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The specific heat, thermal expansion, and bulk modulus of crystalline argon at low tempera-
tures (up to 12°K) are calculated using pair potential functions known to be consistent with

pair-interaction data, together with the Axilrod-Teller triple-dipole interaction.

The methods

of lattice dynamics are used and correction for anharmonicity is made. The potential of
Barker and Pompe gives good agreement with experimental specific heats and a slight modi-

fication of this potential gives excellent agreement.

The modified potential also gives ex-

cellent agreement with experimental thermal-expansion results, but the calculated bulk mod-
ulus is about 9% higher than current experimental estimates. Harmonic calculations are

also made using the potential of Dymond and Alder.

The resulting harmonic specific heats

are in very poor agreement with experiment and there are very large anharmonic effects.

1. INTRODUCTION

Most theoretical calculations of the low-temper-
ature properties of crystalline inert gases'™® have
used simple-model potentials, in particular the
Lennard-Jones 6-12 potential and the exp-6 potential,
which are now known to differ considerably from
the true pair potential, at least for argon. To test
present understanding of the simplest solids, we
have calculated low-temperature crystal properties
for argon using the best available pair potentials’™®
together with the Axilrod-Teller!®'!! triple-dipole
interaction,

It is commonly assumed that the potential energy
of a set of N inert-gas atoms can be written in the
form

U=2.u®@) + 2 u®Gh) +- -+, (1)

i<j i<j<k

in which higher terms would depend on the coordi-
nates of four, five, or more atoms; the functions
u™(4jk- + +) are assumed to vanish whenever one of
the atoms éjk- -+ is remote from the others, and
the functions »‘®(j) depend only on the distance be-
tween the two atoms, so that x®() may be written
w(R; ;).

The further approximation which is basic to our
work is to neglect terms beyond the triplet term in
(1) and to replace the triplet function u‘®(ijk) by
the long-range Axilrod-Teller form

u'(#k) = (1 + 3 cosh, cosb, cosby) /(RyR,R3)3, (2

in which 6, 6, 6; and R, R, R, are the angles and sides
of the triangle formed by the three atoms, and the
coefficient v is known to good accuracy from cal-
culations using oscillator strengths derived from
the absorption spectrum and sum rules.
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Arguments have been given both for®!%'1® and

against? the usefulness of this approximation; de-
tailed references are given in the papers cited. In
our opinion the calculations of Copeland and Kest-
ner, * which show explicitly that the neglected terms
are small, together with the success with which a
wide range of properties of solid, liquid, and gaseous
argon can be correlated, ¥!? suggest that it is a
good approximation.

Calculations of the effects of the triple-dipole
interaction have been made by Chell and Zucker, *:15
by Goetze and Schmidt, '® and by Hiiller, Goetze,
and Schmidt. " In all of this work simple 6-12 and
exp-6 pairpotential functions were considered, and
in addition the Einstein approximation was used to
evaluate the zero-point energy.

In most of our calculations we have used the an-
alytic form for the pair potential proposed by Bar-
ker and Pompe,® namely,

I
W(R) = € (e"‘“'”z Ar= 1) _i . Cziz*ﬁ > G
i=0 i=0 O+7
where » is R/R,,, with R,, being the separation at
the minimum of the potential, and € the depth at
the minimum. The second summation in (3) ensures
that the potential has the correct form at large dis-
tances where the asymptotic behavior is known to
involve (negative) terms proportional to R, R™®
etc. The constant 6 is included to suppress the
divergence of these terms at small R. The coef-
ficient of R™® is known accurately and approximate
calculations of the coefficients of R™® and R are
available.® The first summation, intended to de-
scribe overlap effects important at small distances,
has a form consistent with quantum-mechanical cal-
culations which suggest an exponentially decreasing
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function multiplied by a relatively slowly varying
polynomial. By including sufficient terms in this
summation, the potential is given the necessary
flexibility in the neighborhood of its minimum.

We have also made calculations for the numerical
pair potential of Dymond and Alder. ® In order to
evaluate the derivatives of the potential required
in the lattice dynamics calculations, we made least-
squares polynomial fits in appropriate ranges of
R. The nontrivial amount of work which this in-
volved confirmed us in our preference for flexible
analytic potentials rather than numerical potentials.

II. LATTICE DYNAMICS

The sites of a face-centered cubic (fcc) lattice
may be specified by

T, 1, V) = (A3 + udy+ vasgdd , 4

where

8,=(1,1,0/V2, 8,=(1,0,1/v2, =(0,1,1)/V2,

(5)

and d is the nearest-neighbor distance; the cubic
lattice parameter a is dv2 . In the quasiharmonic
approximation, the three frequencies v; (a )i=1,2,3
corresponding to waves with wave vector g are de-
termined by the eigenvalue equation®

3
4rm[v(@)Puy(@) = 2 Dos(@)uf(d) (6)
B=1
with
Dag (ﬁ) == Z’ UOOOa;kuvB sinz[nf()\, “’ V)a] . (7)

Ay loyv
In these equations, «, 8 specify the Cartesian com-
ponents of the polarization vectors u,(q), and
Upooesruvs 1s defined by

__3_U7. , (8)

UOOO(I;X!LVB ox axB

where x, is the a component of the displacement
of the atom at site (0, 0, 0), and x; is the 8 compo-
nent of the displacement of the atom at site (A, u, v);
the derivatives are evaluated at zero displacement.
The summation E' is taken over all sets (7\, W, V)
with A, u, v integral (positive, negative, or zero)
except (0,0, 0).

The Helmholtz free energy of a crystal of N atoms
is given by

“hvi/kT)]
s

3
A-Uy+12N2, [[[auavaw[thv, +1n(1 - e
i=1
(9)

where U, is the static lattice energy, and we have
written
=(U,V,W)/a . (10)

The integration is taken throughout the “irreducible

M. V. BOBETIC AND J. A. BARKER

)

4 of the Brillouin zone,” defined by

U+V+W<1.5. (11)

0<U<V<W<1,

The factor 12 is a normalization constant corre-
sponding to this region; v; in (9) is understood to
be a function of ¢ and therefore of U, V, and W.
Similarly, the specific heat C, is given by

wdvd 2 -hui/kT
= 12Nk f /ff( v uf,f '/,k/Tk)f) ¢ .
(12)

To evaluate other thermodynamic properties (pres-
sure and compressibility), we computed the Helm-
holtz free energy for several values of the lattice
constant and performed numerical differentiations.

To perform the integrations in (9) and (12) with
high accuracy at low temperatures we used Gauss-
Legendre quadrature with 10-point panels of varying
width to provide a fine grid in the neighborhood of
the origin. For most of our calculations, we used
three panels for the W integration, from 0 to 0. 1,
0.1to 0.5, and 0.5 to 1; and two equal panels for
the U and V integration [the limits for the U inte-
gration are 0 and min (V, 1, 5-V-W), while those
for the V integration are 0 and min (W, 1, 5- W)].
We made some calculations in which each of the
panels in the above scheme was replaced by two
equal panels; the error using this scheme should
be negligible compared to that using the first
scheme, so that the difference between the results
of the two calculations gives a good estimate of
the error involved in using the first scheme. The
two methods gave calculated Debye temperatures
which agreed to better than 0. 01 °K at temperatures
above 0.4 °K, so that we estimate the integration
error in our computed Debye temperatures as less
than 0.01°K. This accuracy is more than suf-
ficient for our purpose.

Note that with these integration schemes the
normalization integral 12[[[ dUdV dW is not ex-
actly 1; to ensure high accuracy at high tempera-
tures, we divided our integrals by this factor. The
error resulting from this at low temperatures is
negligible.

IIl. THREE-BODY FORCES

The features of our calculation which are spe-
cific to three-body forces arise in the evaluation
of the derivatives Uygog;auvs. For brevity we will
denote (1, u, v) by X and (0, 0, 0) by U; we will also
divide Ug,;zs into two-body and three-body contribu-
tions,

Upasis = Uﬁa,m + UOrx B . (13)

The vector T; will denote the position of lattice site
X and X; the dlsplacement of the atom at that site,
with components ¥ *. For the two-body contribution
we find immediately
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(2) _<u (R) u(R)> PryY. u'}({R) 6., (14)

Usests=\"RZ  ~ "R Xy-

where 0,4 is the Kronecker 6, *§ is the o component

of the vector T; -7, and R is It; - T3l .
The three-body contribution is given by
azum(a, )T, )

(3)
Ugasss = —— g (15)
P p48,a  O%g OX%

in which the atoms are numbered by 0, X, X’ rather
than i,j, 2, as in Eq. (1); the derivatives are of
course to be evaluated with x§ and X § zero. We may
rewrite Eq. (2) in the form

w0, X, %) = v[212525+ 3(21 + 25— 24) (21 — 25+ 23)

X(-—- Zl+22+23)] (Z12223)-5/2, (16)

> - > > |2
Zg = ]rg: + X3 ~ r5—xa] y

1 [P (1)

Then the derivative in (15) is given by
3%, (0, X, X')_ % i 9243
axfaxf

E&- 8,2g

petat 92,02, BX5 9%

au(s) 3221 a8
Lo SR - 4D, X§XE
9z, o0x§ oxf LA

— 4D XX} - 4D X§ (X3 - X})
- 4Dy X3 (X‘,%-Xfu) =2D844
(18)
where
9y ® 82, ®
D, = - 19
1 , Dy, b2,07, 19)
Note that there is only one term involving the
first derivative of u because only z, depends both
on xfand on x%, The evaluation of the derivatives
D, and D,, from Eq. (16) is a matter of algebra
which will not be given here. We wrote expressions
for these derivatives into our computer program and

used Eq. (19) to evaluate the summand in (15), which

was then summed over X' (this is actually a triple
summation over X', u’, v’)., To check our algebra
we performed a calculation in which the derivatives
D,, D,, were found by numerical differentiation and
found identical results. We actually included in the
summations in Eq. (15) all terms (and only those
terms) for which z,, z, and z; were all less
than N,d?, where N, isa parameter which determines
the number of neighbor shells considered in the
calculation. It can be shown after some algebra
that if all such contributions are to be included then
A, p,vand A’, p’, v’ must run from — M, to + M,,
where M, is the integral part of (3 N,)? with sets
for which z;, 2z, or z, is greater than N,d® (or equal

to zero) being rejected. The quantities UgY.s,are
all proportional to v/d*! so that they can be evaluated
once for all if N, is fixed. We do not give tables
because they would be too bulky and the computa-
tional effort required to generate values is not ex-
cessively large.

In calculating the static lattice energy U,, we
calculated two-body contributions out to R =(60)/2d
directly, using tabulated numbers of neighbors;
interactions at larger distances were approximated
by an integral. For the three-body contribution,
we used the result of Chell and Zucker, * which is
extrapolated to infinite range.

IV. ANHARMONIC CORRECTIONS

Anharmonic corrections to the free energy may
be computed by perturbation theory. According to
Klein ef al. * and Feldman and Horton'® the cubic and
quartic anharmonic corrections to the molar Helm-
holtz free energy for a crystal with nearest-neigh-
bor two-body interactions are given by

Ag=(-%g) [ad S, (Tg, @) +4a3S; (Tg, 1)
+4S,(Tg, ay)], (20)

Ay=Fg) [adhy (Tgy a1) + 2031 5 (T gy 1) + 415 (T, a1)],

(21)

where
a,= R¥*[D"u(R))/[D? u(R)], (22)
g=(NR)?/(MR?), (23)
Tg=(RT/hR) [N D*u(R)/M]?/2, (24)

In these expressions, D is (1/R)(d/dR) and R is
to be replaced by the nearest-neighbor distance d;
M is the gram atomic weight (not atomic mass as
in Klein et al.); and S;(Tg, a;) and I;(Tg, a;) are cer-
tain integrals tabulated by Klein et al. *and Feldman
and Horton, *®

We have made the approximation of using these
results directly in our calculation, thus ignoring
(in calculating anharmonic corrections) interactions
between non-nearest neighbors and three-body in-
teractions. We estimate that this introduces errors
of the order of 10% in the anharmonic corrections;
the resulting errors in our calculated Debye tem-
peratures are of the order of 0.4%, and this is our
principal source of error.

To use the tabulated values of S; and I; in (20) and
(22) it is necessary to interpolate both in the vari-
able a;, which depends on volume or lattice spac-
ing, and in the reduced temperature variable 7.
To interpolate in a;, we used 5-point Lagrange in-
terpolation. To interpolate in T, we constructed
expressions of the type

X=a+ T?e (b+(;T;‘;)/(1+dT%3+eT§), (25)
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in which X represents I; or S;, and the constants
were determined from the results tabulated for
zero temperature and for the four-highest nonzero
temperatures. We found that these expressions re-
produced the values tabulated for the lowest non-
zero temperature to within 1 in the last significant
figure. This represents a modification of the pro-
cedure of Klein et al. * in that (25) has the correct
asymptotic form not only at high temperatures but
also at low temperatures., It appears to give good
results even at very low temperatures where the
unmodified procedure of Klein et al. is unsatisfac-
tory. For the Barker-Pompe potential (Sec. V) the
extrapolated zero-temperature Debye temperature
calculated using (25) was within 0. 2 °K of the value
calculated by the accurate method of Barron and
Klein® (also assuming nearest-neighbor interac-
tions). Thus these interpolation procedures do not
introduce serious errors.

V. RESULTS: POTENTIAL OF BARKER AND POMPE

This potential is given by Eq. (3) with L=3, A4,
=0.2349, A;=-4.7735, A,=-10.2194, A;=-5.2905,
Cg=1.0698, Cy=0.1642, C1,=0.0132, ¢=12.5, §
=0.01, ¢/k=147.7°K, and R, =3.756 A. These
parameters were determined to be consistent for
small R with molecular beam-scattering data and
for large R with the known value of C¢ and approxi-
mately known values of Cg and Cy. In addition, the
potential was constrained to fit (when used in con-
junction with the Axilrod-Teller potential) the ex-
perimental lattice spacing of crystalline argon at
0°K, the cohesive energy of crystalline argon (ap-
proximately), and the experimental second virial
coefficients of gaseous argon.

We investigate first the effect of the number of
neighbor shells included in the calculation, which
we have denoted by N,, on the calculated Debye
temperatures. We will use throughout the value
of the three-body parameter v="73.2X10"% erg cm®
used by Barker and Pompe and due to Leonard. *°
Some sample results are listed in Table I. It is
clear that the accuracy attained with N,=42 is ex-
cellent and that even a value as small as N,=9 does
not lead to serious error; we use the latter value
for exploratory calculations and the former for
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TABLE I. Debye temperatures (anharmonic) for
different values of N,; Barker-Pompe potential.
N,=T 1 9 25 42

Lok

0.4 95,94 90.13 89.94 89.91
1.2 95.82 90.03 89.85 89.82
2.4 95.22 89.50 89.35 89.33
4.8 90.61 85.52 85.44 85.43
8.0 84.50 81.12 81.08 81.08
12.0 83.20 80.82 80.79 80.79
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FIG. 1. Calculated and experimental Debye tempera-

tures. Open circles, experimental results of Finegold
and Phillips (Ref. 20). Blackecircles, calculated with the
Barker-Pompe potential, The curves are calculated for the
potentials of Sec. VIand are labeled with the value of R,

final calculations.

The temperature dependence of the calculated
Debye temperature is shown in Fig. 1, with the ex-
perimental data of Finegold and Phillips®® (these
results are probably more accurate in this temper-
ature range than those of Flubacher et al.?' which
lie about 1 °K higher). The integrated thermal ex-
pansion is compared with experiment?*'® in Fig. 2,

The agreement with experiment is very good,
considering that the specific-heat data were not
used in determining the potential. It is known that
this potential gives good agreement with experi-
mental third virial coefficients®, and fair agree-

0.0010

0.0005

0.0000

T (°K)

FIG. 2. Integrated thermal expansion d —d;. Dashed
curve, calculated for the Barker-Pompe potential. Solid
curve, calculated for the final potential of Sec. VI. Tri-
angle, experimental, Tilford and Swenson (Refs. 2 and 3).
I, experimental, Peterson et al. (Ref. 12).
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ment with experimental gas-transport properties®and
liquid-equilibrium properties. 12 Thus the potential
correlates with fair accuracy an extraordinarily
wide range of properties of argon. However, it is
clear from Fig. 1 that the potential can be im-
proved, and this is undertaken in Sec. VL

VI. IMPROVED POTENTIAL

To improve on the Barker-Pompe potential we
included two extra terms in the polynomial mul-
tiplying the exponential in (3); that is we chose L
=5, We retained the values o =12.5, §=0.01 of
Barker and Pompe and used the remaining param-
eters to fit all the experimental data used by Barker
and Pompe, plus the value of the Debye tempera-
ture at 0°K; at the same time we attained an es-
sentially exact fit of the cohesive energy at 0 °K,
for which the Barker-Pompe potential was in error
by about 1.5%. For references to all experimental
data we refer to the paper of Barker and Pompe.

The fitting procedure was as follows. For given
€ and R,, we determined Cq, Cg and Cy,to give the
desired coefficients of R*%, R, and R™° at large
distances. For given A; we then determined A,,
Aj, and A, to give the desired value of the potential
and its derivative at R= 23, and a desired value of
the separation at the zero of the potential R,

This involved solution of a set of three linear equa-
tions. Note that A, and A; are determined by the
fact that the potential has a minimum of depth ~¢
at R=R,. We then varied A; to find the best fit of
experimental second virial coefficients. This gave
the best potential consistent with the assumed ¢,
R,, and R;,. We then multiplied R, and € by the
ratio of experimental to calculated lattice spacing
and cohesive energy, respectively, and repeated
the whole process until convergence was attained,
typically within about 10 iterations.

This led to a class of potentials, fitting all the
data used by Barker and Pompe, and with different
values of R;,. We calculated Debye temperatures
for several of these potentials, and the results are
shown in Fig.1. It is clear that the low-tempera-
ture specific heats are sensitive to the remaining
parameter R,. By inverse interpolation we esti-
mated that the experimental value of the Debye tem-
perature at 0°K was fairly closely reproduced with
Ry=3. 3666 A. For this potential the parameters
were ¢/k=140.23 °K, R,,=3.76304, Ay=0.29214,
A;=-4,41458, A,=-"17.70182, A;=-31,9293, A,
=~136.026, As=~151,000, C4=1.11976, C,
=0.171 551, and Cy,=0.013747; for completeness
we append L=5, a=12.5, and 5§=0, 01,

Using these parameters we computed the Helm-
holtz free energy and specific heat for five values
of the nearest-neighbor distance d varying in steps
of 1%. From these we computed pressures and
used inverse interpolation to find the zero-pressure
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value of d as a function of temperature. Near 0°K
the value of d was 3. 7548 A compared with the ex-
perimental value 3. 7552 f\; the calculated cohesive
energy was — 1844 cal/mole compared with the ex-
perimental value — 1846 +7 cal/mole. This verifies
the adequacy of our fitting procedure.

The calculated Debye temperatures are compared
with the experimental data of Finegold and Phillips®
in Fig.3. The computed results are very close to
the experimental results; the temperature depen-
dence is reproduced well, and this was not used in
determining the potential.

The computed integrated thermal expansion is
shown in Fig. 2 with experimental data for compar-
ison. In this temperature range the direct mea-
surements of Tilford and Swenson® are expected
to be more accurate than the x-ray results of Peter-
son et al. 2 The agreement with experiment is al-
most perfect; we note that these data were in no
way used in determining the potential. The fact
that the present potential and the rather similar
Barker-Pompe potential give appreciably different
results for the thermal expansion shows that the
thermal expansion is sensitive to the form of the
potential, so that this agreement must be regarded
as significant. It is known® that the 6-12 potential
gives errors of the order of 20% in the low-temper-
ature thermal expansion.

By numerical differentiation of the pressure we
calculated the bulk modulus and found the value 2. 92
x10'" dyn cm™® near 0°K; this quantity varies only
slightly with temperature in the range 0-12 °K.

This is about 9% higher than the experimental value
2.67x10'" dyn cm™ of Peterson et al. * derived
from x-ray measurements.. It is already known*
that the Barker-Pompe potential also gives a bulk
modulus about 10% higher than experiment. The

95—

16

1 1 1 L
25 5.0 7.5 10.0 25

TEMPERATURE (°K)

FIG. 3. Calculated and experimental Debye tempera-
tures. The curve gives values for the final potential of
Sec. VI, circles are experimental values of Finegold
and Phillips (Ref. 20).
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sound velocity measurements of Keeler and Batch-
elder® give a bulk modulus agreeing with that of
Peterson et al., but this involves an uncertain ex-
trapolation and should be given less weight than the
X~-ray measurements.

Inany case, there is a real discrepancy between
theory and experiment on this point. If our basic
assumptions (neglect of triplet interactions other
than the triple-dipole interactions, and of higher
many-body interactions) are correct, then it is dif-
ficult to see anything in the theoretical calculations
which could lead to such a discrepancy. Clearly
these assumptions remain open to question, in spite
of the impressive correlation of data to which they
lead (in addition to the data discussed here the pres-
ent potential gives good agreement with experi-
mental phonon disperison curves, ® third virial co-
efficients, and gas transport properties 6).

On the other hand, there is an open question con-
cerning the experiments, in connection with the ob-
served effect of the helium used as pressure fluid
on the lattice spacing. In fact, in Fig.1 of the pa-
per by Peterson et al. ?® the points corresponding
to the initial increase of helium pressure appear to
have a slope close to that corresponding to our the-
oretical bulk modulus. Further theoretical and ex-
perimental work is required.

VII. POTENTIAL OF DYMOND AND ALDER

Dymond and Alder have derived a numerical po-
tential which has essentially the same short-range
and very long-range behavior as the potentials al-
ready discussed, and which give an excellent fit of
second virial coefficients and gas-transport prop-
erties (but not in fact? a better fit than the poten-
tial of Sec. VI).

We calculated quasiharmonic specific heats, both
with and without the Axilrod-Teller interaction for
this potential. The results are shown in Table II.
The calculated Debye temperatures are smaller by
a factor of 2 than the experimental values (corre-
sponding to specific heats larger than experimental
by a factor of 8), and show the wrong temperature
dependence. However, when we attempted to com-

TABLE II. Debye temperatures for the potential of
‘ Dymond and Alder.

Three-body force No three-body force

T(K°) Quasi- Anharmonic Quasi- Anharmonic
harmonic harmonic
0.39 46.8 (142.3) 46.5 (122.8)
0.79 47,2 46.9
1.18 47,7 47.4
2.37 48.4 48.1
4,74 48.2 47.9
7.90 49.6 49.1
11,85 50.9 50.3
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FIG. 4. The potentials of Sec. VI (solid curve) and
of Dymond and Alder (dashed curve). The dotted curve
shows the R-® dispersion interaction, and the dash-dotted
curve shows the sum of the R, R-%, and R"!%contributions.

pute anharmonic corrections by the method of Sec.
IV we found much larger Debye temperatures
(around 120 °K) at 0.4 °K and negative specific
heats at all higher temperatures. This potential
is so highly anharmonic that the perturbation the-
ory for anharmonic corrections fails even at the
lowest temperatures. One cannot exclude the pos-
sibility that a nonperturbative anharmonic calcula-
tion would lead to much better agreement with ex-
periment for this potential, but it does seem un-
likely that the temperature dependence would come
out closely similar to that given by the potentials
of Secs. V and VI, for which the temperature de-
pendence is determined largely by the quasihar-
monic contributions.

The potential of Dymond and Alder is compared
in Fig. 4 with the potential of Sec. VI. The dotted
curve shows the contribution of the R® dispersion
interaction. The least satisfying feature of the
Dymond-Alder potential is that the potential is
much less negative than the R~® interaction in a
range of separations (beyond 6 A) in which the pos-
itive overlap contributions would be expected to be
very small (note that higher multipole dispersion
interactions are negative). This fact, together
with the specific heats, suggests that the potential
of Sec. VIis closer to the truth., Apart from this
behavior at large distances and the detailed behav-
ior near the minimum, there is reasonable agree-
ment between the two potentials.

VIII. GENERAL DISCUSSION

It is of some interest to examine qualitatively
the effects of the three-body interaction. In Table
III we show values of the Debye temperature at
0°K (extrapolated) and of the zero-point energy,
calculated for the potential of Sec. VI both with
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TABLE IIl. Zero-temperature Debye © and zero-
point energy for the potential of Sec. VI.
0, 0, U, U,
(°K) (°K) (cal/mole) (cal/mole)
Quasi~  Anhar- Quasi- Anhar-
harmonic monic harmonic monic
No three-body 88.8 91.8 179.9 186.2
interaction
Three-body 89.0 92.1 181.4 187.7
interaction

and without the three-body interaction. The effect
of the three-body interaction is to increase the
Debye temperature by about 0. 2% and to increase
the zero-point energy by 0.7%. The latter result
disagrees with that of Chell and Zucker' who
found, using the Einstein approximation, that
three-body forces reduce the zero-point energy.
The explanation is that Chell and Zucker omitted

a nonzero sum in their calculation in the belief that
it vanished because of symmetry; this will be dis-
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cussed in more detail elsewhere. %7

The zero-point energy is increased proportionate-
ly more than the zero-temperature Debye 6 because
the low-frequency transverse modes which contrib-
ute most to the low-temperature specific heat, and
the corresponding elastic shear constants, are al-
most unaffected by the three-body interaction, 2
while the longitudinal frequencies, which contribute
more to the zero-point energy, and the bulk modulus
are substantially increased. This also explains why
the present calculation with three-body forces leads
to a higher bulk modulus than previous calculations
with only two-body interactions. The most impor-
tant effect of the three-body interactions is on the
static lattice energy and its volume dependence.
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