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Elastic constants and phonon dispersion curves for crystalline argon at low temperatures
are calculated using the accurate pair potential function developed by Bobetic and Barker to-
gether with the Axilrod-Teller three-body interaction. The phonon dispersion curves are in
good agreement with experiment, but the elastic constants show substantial differences from
current experimental estimates.

We calculated harmonic elastic constants by the
method of long waves. Wave velocities v were cal-
culated for the longitudinal and transverse waves
in the (100}, (110},and (ill} directions, using the
equation

c=dv/d~ j~, (1)
in which v is the frequency and q the wave vector;
the derivative is evaluated at jql = Q. The frequen-
cies were calculated by the method described by
Bobetlc R11d BRl kex'.

The harmonic elastic constants c,".; were then cal-
culated by solution of the equations
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where the wave velocities v&, vz, v3 correspond to
longitudinal (100}, transverse (100}, and slow trans-
verse (110}waves, respectively. To check the cal-

I. INTRODUCTION

Theoretical calculations of low-temperature elas-
tic constants of argon using Lennard- Jones 6-12
potentials have shown discrepancies with experi-
ment, ' although the calculated phonon dispersion
curves were in fair agreement with experiment.
To check whether these discrepancies are due to the
somewhat unx ealistic form of the 6-12 potential,
or to neglect of the Axilrod- Teller three-body in-
teraction, we have made calculations using an ac-
curate pair potential derived by Bobetic and Barker, 3

which gives excellent agreement with experiment
for a wide range of properties of gaseous and solid
argon, including the low-temperature specific heat
and thermal expansion of crystalline argon. These
questions have been studied by Chell and Zucker,
by Goetze and Schmidt, and by Huller et gl. , but
the pair potential used here is much more realistic.

II. ELASTIC CONSTANTS

culation we confirmed that the resulting elastic con-
stants reproduced the remaining wave velocities in
the three directions.

We computed anharmonic corrections using the
method of Barron and Klein, and neglecting the
three-body interaction. Since the anharmonic cor-
rection amounts to only about 8/c and the three-body
interactions affect the frequencies by only a few
percent, the error due to neglect of three-body in-
teractions in computing anharmonic corrections
should affect the elastic constants by only a few
tenths of a percent.

In the method of Barron and Klein, theanharmonic
c;, are given by

c„=e»+ P»(1)V,/V,
ci2 = cia+ ~Pi2(1)+&)U./1

c,4 = c44+ [P44(l) —
2 yj U,/'V,

(6)

(7)

in which U, is the zero-point energy and V the vol-
ume. The Gruneisen parameter y and the quantities
P&~(1) may be calculated from certain lattice sums
which are set out in the paper of Barxon and Klein;
we evaluated these lattice sums by straightforwaxd
methods (omitting thr ee-body contr ibutions). Note
that in evaluating these sums we summed over all
neighbors, so that the present calculations are more
accurate than those of Bobetic and Barker (but con-
fined to O'K).

In Table I we list harmonic and anharmonic values
of the elastic constants, calculated both without and
with tjle three-body lntex'Rctlons. For comparison
we list also results of other theoretical calculations
and the experimental results of Keeler and Batch-
elder, ' dex ived from ultxasonic measurements
and extrapolated to 0 'K. The bulk modulus I3, the
anisotropy A. , and the parameter 5 expressing the
deviation from the Cauchy relation are given by

8 = —,(e„+2e„) (s)

A = 2c44/(crt c&2)
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TABLE I. Harmonic and anharmonic values of the
elastic constants.

&«- &12 A 6 X100
(10' dyn (10'0 dyn (10 dyn (10 dyn (
cm ~) cm-') cm-') cm ')

Experi-
ment

Present"
Presentc
Pre sentd
Present
6-12f
6-12g

4. 39
4. 16
3.79
3.87
3.50
3.71
3.98

2.56
1.86
1, 73
1.87
1.74
1.64
2. 06

1.28 —10+7
2, 46 —1.0
2. 46 (+2.9)
2. 44 (+14.1)
2, 45 (+20. 7)
2, 62 +3.9
1.95 +4.7

1.64 2.68 90.5
2. 28 2.93 92. 5
2, 12 2.64 89.1
2, 28 2. 62 92.3
2. 12 2.34 88. 9
2. 15 2. 62
2.01 2. 61

~prom ref, 8; the 8,(0) is that calculated from the el-
astic constants.

Anharmonic with three-body forces.
'Harmonic vrith three-body forces.
Anharmonic, no three-body force.

'Harmonic, no three-body force.
6-12, all-neighbor interactions Nef. 7).

~6-12, nearest-neighbor interactions (Ref. 7).

~&3)~era (10)

In addition, we list values of the Debye tempera-
ture 6,(0) calculated using the tables of de Launay. 9

The third, fourth, and fifth lines of this table are
included in order to show the magnitude of the
three-body and anhaxmonic contributions. The most
interesting qualitative feature is that the shear con-
stants p(egg —cga) and c4g are essentially unaffected
by the three-body force, although e», c,2, and the
bulk modulus are increased substantially. As far
as e« is concerned, this disagrees with the results
of Zucker and Chell. 4 The reason is that Zucker
and Chell omitted a nonzero contribution which they
believed to vanish by symmetry» th18 18 discussed
more funy elsewhere. This is the explanation of
the discxepancy between the xesults of Zucker and
Chell and those of Huller et al.

It is of interest that our theoretical calculation
(line 2 of Table 1) predicts a very small deviation
fx'om the Cauchy relation, in spite of the substantial
th1'ee-body effect. This dev1Rt10D 18 Dot R vel'y
strong diagnostic for three-body forces since a "

comparable Rnd partially cancelling contribution
arises from the zero-point energy, and compaxison
of our results with those of Huller et al. indicates
that this contxibution depends on the form assumed .

for the pair potential. The large negative deviation
calculated by Zucker and Chell4 is incorrect for
the reason cited above.

For the anisotropy A. , our calculation agrees
with the previous theox'etical calculations in predict-
ing a value much higher than is indicated by all
published experiments. This appears to be a rather
unequivocal theoretical result, since it is relatively
insensitive to the form of the two-body potential and
essentially independent of the presence of the three-
body interaction.

Turning now to the individual elastic constants,

we Qote thRt oux' cRlculRted vRlue of c» 18 1Q mod-
erate agreement with experiment, and this is a
slight improvement over the 6-12 two-body calcula-
tions. However, the calculated values of e,a and
c«are much higher than the experimental values,
eveD substantially lllghel' thRQ the vRlues cRlculated
with two-body 6-12 1ntex'Rct1oIls A8 R consequence
of this, the calculated bulk modulus is higher than
the experimental value by about 9%, whereas the
6-12 calculations were roughly in agreement with
experiment. The bulk modulus obtained by Keeler
and Batchelder agrees closely with the x-ray result
of Peterson eI; gl. »

IQ conllect1oD with these disagreements R number
of remarks can be made. First, the agreement of
the 6-12 bulk modulus with experiment is partly for-
tuitous since it results from a high value of e» and
a low value of @&3. Second, our potential model
should be much more realistic than the 6-].2 model,
and it undoubtedly correlates accurately a much
wider range of data. Third, the close agreement
which we find with experimental phonon dispersion
curves (see below), including those for transverse
modes, makes it seem highly unlikely that our shear
constants are in error by as much as 30%. Fourth,
Keeler and Batchelder observed anomalies (maxima
in sound velocities) below 15 K, which they ascribed
to therxnal strain due to differential thermal con-
tractions at the crystal-substrate Rnd crystel-trans-
ducer interfaces. They speculated that plastic flow
took up the differential contraction down to 15 K,
but that below this temperature the crystals be-
came brittle; assuming that the results were unaf-
fected above 15 K they were able to make at lower
temperatures a correction which proved to be "un-
ambiguous Rnd relatively small. " In suppoxt of
these arguments they cited an observation of Stew-
art, which was that the crystals become brittle
somewhere between 65 and 4 K. Since the total
thermal expansion between 0 and 15 'K is vex'y
small, it seems equally likely to us that this effect,
if present below 15 K, was also pxesent at substan-
tially higher temperatures. If this were so the
low-temperature correction would become more
ambiguous and less obviously small, Rnd could pos-
sibly lead to results closer to our calculated values.
Even if this is the correct explanation of the dis-
crepancy between theory and experiment at low
temperatures there remains a discrepancy at high
temperatures where published theoretical calcula-
tions"3 give a much higher value for the anisotropy
A. than do the results of Keeler and BatcheMer.

Finally, we xemark that the bulk modulus obtained
by Petexson et gl. " at low temperatures 18 not en-
tirely unambiguous because of the observed effect
of the helium used as pressure fluid on the lattice
spacing; Bobetic and Barker pointed out that in the
plot of lRttlce parameter RgR1nst px'essux'e tile polQts



corresponding to the initia/ increase of helium pres-
sure appeared to have a slope close to that indicated
by oui theoretical bulk DlodulUS. In view of these
remarks, we feel that the source of the discrepancy
between theory and experiment should be sought
both in theoretical and in experimental areas.

We note that our calculated value of 9,(0), 92. 5 'K,
is about 0. 4 K higher than the value obtained by
Bobetic and Barker, and that this confirms that
their error estimates were realistic. Our value
is a little high, because of our neglect of three-
body forces in calculating anharmonicity, while
theirs is a little low because of the oppositely di-
rected and larger effect of neglecting also interac-
tions between non-nearest neighbors in calculating
anharmonic corrections.
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III. PHONON DISPERSION CURVES
0,2 0.4 0.8

We have calculated phonon frequencies for waves
in the three directions (100), (110), and (111).
Quasiharmonic frequencies were calculated in the
way described by Bobetic and Barker. ' To calculate
anharmonic corrections, we assumed as an approxi-
mation that all frequencies for a given mode and
direction were multiplied by the same factor as the
frequencies of very long waves for the same mode
and direction. Since we had calculated anharmonic
corrections to the elastic constants by the method
of Barron and Kleln, ' these factors could be deter-
mined immediately. The effect of anharmonicity is
to increase the frequencies of long waves by an

FIG. 2. Phonon frequencies for wave vector q = (&, &, 0)/
a, where a is the cubic lattice parameter; the dotted line
is the zone boundary.

amount which varies between 3 and 5% for different
modes and directions. We have confirmed by de-
tailed calculation that at these temperatures the
error in frequency shifts calculated in this way is
never more than 20%, leading to error in phonon
frequencies of less than 1%.

Since most of the experiments were performed
with 6A, we performed oui calculations for this
isotope, with the nearest-neighbor distance equal
to 3.7575A, based on the theoretical estimate that
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FIG. 3. Phonon fre-
quencies for wave vector
q=($, (, $)/a, where a
is the cubic lattice par-
ameter.
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FIG. 1. Phonon frequencies for wave vector q=($, 0, 0)/
a, where a is the cubic lattice parameter.

0.2 0.4



E LAS TIC C QNS TANTS AND P HQNQN DIS P E RSIQN 4179

the volume of "A is 0. 2/~ larger than that of "A.
The results are shown in Figs. 1-3, with experi-
mental data of Batchelder et al. ,

'4 and Egger et al."
The measurements of Egger et g$. were made with
natural argon and the frequencies have been in-
creased by the factor (I)'~'.

The agreement with experiment is very good,
considerably better than was found with nearest-
nelghbor 6-1.2 and 6-13 interactions by Goldman
et al. ,

~ and also considerably better than was found
with five-parameter second-nearest-neighbor
models by Batchelder et aE." This is particularly
noticeable for the longitudinal (110)waves, for
which none of the other models is satisfactory.

It is to be noticed that the unconstrained five-pa-

rameter fit of Batchelder et al. gave elastic con-
stants (in units of 10" dyncm ) c»=4. 11, c»=1.90,
c44

——2. 10, and 4 = 1.9. These are appreciably closer
to our theoretical values (c»=4. 16, c»=2. 80,
c«=2. 28; A, =2. 6) than are the ultrasonic results
of Keeler and Batchelder' (c»=4. 89, c»=1.88, c«
=1.64; 4 = l. 28), particularly in the value of c«.
The value of A is also much closer to all theoretical
estimates.
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A useful e 4ension is made to the existing theory of the optical absorption and emission bands
of defects and impurities in low concentrations in crystalline host materials. This extension is
able to account for the shape of the low-temperature absorption and emission bands in both the
details of the sharp-line phonon-related peaks and the broad-band characteristics-as applica-
tions to defect centers in the alkaline-earth oxides (and alkali halides) demonstrate. A lifetime-
broadening mechanisxn is introduced to explain the observed smearing and broadening of high-
er-energy multiple-phonon-assisted transitions, the manifold of such transitions giving rise
to the broad band. We then specialize to the case of F centers in cubic (OI, group) materials;
a short group-theoretical discussion shows for this case that only local modes belonging to
the I'&, I'&2, and I'&5 representations may be active and that both transverse and longitudinal
acoustic lattice modes near the I. band point are expected to be most active in coupling the
single trapped electron to the lattice. Comparison is made with recent experimental results
for the F center in CaO and MgO.

INTRODUCTION

Many impurity and defect centers in solids show
Gaussian absorption and emission bands. ' Partly
as a result of this and partly for the sake of mathe-

matical convenience most optical theories of these
centers assume a priori these bands to be Gaussian
or very nearly so. We present below in Sec. I
a simple extension of these optical theories by car-
rying out explicitly the sum over inner products of


