The evaluation of (15b) is not quite so straight-
forward. Details of the calculation are relegated
to Appendix A. Here, we merely quote the result
derived there for the total perturbed 2I' energy in
the weak-field-weak- binding-weak-coupling approx-
imation:

Esz(as&= a 4 (1+o +)R+s & (1 s n)M1 1 1 2 1

—s & lr (o'oR ++s,R ) M .

The first three terms on the right-hand side of (18)
are easily understood, since —& is the free-polaron
ground-state energy in RSPT, and —

4 (1+o o.') R is the

In (15), AEas, ws is simply the correction to the
energy' of the hydlogenlc 2I' state lIl the absence of
magnetic field, whereas 2 ~ ~E,&»»& is the part of
the correction linear in the magnetic field.

The problem of evaluating (15a) and (15b) exactly
remains unsolved. For Coulomb fields sufficiently
weak (R « I), one might expect that the matrix ele-
ments ) (P|fe'"'ig„&I wouldtendto be peaked near
E„+4R-k so that (15) could be accurately eval-
uated by expanding the energy denominators in
powers of 5„,where

g„=E„+~R —A, (18)

An expansion of this type was first used in the
problem of bound polarons by Platzman who at-
tempted in this way to obtain the perturbed Coulomb
ground-state energy as a power series in B. Ap-
plication of this procedure to (15a) in complete
analogy to Platzman's calculation gives in RSPT

m/mood 1 s
1 (20)

Thus, for small 8, the Zeeman mass will be
slightly larger than the weak-field cyclotron mass.

The foregoing calculation can be extended to or-
der & (quadratic Zeeman effect) by following the
general procedure outlined in Appendix A. Of
course, the energy denominator in (ll) must be
modified to include the diagonal part of H, and
expanded to order & .

B. Level Crossing, Moderate Binding

A second and very important case for which
(15a) and (15b) can be evaluated quite accurately
occurs when energy denominators in these expres-
sions become very small. This can only happen
for the n = 0 terms, which then become dominant.
In that case, (15a) can be rewritten to good approx-
imation in WBPT:

E (0)=-IR-P ' i

4 g
Eo Ews(0) + 1

—R +1 —Ewa(0)
(21)

bindingenergyof aparticleof mass m, qq= (1+o o') m

in the 2P hydrogenic state. Likewise & (I -~ u) is
the cyclotron energy of a particle of mass m, «,
neglecting terms of order o.' and higher. Thus,
for very weak external fields, the 2P energy and
Zeeman splitting is characteristic of a particle
whose mass sl ef f is just the free-polaron effective
mass in the weak-coupling limit,

The lowest-order correction to the simple ef-
fective-mass energy is the term —s & a (o'oR),

which can be shown to arise from nonparaboUcity
in the polaron energy described by the term pro-
portional to P in (2). [In our units, this term of
(2) can be written -~ op'. ] Thus, if we attempt
to simplify our problem by replacing H by the ef-
fective Hamiltonian E(s) —P/r in the Schrodinger
equation,

Hg =Eg,
where m =- V +-,'& I, in the weak-field case, then
the term —

4o o.'w in E(s) is a small perturbation on

m, and its contribution to E is
- 4'o o 8 |«) I

w'I 4i«)& = - s
~' o'(s'oR)+ 0(R')+0(~')

Equation (18) is probably not exact to order R
since contributions of this order are expected to
arise additionally from terms of order 5„,which
have been omitted from the present calculation.

From (7) and (18), we obtain for the ratio of the
bare mass to the Zeeman mass,

m/m, = [1——,
' o.-—,', nR O+( Ro')],

which is to be compared to the perturbation-theory
result for the cyclotron mass (or polaron mass),



POLARONS BOUND IN A COULOMB POTENTIAL 4213

In the absence of magnetic field (». =0), the
Hamiltonian H, given in (8), is invariant to rota-
tions. Thus, the ground state" is spherically sym-
metric, and triply degenerate excited states of P
symmetry can be expected.

A magnetic field in the z direction breaks the
P- state degeneracy, producing magnetic eigen-
states which transform as x +iy (denoted P») and

e (denoted Po) under proper rotations. Trial wave
functions transforming as P, g 0 give variational
energies which are necessarily upper bounds to the
exact energies of the lowest-lying eigenstates of
corresponding symmetry.

To motivate our choice of a variational ansatz
for the polaron 2P states, we recall from polaron
effective-mass theory' that if 8(P)e"' is the exact
free-polaron wave function expanded to order P,
then

8 (- iV) &&„(r) (23)

is the effective-mass approximation to the wave
function of a. polaron bound in the potential U(r),
provided &(„(r)satisfies

[ p'/»& +U(&)]X.(r) =[E—E(0)]X.(r), (24)

where m„&and E(0) are, respectively, the free-
polaron effective mass and ground-state energy.
The effective- mass approximation is good only
when U(x) is slowly varying in regions where
iX„(r)1 is not small and when the Fourier trans-
form of &(„(r)is strongly weighted towards low-

where C=6'5'~& nR' . As described in Ref. 6, the
solution of (21), Ew»(0), considered as a function
of R, has two branches, one branch remaining al-
ways above —R+ 1, the other always below. From
(15b), we find, again keeping only the n=0 term,

r«E«(w»&= —(M+ r«E, &w»&)/[-R+ 1 —Ew»(0)]

hence,

6E py&»
= MC/ f[ R + 1 Ew&&(0) ] + C]', (22)

Thus, if E»(0)- —R+1, the Zeemansplitting, which
is equal to —,

'
». (M+ r«E, o»»), vanishes (Zeeman

mass becomes infinite). In fact, Ew»(0) given im-
plicitly by (21), becomes close to -R+1 on the
lower branch at large R and on the upper branch
as R-0. Clearly, the calculation for small R
leading to (18) is relevant to the lower branch alone.

To provide an interpolation between the small-
and large-R limit for both lower and upper branches
and to extend the results to larger values of n, we
turn to a variational calculation of the energy of the
lowest-lying states of P symmetry belonging to

Ho+Hq+H~.

III. VARIATIONAL THEORY

A. Effective-Mass Trial Functions

momentum components.
For given value of R, the 2P states more nearly

satisfy the above criteria for goodness of the ef-
fective-. mass approximation than does the 1S state.
Taking &(„(r)to be a 2P state in (24) with U(r) re-
placed by —2R' '/r, we find that X„(r)has a mean
kinetic energy of only 4 (m~&/m)R as compared to
(m„&/m)R for the IS solution of (24). In addition,
because 2P states vanish at r=0, where the Cou-
lomb potential is most rapidly varying, the 2P
state covers, on the average, a region of more
slowly varying potential than does the 18 state.

It is important to notice, however, that (24) re-
sults from the neglect of certain terms' which,
though they may be small, are presumably capable
of connecting the state (23) to one-phonon excited
states. If (23) is itself an approximate excited
state —for example, if &(„(r)is taken to be a 2P
state —then for some values of R the terms ne-
glected in deriving (24) may couple (23) to one-
phonon states nearly degenerate with (23). In such
circumstances, the coupling cannot be neglected
and the simple effective-mass picture breaks down.
For the moment, however, we ignore this important
complication and proceed to construct an approxi-
mate version of (23).

Denoting the simple approximation to 8 (- iV),
which has already been employed in I by P(p), we
have

(f)(p) =
Uz o (f«) (1++h(k) (k ~ p) b„)

~
0),

U (f)=e '«'= &«

f.= ~«/(I+ k'),
(25)

w= (p„- ~& '&,y p, i—,
' X'x, p,),

X»»(r)=3p(P~/2w)' (x+fy)e

Xo~, o(r) =s'a(p~/w)"'« """,

(28)

where both h(k) and P&, are to be determined varia-
tio nally.

Neglecting H, in (8) as before, we find

&(e I (Ho+H&+Ho)
I ke)

where h(k) is a real spherically symmetric function
A

to be determined variationally and p= —i V.
Since both the splitting of the 2P states in a weak

magnetic field and the zero-field energy are of in-
terest, we generalize (25) in accordance with the
discussion in Ref. 12 to take into account the pos-
sible presence of a magnetic field and write for an
initial trial function g» (r, M)

A

&1&e(r, M) = 4(&) Xop, e (r),

P(») =e "' "'«'«Uzo(f«) [1+Eh(k)(k»)b „)~0), -
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= &O'- P/&+» &'I .—o'&

+E(I+k'- ~+II) ((k fr)'&h'(k)

—4+&(k Tr) &h{k)f»

+ 2 & Z (k w) (1 7r) h(k) h(l)f,f, &,
k»1

m„,/m = (1 —2$) ' . (33)

(34)

converting the sum to an integral and solving for
$ yields finally

When 8 «1, we have —&-E&+3K = 0 so that from
(31) and (29),

& =-'Kfk'f/(1+k')}} (I- &);

mhere for any operator 6,

&6 & &X»=s', »)(r)
~
f)

~ X»J,u(r)&

h = g'g o'/(I +~&» n) (r «I)
m„,/m = (1+—,', n)/(I -~o')

as' 0,
(35)

as B-O.

Z&(k ~)')h'(k),

P = RR . Performing the sums on kq keeping 1n

mind that h(k) is spherically symmetric, we obtain

8~'m
=»4Ps(3 5PJ 5P) -1 —

»
PJ

+X'~ &-—+0 &' .
PJ

& 2 (k 1)(k 5) (1 ~ 7r) h (k) h (l )f» f, ) = $ &2 ) .
k»1

Thus, denoting the variational energy by E&, we
have

(g„~(Ho+H~+H» —Ez)
~
g )

=-E~+ I —2f m ———&p
r

+ —,'Q(I+k»- oI+IE„)kh»&m )

+2)($ —1) &m'& .

The variational procedure to be followed is de-
scribed in I. Minimizing (30) with respect to h(k),
treating E~ as a constant, me obtain

h(k)=[2(I &)f,]/(I.k' .ll E„). (31)

Insertion of (31) into (30) and setting to zero the
right-hand side of (30) gives

Em=&(1-2f)~' P/~ o'&--
The expression in the expectation value of (32) is
an effective-mass Hamiltonian with polaron effec-
tive mass given by

The most important point to note is that SR is in-
dependent of the form of h(k).

If we take

$ = —'Zk h(k)f„, (29)

we obtain, upon performing the k and l summations,

The mass renormalization given in (35) approaches
the perturbation theory result discussed earlier as

0. Thus, for very weak magnetic and Coulomb
fields, our ansatz leads to the picture of a particle
mith mass equal to the Haga effective mass' moving
in the external fields. As 8 increases, me find that
rn, «slowly decreases.

It is important to realize that result (35) is valid
without restriction on the size of y and, in partic-
ular, holds for the case y- ~ with & «1 (cyclotron
resonance, no Coulomb binding). To verify this,
one need merely replace }(»r „(r)in the expression
for gs in (25) by the appropriate eigenfunction of
v —P/r, take the expectation value of the full
Hamiltonian H in g„,and observe that in the limit
R~ 0, II=0(X ). This means that, from {29)and

(31), K contributes to the energy in order 1). . In

this may, me obtain the cyclotron resonance effec-
tive-mass result

E„=&(1 —2$) v —o')ca+0()) ) {y ~) as B 0,
where (&ca denotes expectation value in a low-lying
normalized eigenstate of m, and

(I —2$) = (1+» n)/(I -
i& n)

in accordance with (33) and (35).
A more complete account of the cyclotron- reso-

nance problem mill be given in a future publication.
Turning back to the problem at hand, we note

that the optimum value of P~ in the ansatz (26) is
given by

P, = f)/(I - 2k)

and

Es —~ (1 —2$) '8+(I —2$)M& — ! o+(0X ) . (3'7)

Qf course, $ is a function of &, 8, and ~ in gen-
eral. Thus, it is possible to ask whether in the
limit n-0, Es approaches E»p&a») given in (18).
From (31), (3V), (36), (29), and (28), we find that

II= —~B+»M& +0(o.'),
so that

—~»+3R —E„=0(a);
hence, (34) is correct to order o.'regardless of how

large R or & may be. This means that E& does not
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contain nonparabolic terms of the form &R~a OI
oR X . To produce such terms in the variational
theory, it would be necessary, presumably, to im-
prove q„byintroducing additional terms into y(m)
[see (26)] involving higher powers of k 7r C. er
tainly, the inaccurate treatment of nonparabolic
effects is one of the weaknesses of our variational
approach. Hopefully, these terms are not large
for R &2.

Numerical solutions for E„areeasily computed
by iteration from initial guesses for E& and $.

It is of some interest to compare E& with the
energy of a trial function closely related to the
Buimistrov ansatz' for the lowest-lying odd-parity
state of Ho+H, +Ha with zero magnetic field.

The Buimistrov-type ansatz we use is

U~z(Ff) exp —ir Qknf Uz, ~(gp)
~
0) y~~, o(r), (38)

where the functions E„"and g„"are determined varia-
tionally with no restriction as to symmetry; P~ in

pa~ 0 is also varied. Buimistrov himself used a
normalized function of the form ge &" instead of
y2~ 0(x). The Gaussian ansatz is, however, inferior
to (38) in the range of o. and R of interest here. Be-
cause optimal I„.and g "„for (38) are not spherically
symmetric, the wave function (38) producing lowest
energy does not have pure I' symmetry. Thus, it
is not surprising that substituting yz~, (r) for yap 0(r)
in (38) produces a different (slightly higher) energy
IQlnlIQuIQ

For R ~10, a=2, ) =0, computer calculations
show that EH is substantially lower than the lowest
energy obtainable from (38). This result stands
ln sharp cont1Rst to R slIQllRr coIQpRrlson IQRde

previously for the 18 polaron state where, as des-
cribed in I, the analog of (38) was found superior
to the effective-mass wave function for R 0. 3 at
A= 2e

B. Level Crossing

Both the Buimistrov and effective-mass approaches
leave out a vital feature of the problem of excited
states of the bound polaron, namely, the effect of
level crossing.

To reduce the level-crossing problem to its
barest essentials consider a Hamiltonian which can
be written

H = Ho(f) + H'

with eigenfunctions p; satisfying

H, (~)y,-(~) = E;(l.)y, (~),
where g is some parameter in the Hamiltonian which
controls the eigenvalues (imagine, for definiteness,
that g is the Rydberg R).

Assume that Ho has two eigenfunctions P,(f) and

P,(g) with respective energies E,(g) and E,(g).
Suppose now that although E,(0) & E,(0), E,(f) grows

C= y, (l.) +n(~)y, (S), (4o)

where a(g) is to be varied, it is easy to show that
the variational energy E can be determined from
the equations

Ei + a(l )H'i2 E-—
(E.-E).(l.) = —H'„ (41)

These equations can be obtained formally by setting
Hrjr = Eg and neglecting the coupling via H' of p, and

Pa to any other unperturbed states. The solution of
(41) can be written

E(l.) =E,(l.) ~„-/[E.(f) -E(~)], (42)

Equation(42) defines aquadratic equation for E(k),
the two solutions of which give two branches for
E(g) [and therefore for a(g)]. The upper- and lower-
energy branches lie, respectively, always above
and below the energy E2(g) . Following the lower-
branch energy as g grows from zero, we find that
if M&3 is not too large, E(f), which for small l lies
near E&(g), smoothly shifts over to the proximity
of Ea(g) for f &i;,. This shift in energy behavior
with increasing g is accompanied by a shift of g
corresponding to the lower-branch energy from
being "p, -like" to "p,-like" as f exceeds g, . The
wave function corresponding to the upper-branch
energy is orthogonal to its lower-branch companion
and becomes P, -like as f exceeds f, .

The relevance of the ger".eral considerations above
to the calculation of the energy of the polaron 2I'
state is clear from the single variational calculation
outlined in Ref. 6 where g, in (40) is taken to be
the zero-phonon 2P state and a(l )p, corresponds to
a superposition of degenerate one-phonon 18 states.
As expected, the calculation of Ref. 6 is completely
equivalent to the approximate WBPT given by (21).
In particular, the lower branch of the 2P zero-
phonon state is found to pin to the 1S one-phonon
state. Since this is a variational result, it proves
that an effective-mass theory cannot be valid for the
lower branch when R ~3 and suggests that to take
into account the breakdown of the effective-mass
approximation for the 2I' states due to level cross-
ing, we must allow for free mixing of 1$ one-phonon
states into the 2I' wave function.

more rapidly with l' than does E2(f) so that for l'

= g, the levels cross [E,(g,) = E,(l',)]. Finally, we
assume that the crossing levels are directly coupled
by the perturbation 8', that is

H,', =(y, (g)~ H'~y, (g))~0. (39)

Then taking as a variational trial function the un-
normalized function g given by
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C. Final Ansatz

A relatively simple choice for the 18 1-phonon
polaron wave functions is

y„-=V„(S',)b'„
i

O) (p',/6v)"'e-"",
where

p, = p+ —,
' a,

P„=—v„/(I+k'/p', )' .

(43)

Comparison with Eqs. (13) and (14) of I shows
that (43) is essentially a product-ansatz 1Spolaron
wave function with a phonon of wave vector k excited.
The wave functions pg have the simplifying proper-
ties

&4f ~
41&=5~1

&yf (
H (y;)= [E»„+1+0(X)]5f,;,

where

Epg = —R —
gg Q(2R + 16 G)&/~

(44a)

(44b)

where S(k) is a spherically symmetric function to

be determined variationally.
The variational problem for (45) is slightly com-

plicated by the fact that the P"„arenot orthogonal
to g». Nevertheless, the minimization condition is
given, as usual, by

From I, it is clear that polaron 1$-plus-1 phonon
states which are lower in energy than (43) can be
constructed, but the price of using such "improved"
wave functions for &f&f is to complicate the varia-
tional calculation by invalidating (44b).

@le take for our final variational trial functions

0„=g»(r,+ 1)+ 2 "'i P (k„+ik,)S(k)y;, (45a)

4,=tI„(r,0)+if k, S(k)g-„, (45b)

The two solutions of (47) are approximate eigen-
values of H corresponding to a pair of orthogonal
trial functions of P symmetry. Both k(k) and Pp,
variational parameters appearing in g», are de-
termined by minimizing &g» I H I(») (keeping terms
of no higher order than A. ) rather than the full ex-
pectation value &@IH I 4 ). We find that the lower
eigenvalue solution of (47) changes only slightly
when P„is changed to minimize &O' IH 14 ), and it
is very insensitive to optimizing k(k). The upper
eigenvalue, however, is extremely sensitive to
Pp: It matters greatly whether P~ is chosen by
minimizing &@IH 14) in the lower-energy wave
function or, alternatively, by using (36). Since
we expect, in the spirit of our use of the effective-
mass wave functions, that for energies not too
close to E„z+1 the corresponding wave functions
will be effective-mass-like, we have been willing
to sacrifice a slight lowering of the lower-branch
energies for a (presumably) more accurate de-
scription of the upper-branch energies for the lar-
ger values of R.

Based on this approach, our results at n = 2 for
the energy of the upper and lower branches of the
2P state in zero field and the corresponding Zeeman
masses as a function of R are given in Figs. 1 and

2, respectively. For small R, the computations
indicate E= E»+0(R"~). Thus E, from ansatz
(45), goes to the effective-mass limit for small
R. For large R, E on the lower branch pins to
I +E» (E» approaches the exact polaron ground-
state energy as R- ~).

We have recalculated m, /m~, for the case of
AgBr studied in Ref. 6, correcting an error in the
program used for calculations reported there and
refraining from complete optimization of k(k) as

(yi(H-E)ie&=O,

with the variational energy E determined by

&q'IHIP' &=E&~l~) .
The result is

2 '~'(k„+ik,) „C(k)-EZ(k)

(46)
-0.5

-1.0

LL

-2.5

where

C(k) —EZ(k)E=E»— 1+E»~ E-(47)

Z(k) = Rei &y» I yg&

C(k) =Rei&q» IHI y-.&

(46)

Explicit computation of Z(k) and C(k) for the an-
satz (45) is quite tedious; essential details are
relegated to Appendix B.
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FIG. 1. Energy of polaron 2P level with no magnetic
field present as a function of the hydrogenic Hydberg
using the trial functions of (45) and & = 2. The dotted
line is the energy of the polaron product-ansatz ground
state plus one LOphonon [wave function given by (43)].



POLA RQNS BOUND IN A COULOMB POTE NTIA L 4217

9.0—

7.0—

O

E
5.0—

N
E

rn z/nl pp (

Upper Br ranch

(.0—

I

0.5
I

(.0 (.5

HYDROGEN(C RYDBERG

I

2.0 2.5

FIG. 2. Ratio of Zeeman mass to polaron mass at
n = 2 for polaron 2P level in a weak magnetic field as a
function of the hydrogenic Rydberg. Results are cal-
culated from the ansatz of (45a).

described above. The bare-mass value adopted in
computing m, /m„, was determined by requiring
the calculated 18-2P separation to agree with the
experimental value (167.6 cm '). As explained in
Ref. 6 the bare mass calculated in this way (m~„
=0.22m„)cannot be expected to agree well with

the same quantity determined from cyclotron-res-
onance experiments. Taking 5uLp = 124 cm-', we
obtain m, /m~& = l. 27 as compared to the experi-
mental value of 1.19. In view of theoretical and

experimental uncertainties, particularly the ex-
treme sensitivity of our result to the value of S&Lp

chosen (for h+Lo =120 cm ', calculated m, /m„,
= 1.20), we consider agreement between theory
and experiment to be satisfactory at present.

Toyozawa and Hermanson" (TH) have studied the
lower branch of the polaron 2S excited state of the
hydrogenic impurity (infinite-mass exciton). Their
trial function is

where gaz is a polaron 2S-like state of the product-
ansatz form

t(2s lrLs(Fk) I 0) [8 p (ps + 2 pas)r ]e»"
and the P„-functions are defined in (43). The con-
stant P,a and the function S(k) are determined by
energy minimization. Although TH found pinning
of the lower branch at large R, this variational
result does not guarantee that the exact first ex-
cited S state of the bound polaron will, in fact,
pin, since the energy calculated is not automat-
ically an upper bound on the exact excited-state
energy. There is, however, no reason to doubt
that the exact state does in fact pin, as concluded

by TH.
A more serious objection to the TH ansatz from

the point of view of the present calculation is that
the choice of a product-ansatz 28 polaron wave
function is not good in a variational sense. We
know from I that the effective-mass wave function
is superior to the product ansatz for B & 2 and a
= 2 for the polaron 18 state. The 2S state should
be much more nearly effective-mass-like than the
1S state, so that we expect that the product ansatz
would not be well suited for an accurate variational
calculation unless R or & is very large. In par-
ticular, as B-O the product ansatz used gives
no mass renormalization for the polaron.

Pinned states of the kind discussed here and by
TH always occur in pairs, exhibiting qualitatively
the behavior indicated in Fig. 1. Lower-branch
pinning shown in Fig. 1 would be described by TH

(who ignored the upper branch) as binding of a
phonon to the impurity. Since one would hardly
describe the upper branch as representing, in any
region, an impurity-phonon bound state, such
terminology lends itself to an asymmetrical de-
scription of a symmetrical phenomenon. For this
reason, we prefer not to speak of bound-phonon
states.

Rodriguez and Schultz'~ (RS) have studied the
problem of the strain-induced splitting of impurity
excited states interacting with optical phonons hav-
ing some dispersion. They considered not only

pinning but also line-broadening effects arising
from the nonzero-phonon dispersion. However,
the RS calculation is intended only for weak elec-
tron-phonon coupling and, unlike ours, neglects
dressing effects due to this coupling. The greatest
qualitative difference between our results and those
of RS is the possible appearance of three absorp-
tion peaks for a given impurity level rather than

two, as found here. The extra peak is a conse-
quence of a local minimum in I'»(E), the imaginary
part of the RS excited-state self-energy. In our
model, the corresponding quantity is zero for all
E. RS do not discuss directly the shift in the
strain splitting (although such shifts are given im-
plicitly in their calculation). We would expect that
the strain splitting would be reduced due to elec-
tron-phonon interaction, much as the Zeeman
splitting discussed here is diminished by this
interaction.

From the fact that Ha in (8) is linear in phonon
creation and annihilation operators, it is clear
that the Frohlich Hamiltonian does not couple di-
rectly the zero-phonon 2P eigenstates of Hp+Hy
with two-phonon 1S states of the form year)b1bt (0).
However two-phonon states can be coupled to the
zero-phonon state via a one-phonon intermediate
state. This raises the general question as to what
kind of level-crossing effect occurs when two levels
cross which interact only through an intermediate
state.
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To investigate this problem we augment the
ansatz of (40) by introducing the function P, whose
eigenvalue satisf ies

Es(f) )Ea(r) for all f,
but, like Ea(g), E, (g) grows less rapidly than E, (g)
with increasing f so that for some f = f, ,

Assume further that P, is only indirectly con-
nected to P, in the sense that

H~3 —0 but H23~

Then taking

g = p (t)+ (t) p (r.)+ 5(r.)0 (f),

we obtain

Mgp

E.—E(~) ~.,/[E, —E(~)l (49)

The roots of the denominator of (49) are obtained
from the quadratic formula

2r, = Ea+ E, + [(E, —E2) + 4Ma, ]' (50)

and (49) can be rewritten

E(C) =E (r)+barf [E(C) E]/I—E(r) r,ÃE—(t) r]—

Comparing (51) and (42), we see that the main ef-
fect of introducing p3 into the wave function is to
produce a second pinning of the upper branch of
E in (42) to the energy r„which lies only slightly
above E3 if M» is small. The energy spectrum
E(&) described by (51) has three branches, the
middle branch pinning at low g to y and at high

f to r, . (It remains to be seen whetherin ,a.

rigorous calculation, E3 actually is different from
r,).

Thus, on the basis of (51), we can expect an
additional breakdown of the polaron effective-mass
theory for excited states with energies lying near
two LO-phonon energies above the ground state.
Presumably, the argument can be extended to
states lying nk~ above the ground state. Obviously,
we have omitted such states for n &1 in our varia-
tional ansatz (45). This omission should be serious,
however, only for cases in which the 2P state lies
close to the 18 energy plus nAv with n ) l.

Up to this point, we have considered only the case
of weak magnetic field so that terms of order X

and y (=A'/4R ) could be neglected. There is,
however, no reason why trial functions of the
structure (45) should not suffice for calculations
to order y .

For stronger fields, - it becomes necessary to
take into account distortion of the hydrogenic wave
functions by the magnetic field.

While exact eigenfunctions for a hydrogenic atom
in a magnetic field are not known, variational trial
functions are available' for the distorted 1$ and
2P+1 states, which appear to give excellent ener-
gies. ' These distorted wave functions could re-
place the 1S and 2P wave functions used in (43)
and (26), respectively. Both E, and h(k) could
then be recomputed along with C(k) and Z(k) in
(47). Such computations, though feasible, are
considerably involved.

IV. SUMMARY

We have pointed out that when two bound elec-
tronic states have an energy separation close to
ko they become strongly coupled by electron-LO-
phonon interaction. The orbital magnetic moment
of each of the resulting coupled states is, of course,
a linear combination of the magnetic moments of
the uncoupled states with coefficients determined
by the respective uncoupled-state amplitudes in
the coupled wave function considered.

In the particular level crossing considered here,
2P states with z angular momentum are strongly
coupled to states of zero angular momentum. Or-
bital magnetic moment is fed from the lower- to
the upper-branch coupled state as the unperturbed
energy difference (+) between the 1S and 2P states
is increased. This occurs because, with increasing
Fil, the lower-branch wave function becomes more
strongly 1S-like and the upper branch more strongly
2P-like. (The sum of the magnetic moments of
upper- and lower-branch states is nearly constant
as a function of R in our ansatz. )

Measurement of the orbital magnetic moment
(Zeeman splitting) of strongly coupled states offers
a highly sensitive way of studying the electron-LO-
phonon interaction.

APPENDIX A

In this section, we evaluate (15b) for ~E,&»& ap-
proximately, by expanding the energy denominator
there in powers of 5„defined in (16).

Using the fact that the lQ„&are eigenfunctions
of L, , we can write

Then

z(RS) ~ k (E„—Ei+ 1)
(A 1)

Expanding the energy denominator in powers of 5„
gives

1 1
(E„—E, + 1) (1+k + 5„)



1+ 0' ( ~ (,' (( 0')' (1 ~ (.')'((+),'+ ll. ) ) '

(A2)

Inserting (A2} into (Al) after setting 5„=0 in the
denominator of the coefficient of the 6„'term, we
CRll evR111Rte 'tile 1'esultlllg sllllls Oll tl llslllg (l6) RIll
the identity

&.(R. R(-) &e; Ie'"'Ie. &&a. le '"'(~b, »-.) I«&

=&a;I[1. '"'( b, -yb. )le;&, (As)

where [ ] stands for the repeated commutator de-
fined by

APPENDIX 8

We indicate here how to evaluate the matrix ele-
xnents

z(k) = Re 1 &y„ly„-&,
(" (k) =Reig'iiI III Q)", &,

I(1)„&=exp(- ir ~ Z kn„-)Ul,~(fg)

x [I + yn(k)k ~ lf b~] lo) X, ( )

I y,&
= U„(z,) b-„'lo),

nt, = blab„"

Since we have truncated. the expa.nsion (A2) to ex-
clude powex's of 6„higher than the third, we need
only evaluate the commutators up to [ ]3. These
can be written, defining p=2R

[],e '"'= —2p k+0',

[],e '"'=(2p*k+u')'-(2/i)k ~(-P/~),

[ ],e '"' = {-2p k+ k') '+ [(- 2p k+ b') ', —P/r]

- (2/1) [k p(- p/~)] (- 2p k+ b')

In Z{k), we encounter phonon matrix elements of
the form

&ol U.'.(f, ) m( ~ . ~ k „-)U-(~.) I », (»

&IIU,', (f, )exp(fr Zkn, )U„(Z,) I k& . (Bsb)

Using the deflnltloll of Ul, g given ln (26) and the fact
that

exp(fr ~ Zk n-)b'- exp(- ir pk) = 6'" '"g

- (2/i)[k v(- P/~), P].
Since (A3) is a diagonal matrix element only the

evell pR1't (ill elec'tl'oil cool'dlllates) of [ ]~e
x (xk, —yk„)contributes. Thus, we need consider
only the odd parts of [ ]3 e '"' in (A4), the factor

(xk, —yk„)being odd in the electron coordinates.
Performing the sum on n in (Al) with (A2) in-

serted, we find that terms proportional to 5„and
5„givezero contrlbut1on. In the limit of 1nf1n1te

crystal volume, we convert the sum on k to an in-

teg ala d obta f1 ally

d'0
n'Eg (Rs):— 1 b2(I Q~)3

we can write (82R) as

Using the identity
A a &+a pw, ag/3

and the substitutions

A= —Zf1(b), —b),),
g (eiE '5y bt 6 i'll'y b )-.'

we obtain for (84) the expression

(0IU (8„-(r))lk&e'"',

(84)

= —M(—,
' n+ —,', nR++, , nR') .

Thus, the total perturbed 2P-state energy given by
the present calculation up to terms linear in the
magnetic field ls, for R&& 1,

R2~(a8) = —n —(I+ 6 n)gR+4& (I —
8 n)M

—1X n(()OR+~()SR )M.

The inner product in (O'I) is now easily taken by

expanding the exponentials, The final result for
{BSR) is

-9„-(r)exp[- 2 Z I 0-„(r)I ']6'"'~ . (86)

c" f(1') = -f1+8 E1 .

Again using (85), this time substituting according to

& = 81(r)b-„,8 = -8-„(r)bg,

we can rewrite (86) in the form

&0I exp[& a,*-(r)b-'„]exp[-pu -„(r)b-„]lk&

x exp[--,'~l ~;(r) I']6'"'.
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In exactly the same way, we find for (B3) the result

[dpi —8;(r)A'p(r)]exp[- 2Zlg.„(r)l )e'"' . (B9)

In this way, we obtain

x Uze(f„)exp(ir. Qknp) U~e(E„),

where we have used

f, + v„=—k f~ and Q(f„+2vp„)= —2 n .

(Bl1)

Z(k) = Hei [f, ()(p l(l+ZII 7re"'h, f ) e "'"'e'"'l 1(, )

+b(&) ()(.I(k')""'e "'"'lx.&] (B10)

where

Angular integrals involved in evaluating (B10) can
be performed analytically by partial-wave expansion
of the plane-wave factors appearing in the inte-
grands. The remaining evaluation amounts to a
double integral evaluated at each value of 4' of in-
terest, This is easily performed by computer.

Much the same kind of calculation applies in the
calculation of C(R). Here it is convenient to employ
the relation

ULa(f~) exp(ir ~ Qkn~)HUz, e(f~)

= Ut~e(f~) exp(ir Zkn. -„)Uz, e(E~) (v —P/r)

+ [Qnp- QIPf~(bII+bI) —a o']

Examination of (Bl1) indicates that in addition to
(B3a) and (B3b) the phonon matrix element

(lml U~e(fl) exp(ir Qknp) U~~(E~)
l
k)

is required. By the previous arguments, we can
show that this matrix element is given by

[BID g ~ (r) + &-.„81(r) -8 p (r) 8-*(r)8- (r) ]e "'"' e ' "'"

and that

C(R) = (- ~ P, —o.'+ I) Z(k)

+ Hei g" l
(p. P)fr—+ & (r )

I e' &
(B12)

-f, Itei ()(, le'"' e "'"'(I+a'[I+ri(r)]]
l Xp),

where

g(r) = QI 'f~-E~e' ",
g(r) = -~+— —[Zge' 'h(l)E, ] .p 1
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