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Systems of crystalline ionic solutions containing impurity cations and associated compensation
defects are described. Interactions between aliovalent ions and compensation defects give rise
to configuration partition functions which predict a distribution in ion-defect pair separation
distances at low temperatures. At elevated temperatures such ion-defect pairs dissociate, and
the concept of pair formation more appropriately gives way to the concept of pair correlation
functions. The relative sizes of the aliovalent ion and the host ion which it replaces are seen
to exert a pronounced effect on pair distribution. Salient features of the theory are applied to
the KCI: Sr ', NaCl: Mn2', NaC1: Sr ', LiC1: Mn ' and (alkaline-earth halide): (rare earth)3'
systems. While the high-temperature treatment lends itself to comparisons with the Debye-
Huckel theory for electrolytes, the low-temperature pair distribution theory is shown to be
valid chiefly because of the specific nature of the crystalline ionic solutions.

I. INTRODUCTION
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where R„A2, . . . , R2„, are the position vectors of
the Ã& eations and ¹,anions and 'u and g denote
repulsive and attractive interaction energies,
respectively. At low temperatures at which only
the attractive terms are important, it has been
shown that the canonical configuration partition
function

Z = Q exp [—U(RI, A2 ) ~ ~ ~ |RRN )/AT]).(2)

where a. c. denotes all configurations, reduces
to a product of "molecular" pair parition functions,
such that~
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where g, is the number of equivalent positions at
wlllcll R defect (1 8. R unlIlegRtlve 1011) call be

The law of equilibrium distribution which governs
the low-temperature pair formation of divalent
cations and cation vacancies in alkali halides
and that of trivalent eations and interstitial anions
in alkaline-earth halides has been useful in the
interpretation and prediction of spectroscopic
data on compensated lattices, ' in which aliova-
lent cations and lattice defects interact as ions of
opposite unit charges in a crystalline solution.
In general, N& unipositive ions and N; uninegative
lons give rise to a total interaction energy fol a
given configuration,

&(R„R„.. . , R,„,)= Z" Z u(R, )
j&i& j& &t

situated about an aliovalent cation (i.e. , a uniposi-
tive ion) at a separation distance of R, . The index
l denotes the number of neaiest-neighbor separa-
tion, Rlld. RI = (21) 0 111 RlkR11 11Rlides slid RI
=(2l —l)'i a in alkaline-earth halides, a being a
characteristic lattice parameter for the host
crystal. '3 The sum over / is carried from l =I
to E =/', where I' is arbitrarily chosen such that
q~ does not change appreciably in summing beyond
I'. Q~ is the number of ways of placing N; ion-
defect pairs in a finite host lattice. At a given
temperature for which EIl. (3) is valid, the number
g, of pairs of separation R, is

~r -j e-"u (8&)/OT

which has been shown to be the case in the Kcl:
Sm ' ' and the CaF2:RE (RE denotes rare earth' )
systems at apyropriately low temperatures. At
high temperatures at which the ion-defect pairs
dissociate to an appreciable extent, Eels. {3) and
(4) become meaningless as we must include the
repulsive terms in Eq. {l) in our evaluation of Z.

The purpose of the present work is threefold:
(R) to generallse tile tl'8Rtnlellt Of 1OI11C solutions
in crystalline lattices by extending the consideration
of Z to high temperatures; (b) to extend the dis-
tribution calculation to several crystalline ionic
solution systems and thereby examine the effect
of the relative sizes of the aliovalent ion and the
host ion upon the distribution of pair formation;
and (c) to clarify the validity of Eq. (3), which
results from a conceptual argument rather than a
rigorous derivation. Differences as well as simi-
larities between our treatment of the crystalline
ionic solutions and that (e.g. , the Debye-Hiickel
theory) of ionic solutions in fluid states will be
emphasized.
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II. HIGH-TEMPERATURE PARTITION FUNCTION
AND PAIR CORRELATION FUNCTION

In rewriting Eq. (2) for the configuration parti-
tion function at high temperature, and in taking
into account all the attractive and repulsive terms, .

we define the following quantities as a measure of
departure from ideality ().e. , the absence of in-
teractions between the ions):

+g e-+u (Rg)AT
g~y —e

+g Q(R g~) I~~i)m-e

wg ~ g (gyp )/ j'g g

~op

such that
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For a, given configuration,
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+ higher terms,

where there are —,'N, (N, —1) identical terms in g'f, /

which is identical to g'f)„, N, in g f», 8 N; in
g'f;/'f;. /. which is identical to g'f)„'f).„., , N, in-
/ f» f&p. , N; in g'f;—/ f» which is identical to
g'f) f», and —,'N, in g'f;/'f)„. The meaning of the
sum of 'f, / over all configurations

0p g/ = 00 (2N), N)

where Qo(2N;, N) is, for example, the total number
of configurations for the random mixing of 2¹ions
on N available lattice sites as in KCl:Sm '

ii, (2N„N) =N!/(N, !)'(N 2N-, )!
Since g/g/=N —1, we obtain

n=N!/(N, !)'(N-2N, )!(N-1) .
Further analysis of the terms in Eq. (6) in terms
of 0, g&, ¹„N,'N, and u, readily leads to the
following expression for the configuration partition
function in the case N, /N«1:

Z=Q (2N, N) 1+ ' [Pg (e "~s/)/Pr —1)(N-1) /

N]
+Z gp (e "NP) —1)] + "other terms",

(i4)

where the contribution of the "other terms" be-
comes negligibly small for a dilute system in which
which N;/N«1. Neglecting the "other terms" in
Eq. (14), we write for the internal energy due to
configuration interaction,

BQ
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can be examined in the following manner: For a
given fixed R,~, there are Q' ways of arriving at
all possible ways of arranging the remaining
2(N, —1) ions, such that

pl p (8 uo) )/)/pr 1)
L» Ce

where the sum is carried over all possible values
for 8,&. Fixing the position of the ith ion as the
center of our new coordinate system, we have 8&&

=8&, the distance of separation of the jth ion
measured from the origin,

Z 'f„=a Pg, (e '"'"/""—1), (10)
LC

where g& is the number of equivalent positions about
the ith ion (i. e. , the origin) at 8/. The prime on
0 has been dropped due to the coordinate transfor-
mation. The determination of 0 can be made by
realizing the fact that

u, ="u(I~,) =--u(Z, ).
From Eq. (2), we obtain

4 Pa A
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Upon substitution of Eq. (1) in Eq. (17),

V = —Z [2Z Z 'u(It, , ) e-""'+ZZ -u(Jt„)8-""']
g aoCo g g g p

~~"V~ -v/nr +» -U/n~
8T a p

(Ia}
Since there are N, (N, —l)-N, identical terms in

g, g/'u(B, /)e /P and N, identical terms in

/pe u (R») e /, we rewrite Eq. (18) in the equi-
valent form (replacing 8,/ by B,2 and Jt» by
~)(N) +))) i



FONG, FORD, AND H KIST
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Comparison of Eqs. (15) and (23) yields

'G(R, ) = z 'g, e '"l"
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which gives a measure of the probability of finding
a+ or —ion at a distance R, from the center of
ol lgin,

There is the probability [N(/(N- I)]'G(R, ) of plac-
ing one of the N, + or -ions at a distance R, from
the central positive ion. Since there are N, positive
ions, the total number 'n*, of pair interactions at
R, is given by

e u (R 1(Ãl+1) )

B1 BCN,.l) 8T

2
+G(R )- (

g e&«(/ar (25)
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We now define the generic distribution functions
{2}.

4

'p"'(A„) =N", ~'&(R„)
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The total number of attractive interactions at all
values of R, is N, , i. e. , from Eq. (25),

N'
Na ( gg e-//(/«1'

(N —1)z (25)

Z g, e-"l'"=(N —1)z=q .

8=2/ g, cosh —1
ug
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This is true only when u, &kT for most important
values of R„when q- (N —1) and z-1. The re-
sulting condition from the definition of z in Eq.
(16) is

Z "Z
BP 3' N ~

B{fN&+» '"B2N,.

A A

e-v{B1 B2~" R2N &!AT
f', , (20b)

In Sec. III, we shall make sample calculations of
'n(«according to Eq. (25).

G(R») = (N/N, .)'p'"(R(3) . (21)

Performing a coordinate transformation fixing a
cation as the center of origin,

'G(R, ) = (N/N, )"p'"(R,),
where the + and —signs denote the charge of the
second ion that is R, away from the origin. Upon
substitution of Eq. (22) in Eq. (19), we obtain

f/= —„' Z u, —I' ~~('G(R, ) —G(R,)]

where 'P '(R,,2) is the specific distribution function
giving the probability of finding the second like ion
at 8'2 with the first at R„ the sum being carried
over all possikhe position vectors for the remaining
(2N, —2) ions, and ~( '(R,(~,»)hasthe samemean-
ing for two ions of opposite charges. The pair cor-
relation function, or the radial distribution function
is given as

III. INTERACTION POTENTIAL AND CONVERGENCE

Ill the evalllatloll of Z ill Eq. (14) we have «u

= ae /tR( (except for the nearest-neighbor inter-
actions which are briefly described in Sec. IV),
where e is the electrostatic unit and & is the mac-
roscopic dielectric constant of the crystalline lat-
tice. In neglecting the "other terms" in Eq. (14)
in arriving at Eq. (25), however, we have in es-
sence overlooked the presence of all the other ions
in our consideration of the interactions between
given pairs of lons As a 1esult of this lt can be
easily shown that 8 in Eq. (28) diverges unless a
screen e & is invoked for Coulombie interactions
at large R, as in the Debye-Huckel theory, where
f/= (8((N(e /e. V/(T) /3, V being the volume of the
system.

In the numerical evaluation of Z, we need to
define u, for all values of R, . %e assume that
when u, /kT& 0.1, u, = (e~/eR, )e '"l At/=1 and.
2, polarization effects as well as Coulombic in-
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teractions must be taken into consideration in the
~' l = 3 we assumeevaluation of u& and u2. ~ At l —3,

purely Coulombic interaction which is reasonable
ew of the previous investigations. 'y In the

intermediate region R, & R, & R, wi.ere is
value of R, at which u„/kT-0. 1, u, is assumed to
have the following form

—~ - --"""-""],expL s & m (29)

which provides a smooth interpolation from the
screened Coulombic interaction atR &R tothe
pure Coulombic interaction at R3. By employing
the appropriate lattice descriptions for g, as a
function of l ~ the configuration partition func-

Z in E . (14) has been evaluated in sum up to
/ = 1350 (Rtms = 163.16 A) with a CDC 6500 compu er
for the CaFa. RE (&=6.7, ut= -0.477 eV, an

us = —0. 300 eV)a and the KCl:Sr '
(& = 5.03, u~ =

—0. 39 eV, and ua = —0.50 eV)' systems. The de-
pendence of

s =[a (2N„N)&]""» (30)

on N& and T is given in Fig. 1 in the region for
1 & s & 1.2. Some typical calculations are listed
in Table 1. From E»l. (25), '»»f has been calculated
for CaF2. RE at T=900, 1100, 1300, 1500, and
1700 K with N, = 10'7 cm '. The results of this
calculation are shown in Figs. 2 and 3~ ~

d 3forl &21.
In sharp contrast with the low-temperature distri-

1.20

1.18-

1.16-
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1.12-

Z

I.IO-
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1.06-
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1.022-

1.00
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10' 1017 10'10

N,. (cm ~)

FIG. 1. Variation of z with N; at 1100K,K,A, 1300 K

(B), 1500 K (C), and 1700 K (D) for CaF2. BE '. The
symbols 0 and & represent calculations for the CaF&. RE '
and KC1:Sr2' systems at 900 K, respectively.

TABLE I.
[cosh(p ~/k T)
CaF2. RE

System

KCl: Sr '
CaF2. RE

Some sample calculations of R S =2 g»g»
—1], and z = 1+ (N&/Ã) S for KCl: Sr ' and
The sum S is carried to l =1350.

T Ng

(K) (cm 3)

900 10
900 10 ~

1100 10
1300 10
1500 10ie

1500 10"
1700 10~5

1700 10~6

1700 10~7

118.17
110.35
103.68
97. 50

128. 02
91.85

135.19
117.18
86. 69

S
(10')

35.613
24. 684
15.179
9.888

10.577
7.240
9. 141
8. 084
5. 569

1.198
1.100
1.062
1.040
1.004
1.029
1.000
1.003
1.023

IV. LOW- TEMPERATURE PAIR DISTRIBUTION
CURVES

The results of the high-temperature treatment
given in Secs. II and III differ in a fundamental
manner from those of the low-temperature treat-
ment. From the high-temperature treatment,
the concept of pair correlation functions evolves
which leads to the total number 'n*, of pair inter-
actions at a distance R, between the interacting
ions [Eq. (25) and Figs. 2 and 3]. The effect of
the presence of other ions about a given cation in
the high-temperature treatment thus, in essence,
averages out isotropically, so that the cubic en-
vironment of the host lattice becomes the dominant
perturbation for the crystal field symmetry. In
the low-temperature limit, however, the picture
is one of cation-defect pairs, and the cubicity about
the cation is lowered to some symmetry prescribed
b the osition of the defect relative to the cation.
In this section we shall first extend the low-tem-
perature distribution calculation to several crys-
talline ionic solutions in order to observe certain
trends. The fundamental differences between the
high- and low-temperature treatments wi eill be dis-
cussed in the closing paragraphs in Sec. V.

At low temperature and high dilution, screening
due to other impurity-defect pairs may be ne-

bution curves, in which practically all the cations
are paired with associated compensation defect
anions, we observe from Fig. 2 that in the high-
tempera re castu e under conditions specified above,
only a small fraction (10 -10 ) of the cations are
in close association with the compensation defects.

several orders of magnitude lower thanis S
1n~& at small l, which is to be expected. Clear y,' *&" * increases exponentially with T, approachingn& n, inc

unity as Z- A (2oN„N) More.over, at It»»B„,
-u*=- 'u+ = [N, /(N —1)z]g-»,2 (31)

which follows from E»l. (25) since u»/i'»T 0 at ft»
»R . For N&=10 cm, "n*, -'n*, -10 g, .
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the ints areand 1700 K (4) The curves connecting e poi
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of the calculations.

and the interaction energy u, mayma be re-
llb tthgar e asd d purely Coulombic for a u

airs The de-d nd nearest-neighbor (nn) pa&re.and secon
ic otential atarture from a purely Coulombic po e

1 val l '
d to the repulsive interac-small valI values of is ue o

d to the polarizationt' from electron overlap and o e pion
't -defect pair. Val-of the 1attice about the impurity-

the first and second nn interac-ues for u& and uz, e ir
been calculated or measured

for the following systems: NaC1:Sr u, = —0. e

d LiC1:Mn'(u&= —0.3 eV, u2=
—0.26 eV). Using these values and Eq. , w

have calculate si e syt d 't symmetry distributions with
to l'= 200 in the manner previouslyq& summed to = i

F 4-6.descri e'b d The results are shown in igs.
4-6 and the distribution curvesFrom Figs. — an

1 determined for the KCl:Sr sys em,previous y e er
urit ion de-we observe that as the size of the impuri y

or conversely as the lattice spacing ofcreases, or conver
nn corn ensationthe host increases, the second nn comp

more robable. Although the
unavailability of u, and uz for (alkaline-earth a—

F de rives us ofide, :RE ' systems other than Ca z p
mmetr distribu-d t led calculations of site symm y
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led a similar trend in thesevestigations have reve ale a ' e
10 11 For example, first nn compensa ionsystems. ~ or

bilit for the
t observed for the BaF&.Yb and

:Gd '" systems, while the proba ' '
y

RE"..t...;.first nn compensation in CaF~:R s
e lanation of thisf d to be predominant. An exp

one of the termstrend can be given by considering o
contributing to the binding energies of the first
and second nn pairs. This term,

'd the effect of the size of the
impurity ion on the binding energy of the pair.

for the fact that the perturbing impurityaccounts for e ac
t nl a source of electrostatic po lariza

t but as its ionic radius may e qui etion, u,
ced it may alsoh t f the cation it has replaced,

Eacha source of displacement polarization.be a source o i
'n the surrounding lattice undergr oes a purelyion in e

entl roduces aelastic displacement and consequen y p
hich has the net effect of al-

the binding energies of the impurity-defecte ring e in
When the impurity ion decreas

will bethe nn shell of host anions, in particular,
d. These displacement dipolesdisplaced inwar

be-the effect of increasing the shieldingwill have t e e ec
tw the impurity ion and its firs nn

ensations, thus reducing u&. The quan
'

y
ll rease as the second nn de-the other hand, wi incr

th
t the impurity ion due to the

inwar sp ad di 1 cement of the nn host anions, us
in for the observed changes in the re

abundance of the first two nn pairs.
tions under w ic eh' h th results discussed in the
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present section are valid will be elaborated in
Sec. V.

1.0

V. DISCUSSION

1.0

0.8

0.6

Il

Ni
0.4

0.2

I

200

C~v(2 2 2) Cpv(2 2 0) Cs{3 I 0)
I I I

400 600 800

The high-temperature treatment given in this
work is valid under the condition Eq. (28), which
will be satisfied at high temperature and high dilu-
tion. In the Debye-Huckel theory, the basic as-
sumption is that 'G(R) =e' "'/" which is, in es-
sence, the same statement as Eq. (24). Our high-
temperature treatment thus lends itself to com-
parison with the Debye theory, except that the dis-
creteness of the crystalline lattice provides us with
a unique handle on the evaluation of the pair corre-
lation functions 'G(R, ) and 'n] .

The low-temperature treatment' reviewed in
Sec. I and further elaborated in Sec. IV, on the
other hand, is completely different in nature. If
equilibrium conditions are attained at finite ionic
concentrations, ions of opposite charges will pair
as temperature decreases through attractive Cou-
lombic interactions. At sufficiently low tempera-
tures these ion pairs will cluster through higher
polar interactions such that precipitation eventually
results. This is the case, for example, in an
aqueous solution of KCl. In crystalline ionic solu-
tions of the type described in the present paper,
however, true equilibrium is not readily attainable
at low temperatures due to the low mobilities of the
aliovalent cations. These cations are, in fact,
"frozen" in a metastable equilibrium characteristic

0.8

0.6

N.
, 04

0.2

I

200

Cs(3, 1,0) C~v(2, 2,2)+
I I

400 600 800

FIG. 5. Probabilities ni//N& of finding C»(1, 1, 0),
C4„(2, 0, 0), C~(2, 1, 1), C»(2, 2, 0), C,(3, 1, 0), and
C»(2, 2, 2) sites in NaC1: Mn+ {Mn ' ionic radius = 0. 8 /(;
Na' ionic radius = 0. 95 /().

of some higher temperature, in which they are well
dispersed throughout the entire lattice. The as-
sociated defects (i.e. , the anions), on the other
hand, possess much greater mobilities so that they
can equilibrate through attractive Coulombic forces
in pair formation with the cations. For example,
the K" vacancy in KCl has a migrational activation
energy of 0.63 eV. Assuming the value 10 given
for the preexponential frequency factor for the jump
of a K' vacancy from one lattice position to an ad-
jacent one, the time required for thermal equilib-
ration of the vacancy about a divalent cation will
be on the order of 10 ' sec at 300K. ' We thus
visualize the formation of cation-defect pairs which
cannot aggregate through higher polar attractions
at low temperatures. In some proper temperature
range, therefore, we have N& pairs whose mutual
interactions are negligibly small (at sufficiently
high dilution), and Eq. (3) results. The conceptual
model depicted in Eq. (3) requires that the ensem-
ble of ions is divided into N, cells, each of which
containing one ion-defect pair. The "molecular"
pair partition function q~ must be summed over all
(N/N~ —1) lattice points per cell. The model will
be valid if the occupation probability is significant
only for the first few nn positions, i.e. ,

FIG. 4. Probabilities n&//+& of finding C»(1, 1, 0),
C4v(2s s 0), Cs(2s 1, 1), C2v(2, 2, 0), Cs(3s 1, 0), and

3»(2, 2, 2) sites in NaC1: Sr ' (Sr ' ionic radius = 1.13 A;
Na' ionic radius = 0. 95 A). The symmetry notations have
been explained in Ref. 1.

(33)

For example, q~-10 and 10 at 300 and 500 K,
respectively, for KCl:M». For N, =10'' cm s, N/
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I.O

0.8

0.6

0.2—

I

200

C~(2,2,2) C2v(2, 2,0) Cs(5, ),0)
I I

400 600 800
T(K)

FIG. 6. Probabilities n&/N; of finding C»(1, 1, 0),
C4„(2, 0, 0), C~(2, 1, 1), C2„(2, 2, 0), Cs(3, 1, 0), and

C»(2, 2, 2) sites in LiC1: Mn
'

(Mn
' ionic radius = 0. 8 A;

Li ionic radius=0. 60 A).

N, 10', and Eq. (3) is thus valid for T& 500 K if
pair formation equilibrium is attained. (At T
«300 K even the K' vacancy mobility will be too
low for thermal equilibration. ) At higher dilution,
Eq. (3) will be valid at lower temperatures.

Finally, we return to the high-temperature re-
sults in an assessment of their applicability to real
systems. The calculations have been made at
sufficiently high dilution (10 ~-10 cm ) and tem-
peratures (T & 900 K) in order to ascertain the
condition stated in Eq. (28). The concentrations
of intrinsic defects were ignored in all our cal-
culations for the sake of simplicity. In reality,
however, these concentrations are by no means
negligible at T& 900 K. In KCl and CaF2, for ex-
ample, the intrinsic defect concentrations are on
the order of 1P cm 3 3 and 1Q cm ~~p ~ at9QPK,
respectively. It is therefore necessary to extend
our treatment to include the interactions due to the
presence of intrinsic defects in the evaluation of

Z, which presents no serious difficulties. At T
& 900 K, however, the intrinsic defect concentra-
tions in CaF, exceed the range in which Eq. (28)
is valid, being as high as -10 at T=1300 K. An

adequate treatment of such a situation would re-
quire an inclusion of the "other terms" in Eq. (14).
The results reported in Secs. II and III neverthe-
less represent a quantitative, albeit idealized,
approach to the fairly complex problem of inter-
acting dissociated ions in a periodic crystalline
lattice. Equally important is the fact that through
the contrast between these results and those ob-
tained through the low-temperature partition func-
tion Z of Eq. (3), several novel features of the
pair distribution theory have been elucidated. The
spectroscopic observation of the predominance of
"cubic" sites in CaF, :RE systems when they are
quenched from elevated temperatures is, in fact,
experimental evidence of the results shown in
Figs. 2 and 3. At T=900 K and N, =10' cm ', only- 2&&10 '-cm ion-defect pairs are within l & 21
(Fig. 2). Since the compensation crystal field
potential varies as A, ~' ' where k & 0 is the rank
of the spherical harmonic in the corresponding
crystal field potential expansion, the crystal field
effect of the more distant compensation sites would
be negligibly small as the cubic environment of the
RE ion becomes the dominant factor in the spec-
troscopic observations. The predominance of
cubic sites in CaFs (which is not observed in the
KCl:M' systems'~ s) arisesfromthehigh migra-
tional activation energy 1.51 eV' of the compen-
sation F interstitials. At 600 K, the time re-
quired for thermal equilibration of the site dis-
tribution characteristic of the low-temperature
range is 1 sec. At room temperature (-300 K),
however, the time required for thermal equilibra-
tion is on the order of 10 years. Rapid quenching
to room temperature, therefore, would cause
freezing of the high-temperature equilibrium de-
picted in Figs. 2 and 3 in a metastable equilibrium.
In view of the present discussion, it appears certain
that quenching from elevated temperatures of al-
kali halide: M systems to T «300 K should also
give rise to a predominance in cubic sites, which
char acterize the high-temperature equilibria.
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Approximate polaron effective-mass trial functions are constructed to describe 2P hydro-
genic polaron levels in weak magnetic fields. Breakdown of the effective-mass description
due to level crossing of the 2P effective-mass states with 18 one-phonon states [denoted (18,
1)]necessitates admixture of (18, 1) states to the initial effective-mass state in order to
achieve lowest cariational energy. The effect of mixing in the (1S, 1) states is to produce,
effectively, a double-values 2I' energy and to reduce considerably the linear Zeeman split-
ting near the point of level crossing. Level crossings with (1S, n) states for g&1 are ex-
pected, on the basis of a heuristic argument, to produce similar discontinuities near the
respective crossing energies. Perturbation theory is used to find expressions in the weak-
coupling limit for the Zeeman splitting in the limit of weak binding, and, for stronger binding,
near the (1S, 1) level crossing.

I. INTRODUCTION

A slowly moving electron in the conduction band
of a polar crystal finds itself surrounded by lattice
polarization charge induced by the electron's own

Coulomb field. Treating the lattice as a polariz-
able continuum one can show' that in the simple case
of a parabolic conduction band the electron-lattice
(or more precisely, electron-LO-phonon) coupling
strength is characterized by a dimensionless con-
stant n, given by

1 1 1 e
2 e„eo (rob&) '

where ro= (h/2m&) I~. The length ro turns out to be
essentially the radius of the polarization charge
distribution surrounding the slowly moving electron
(unless n is very large). This complex of electron
plus polarization cloud is the so-called polaron.
%e have used m for the electron band mass, h for
the energy of a long-wavelength LO phonon, and

c„and co for the high-frequency and static dielectric
constants, respectively, of the lattice.

If & ls not too lalge, the polalon energy, which
in the absence of interaction is simply P /2m, be-
comes with interaction

E ) = —nN&0+ P 3 P
2m(i+ n/6) l60 I'a~

(2)

Thus, carriers in a nominally parabolic conduction
band will behave as if the band were, in fact, non-
parabolic, due to the terms in {2)proportional to
P', P', etc.

Polaron-induced nonparabolicity has been clearly
demonstrated by cyclotron-resonance experiments
in InSb ' and CdTe. In these experiments, the
magnetic analog of E{p) is probed by measuring
the n =0 to n =1 Landau-level energy separation as
a function of magnetic field.

Perhaps the most striking aspect of polaron non-
parabolicity is the pinning phenomenon' observed
at fields large enough to bring the unperturbed
(n =0) cyclotron frequency close to &. At such
fields, the cyclotron resonance appears to split
into two branches, one always lying above I in
energy, the other always below. The lower-branch
energy approaches I'w with increasing field, while
at the same time the upper-branch frequency be-
comes close to the unperturbed cyclotron frequency.


