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A detailed numerical study of the influence of a longitudinal magnetic field on carrier scat-
tering is presented for the simple model of the band structure of a semiconductor and for de-
formation-potential scattering of carriers by optical phonons. A drifted Maxwellian distribu-
tion is used, and parallel electric and magnetic fields of arbitrary magnitude are considered.
Interesting results of this study include magnetic-field-induced negative differential mobility,
magnetic-field-induced "runaway" in the quantum limit, although not for ordinarily large mag-
netic fields, and longitudinal magnetoresistance resonances whose amplitudes are quite sensi-
tive to electric field strength.

I. INTRODUCTION

Although much analytical work has been done on
galvanomagnetic eff ects in semiconductors, numer-
ical studies are not yet very extensive. In part,
this is no doubt due to the fact that real semicon-
ductors are usually very complicated, containing
several anisotropic carrier bands and several
simultaneously active scattering mechanisms for
the carriers. This makes it very difficult to de-
rive an accurate velocity distribution function, and

perhaps discourages workers from making extensive
numerical analyses.

However, in idealized cases one can go far with
numerical studies, which can be very profitable
for the insights they lead to, although they can be
applied to real semiconductors only with great cau-
tion. We present here one such study, that of defor-
mation-potential scattering of carriers by optical
phonons ("nonpolar optical" scattering). This
mechanism is present in all semiconductors, but is
often dominated by other scattering mechanisms,
depending upon lattice temperature, electric field
strength, impurity content, and material. We as-
sume a single carrier band with spherical energy
surfaces and a parabolic dispersion relation, and

consider parallel electric and magnetic fields of
arbitrary magnitude. We further assume nondegen-
erate statistics and use the drifted-Maxwellian dis-
tribution, that is, a distribution with two adjustable
parameters (drift velocity and electron temperature)
which are determined self-consistently. We do not
wish to enter here upon a discussion of the relative
merits and faults of this distribution, which are
discussed elsewhere, ' but rather to determine in

some detail what such a distribution predicts about
the influence of a magnetic field upon electrical
transport. The advantage of the drifted Maxwellian
of course is that it is relatively easy to use. It

can be justified at sufficiently high carrier concen-
tration. Even when not strictly justifiable
theoretically, it can provide a good description of
experimental results. ' The history of GaAs provides
an interesting example of this. e

Although it is not the purpose of this paper to de-
scribe a real material, we may note that p-type
germanium, with its almost parabolic, rather
spherical, heavy-hole band and predominance of
nonpolar optical phonon scattering, is not too far
removed from our model.

The theoretical basis for the calculations is
standard and given briefly in Sec. II. Quantum-
mechanical language is used, since large magnetic
fields are considered. Section IH contains analyti-
cal results applicable to various limiting situations.
The numerical results, obtained by computer, are
given in Sec. IV. These results include magnetic-
field-induced negative differential mobility occur-
ring for two different reasons and longitudinal mag-
netoresistance resonance structure which can be
quite pronounced. Physical discussions of such
effects are given, which are to a large extent in-
dependent of the distribution function we have used.

II. THEORETICAL BASIS

The interaction V describing deformation -poten-
tial scattering of a carrier (electrons or holes) by
optical phonons is

V=Zqb, e'~' +Hermitian conjugate,

where b, is the phonon destruction operator for
mode q; r is the carrier position; the summation
is over all longitudinal optical phonons; and q is the
coupling constant, whose absolute square is given
by'

~ q ~

' z'„,e(, /(2=npu');

0 is the volume and p the mass density of the crys-
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Z=p /2m~+Zz, + V eEe

where X~ is the lattice Hamiltonian and V is the
carrier-lattice interaction. In the steady state,
the equations of motion for the average carrier
momentum and energy are

d apl—(P,) =O=eE+Tr P,—dt et
i scat

=0=
~ Pg +Tr ~ —,5

(4)

tal; u is the longitudinal speed of sound; eo is the
angular frequency of the optical phonons; and E„~
is a parameter with units of energy. The fact that
I q I

' is independent of phonon wave vector q, together
with the assumption of dispersionless optical phonon
modes, makes nonpolar optical scattering perhaps
the simplest of all mechanisms to treat, particular-
ly when a magnetic field is considered.

We treat the H = 0 and H 4 0 cases separately, con-
sidering first the case of zero magnetic field. The
Hamiltonian for a carrier having effective mass
m* and momentum p = Nk, in an electric field E
in the z direction, j,s

where 8k=m*V=(p). The drift velocity of the
carriers is denoted by v, and their temperature by
T = 1/kP.

It is now simple and straightforward to obtain the
two coupled integral equations determining v and
T. We illustrate briefly with the momentum equa-
tion. Combi'ning Eqs. (4) and (6), one obtains

~ (kg ke) +nr4n'f' p|«t(n ) poa(k )
n, n' k, lr,

'

=2vlql'Z Z(k,'-k, )p„(k') {(n,+I)s;&, ,
x S[k (k —k' )/2m* k++0]+n S"„„-.,&

& 6 [@'(k' —k' ')/2m* —k(o, ]] . (8)

It is easiest to sum first over q for the nonpolar
optical scattering mechanism. Doing this, then
integrating on k, using no+ 1 = no exp(yo) where yo

=P08+0, one gets

I q ( 'Am*no p k, (k, )
1T

I 3 2' (00 ~I p 2~ Mo

in aquantum-mechanical notation. In Eqs. (4) and
(S), ep/etl„« is the rate of change of the density
matrix due to scattering. In the usual harmonic-
lattice carrier-plane-wave basis, only the diagonal
elements of p (i. e. , the distribution function) are
needed. Their rate of change due to scattering is
given by the standard equation'

d( n k
I p In~ k)/dt = 2 Wg „"„.[p„„(n')p„(k')

n' K'

py «(n) p (k)] (6)

where n represents all the phonon quantum numbers,
and [k) the carrier plane wave -states-. &„f,, „.f
= 8'„.g. „p is the usual transition probability per unit
time. For the lattice in thermal equilibrium at
temperature To, sums over the phonon occupation
numbers give Planck factors describing the number
of thermal phonons in made q:

n, = [exp(%o, /kTQ) —1] ' . (7)

The carrier distribution function p„(k) =(k[p„)k)
is given the drifted-Maxwellian form

p„(k) = 0 '(2vp8'/m") ~ exp[- pk (k —k) /2m*], (8)

We have introduced the definitions

y = hvo/k T = 8/T,

yo = k(op/kTO = e/T, ,

v = [-,'m*v'/h(oo]'~',

E„~= 2(E„pm*Coo)'/(m'~' pu'&'e),

(14)

(i5)

(i8)

(»)

(io)

Summation on k' is restricted in the first term
(phonon emission) to k' values for which the radical
is real. Integration over the angles in k' space
completes this part of the analysis. The energy-
transfer equation is handled in a very similar man-
ner. Thus we obtain from the momentum and ener-
gy equations

momentum: vE/E„~ = y'~'n, I exp(- yv'), (ll)

energy: vE/E„~ = y ~~no I, exp(- yv') . (12)

Equating the right-hand sides of these equations
gives

I = f dxe "" x'(x I)+'~ (e"o "[cosh(2yv(x +1)' ') —sinh(2yv(x +I)'~ )/(2yv(x +I)'~ )]

+ cosh(2yvx) —sinh(2yvx)/(2yvx) ],

I, = f dxe~ x (x + I)'~'(e"0 "sinh[2yv(x +1)' ]/[2yv(x +1)' '] —sinh(2yvx)/(2yvx)].

(18)

(19)
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where
&u = eH/m*c

is the cyclotron frequency. The transverse part
of the Hamiltonian (20) can be transformed into
harmonic oscillator form (Landau quantization),
giving for the carrier energy

E„(k„m)= u,'/2m*+@'(o(m+-,') .
The Landau levels are denoted by index m =0, 1,
2, . . . . There is an energy degeneracy which may
be associated with the y degree of freedom.

Fortunately, one does not need to deal explicitly
with the harmonic oscillator wave functions when
considering nonpolar optical scattering, because
of the "sum rule" due to Titeica. '6 Thus, using
plane-wave states for the y and s directions, one
has

& J'„.„(q„,k'„, k, ), (23)
where

p„, (q„, y,,', y, ) = J dx e'"+u*.(x+ 0,'/2n)

xg (x+&,/2o'),

Q = m+4)/% .

The Titeica sum rule, easily proved, ' is

j"„dq„f"„dq,
~

Z„', „(q„n,+ q„ I „)~'=4m~.

(24)

(»)

(26)

The drifted- Maxwellian distribution function now

Equation (13) is a desirable equation to use since
E is eliminated from it. For given v, one may
calculate y from Eq. (13) and use this pair of val-
ues in Eq. (11) to calculate E/E~.

Next we turn to the case of nonzero H. %e take
H parallel to E and in the z direction. With the
usual choice of vector potential (A, =A, =O, A, =xH),
the carrier Hamiltonian is

X„=(p —eX/c)'/2m* = [P„'+p,'+ (p, —m*(ox)3]/2m*,

p.,(mI „u,) = p.p(I „u,), (2V)

p = exp(- P@om) [1 —exp(- PS'&o)], (28)

p(u, ~.) = (X„1.,)-' {2~PI'/m*)"'

Z p. = p&/[1 exp( —P@~)]-.

%e now proceed as before, writing the equations
of motion for P, and X, imposing the steady-state
condition, summing first over phonon numbers,
then on q, ky, k~, and kg, using Eq. (26). With
the summation theorem [Eq. (30)] we finally ob-
tain

moinentum: vE/E„~ = y'~~s~ f (H) exp( yv~), (31)

energy: v&l&„,= y"'s, S,(H) exp(- yv') (32).
Equating the right-hand sides of Eqs, (31) and (32)
we have

yf, (H) =f„(H) .
We use Eqs. (31) and {33)in computing. The H
dependent collision integrals are given by

N„ is the number of degrees of freedom associated
with the y direction, and I, is the length of the
sample 1n the 8 d1rectlon.

Vfe shall also use the result

p„.f(m —m') =Z f{f)+Z f(- l) exp( —P%of),
m, m'~0 l ~0 lag

(3o)
where f(m —m') is an arbitrary function of the
difference m —m'. This is easily proved by re-
summing the left-hand side as

5(d 40 i@400
f„{H)= dxexp(- yx') Z S(x'„x)exp —ly — x', + Z S(x, x, ) exp y —ly —x, + Z S(x'„x)/x', (34)2' 0 . El~0 (AP0 leo & (oo QPo

f, (H) =
y(AP0 "0

00 00
QP

dx exp(- yx') Z C(x'„x)exp —ly-
l ~0 QPo

( + Z C(x, x() exp y —fy-
l 40)%00 (00

'"~"0
, + Z C(x'„x)/x',

l~1

S(x, y) = e"0 "xsinh(2yvx) + y sinh(2yvy), (36)

C(x, y) = e 0 "cosh(2yvx) - cosh{2yvy),

x", = (x'+ f&u/(u, ~ 1)"' .
(37)

{38)
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This completes the development of the basic equa-
tions.

III. ANALYTICAL RESULTS

For arbitrary H, the average energy of a carrier
is, from Eqs. (27)-(29),

( h)„=pm*v + ,'kT+—pS(u coth(Sar/2kT).

At H=O, this becomes

(39)

I = -,
'

yepv" 'KP, (-', yp),

I, =~2 (35 + 2yp2 v') e"p~' K, (-,'yp).

(41)

(42)

Properties of the modified Bessel functions K„may
be found in Ref. 20. Equation (13) may then be
written as

Kp(pyp)
yp+ 3yp~ gyp rx x ~ (43)

+y'Lg yp/

Recalling the definitions of y and yp [Eqs. (14) and
(15)], one thus sees that the electrons are cooled

( h), =-,"m*v'+-.'kT, (40)

which of course also follows from Eqs. (8) and

(9).
Paranjape' first pointed out that the electron

temperature need not rise above the lattice tem-
perature upon application of an electric field,
which is evident upon comparing Eqs. (39) or (40)
with their E=O counterparts. He also showed that
for both polar and nonpolar optical phonon scatter-
ing at H= 0, the electron temperature would initial-
ly fall, provided the lattice temperature was below
a certain critical value. We shall briefly rederive
this result below for nonpolar optical scattering,
in order to compare it with the quantum-limit
case.

Magnusson and Weissglas' showed, for polar
materials, that in the quantum limit the electron
temperature would initially decrease much more
rapidly than at H=O because only one degree of
freedom can absorb the random energy. This is
readily seen also from Eq. (39): since the coth
term is quite slowly varying in the quantum limit
(hv» kT), the change of energy upon application
of the electric field is approximately

—,'m*v'+-,'k(T —Tp),

as compared with

—,
' m*v'+ —,'k (T —Tp)

at H = 0. Thus, if the energy given to the drift
term is roughly the same in the two limits (and it
is, except at large E), the temperature change

I 7 —Tpl w'ill be about three times greater in the
quantum limit, for any scattering mechanism.

Consider H=O. At low E, 5=yp —y is of the
order of v . Expanding I and I, [Eqs. (18) and
(19)] to terms of this order, one finds

v„= ', t nha(8/2T—).p (45)

at sufficiently small E if Kp( —,'yp) & (—,'yp) K, (—,'yp), or
yp 3. 75, or Tp 0 267 8.

Some physical discussion of this result is in or-
der. By keeping track of the emissive and absorp-
tive terms, one sees that spontaneous emission of
optical phonons makes no contribution to the mo-
mentum transfer, to order v . Equation (41) results
from approximately equal portions of absorption
and stimulated emission, biased somewhat toward
emission especially at the lower lattice tempera-
tures. Energy gain by the carriers by absorption
is completely canceled by stimulated emission to
order n . The net energy transfer is both by spon-
taneous emission [the 5 term in Eq. (42)] and
stimulated emission (the v term).

One can understand why the electron temperature
initially decreases at sufficiently low lattice tem-
perature in the drifted-Maxwellian formulation.
As the distribution function drifts toward positive
k, the number of carriers of positive k sufficiently
energetic to emit an optical phonon tends to in-
crease, and these then scatter efficiently back to
near k = 0, so that the forward tail of the distribu-
tion tends to shorten. The backward tail, however,
is not much affected. Thus the actual distribution
function tends to become skewed unless the carrier
concentration is sufficiently high. The net effect
is a narrower distribution, which in the drifted-
Maxwellian picture requires a lower temperature.
At higher lattice temperatures, absorption and
stimulated emission processes become more im-
portant, so that the carriers in the central portions
of the distribution function become active, negating
the tendencies just mentioned.

The zero-field mobility pp = v/E, E-0, is ob-
tained from the momentum equation (11) together
with Eq. (41):

72kP Tp
'~ sinh(hap/2kTp)

E„&m*@ep Kp(%op/2kTp)

a result obtained by Sato ' with the drifted Maxwel-
lian.

An interesting question is whether the drift veloc-
ity saturates at large E and H= 0. That it does
has been established by Barrie and Burgess ' using
a drifted-Maxwellian approach, and by Sato ' with
a non-Maxwellian technique. The limiting value
determined by these two approaches is, interesting-
ly, the same. It may be found by considering Eqs.
(18) and (19) as T-~. Noting that the major con-
tributions to the integrals occur Bt g» 1, one finds
for large E

I = (4v'/3y) [exp(y, ) + 1],
I, = (1/2y') [exp(yp) —1],

so that Eq. (13) becomes
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For T0«8, one thus finds v„=0. 61, or (m*@3/2)„
=-,' 5+0. The limiting drift energy at low tempera-
tures thus depends only upon the optical phonon
energy.

It has been established ' that runaway does
occur for polar optical scattering at H=O. The
reason for the difference from nonpolar optical
scattering is that in the latter, the scattering fre-
quency [Eq. (2)], is constant, whereas in polar op-
tical scattering it varies as q, where q is phonon
wave number. Thus, the large momentum transfer
required for optical phonon emission and absoxption
is severely inhibited in the polar case, and this
reduced scattering probability permits the carrier
runaway.

We turn now to the H40 case. First, it is im-
portant to know that these equations reduce in the
limit H-0 to their H=O analogs. The procedure
is simple but quite tedious; we will not demonstrate
it here. One uses the continuous variable l&u/a&0

in this limit and performs one integration in each
term of the collision integra. ls. Transformations
of variabl, interchanges of integration order, and
integration by parts are required. Thus one ean
show t a.t

limI„(H) =I, limI, (H) =I, . («)
The quantum limit, defined by @co&& QT, is of

considerable interest. In this limit the collision
integrals are, from Eqs. (34)-(3B),

I„(H- ) = (v(o/2(o0) f, dx exp(- yx') S(x0, x)/x0,

(47)

I,(H- ~) = ((o/4y(o, ) g dx exp( —yx') C(x;, x)/xo.

(«)
Equation (33) thus becomes independent of H as
well as of E, and a unique T, g relationship obtains,
as with H=O. Also of interest in this limit is the
effect of the magnetic field upon the lattice temper-
ature at which electron cooling can occur. To
terms of order p, one finds

I„(H-~) = (I (u/2(u0) y0 & K,(2ya), (49)

I,(H-~)=((u/By, (o,)(5+2y', v')e"' K0(ay0) . (50)

Equation (33) then becomes

y = y, +4y, '[-'.y, K,(l y,)/K, (-l y,)], (»)
which may be compared with Eq. (43). Initial cool-
lllg occul'6 if.KI(~gy0) & 2yaK0(py0)~ ox' y0 2. Glq 01'

T~ ~0. 388. The effect of the strong magnetic field
is thus to raise by more than 4(P/g the lattice tem-
perature at which initial electron cooling is pos-
sible.

The zero-field mobility in the quantum limit is
obtained by combining Eqs. (31) and (49):

32k T~ slnh(k(dII/2kTD)
( )

,
E„'~m*h'(u', KI(ff(o0/2k T,)

The quantum-limit mobility is thus inversely pro-
portional to magnetic field.

The ratio of the quantum limit to H= 0 mobilities
is simply

,(H,-~) 2 ~(o K,(8/2T, )

i,(H=0) 3 ~ K,(8/2r, )
' (53)

IV, NUMERICAL RESULTS AND DISCUSSION

Equations (13) alld (33), wlllcll combine 'tile 61161'gy

(The modified Bessel functions become asymptoti-
cally equal at large argument, i. e. , at T0 «8. )

In contrast to the H = 0 ease, the drift velocity
does not saturate in the quantum limit. In fact,
the strong magnetic field induces runaway, that is,
at a certain value of E, the slope de/dZ becomes
infinite. By reducing the carrier density of states
at large carrier energies, the magnetic fieM re-
duces the scattering cross section by optical phonon
emission to such an extent that the emitted phonons
cannot carry away energy fast enough to prevent a
runaway of the drift energy of the carriers. (Of
course, other scattering mechanisms mould control
the drift velocity at that point. ) The physical dis-
cussion in the two paragraphs following Eq. (43)
for H=0 apply in the quantum limit as well. The

magnetic field also induces negative differential
mobility at E values less than the value for run-
away, provided the lattice temperature is sufficient-
ly low. This is discussed further and illustrated
in Sec. IV.

Finally, we come to the region of intermediate
magnetic field, which is the most difficult region
to treat, both analytically and numerically. Notice
that the energy collision integral [Eq. (35)], con-
tains some apparently divergent terms at resonance,
i.e. , leo = &d0. (This is not true for the momentum
collision integral. ) The k=0 carriers give rise to
the singularities. We can use these terms to show

that at resonance, the carrier temperature must
return to the lattice temperature, whether it has
been above or below it off resonance. Thus, if the
magnetic field is just off resonance, Eq. (35) can
be written

I,(H) = R(e"0 "—1)/y+ well-behaved terms, (54)

where 8 is of large magnitude, increasing without
bound as resonance is approached. Equation (33)
together with Eq. (34), however, shows that yI, (H)
must be finite at resonance. Thus Eq. (54) requires
that T- TD. That is, the distribution function will
broaden if the carriers were cool, or narrow if
the carriers were hot, as the magnetic field sweeps
through a resonance. This result, together with
the shifting of the mean of the distribution at reso-
nance, has interesting implications for acoustic
amplification, which is sensitive to the shape of the
distribution function near k = 0.
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FIG. 1. Variation of inverse electron temperature with
reduced drift velocity. Numbers on curves give values
of e/To.

and momentum equations, are independent of E,
so that a unique velocity-temperature relationship
exists. Moreover, in the quantum limit, as seen
from Eq. (33) together with Eqs. (47) and (46), this
relationship is independent of H as well. We show
the H=O and quantum-limit curves in Fig. 1 for
To= 88. We also give curves at the critical tem-
peratures (the lattice temperature below which
initial electron cooling can occur): To= 8/3. 75 at
H=0 and To = 8/2. 61 in the quantum limit. The
cooling effect with increasing drift velocity (or, in
other words, the narrowing of the distribution
function a.s it moves to the right) is seen at the
lower temperature, and is quite pronounced in the
quantum limit. When the reduced velocity [see
Eq. (16)] reaches about 0. 45 at TI, = —,'8, the elec-
tron temperature increases rapidly (the distribu-
tion function rapidly broadens while its mean value
shifts little). The drift velocity then saturates as
the temperature becomes infinite at H= 0, but in-
creases indefinitely with increasing temperature
in the quantum limit. The quantum-limit low-tem-
perature curve also shows a region of decreasing
drift velocity with increasing temperature. This
is connected with a region of negative differential
mobility, as is seen in subsequent figures.

Figure 2 shows the variation of drift velocity with
electric field for H= 0, H near the first resonance
(ur =+0), and the quantum limit. The logarithmic
E scale used emphasizes the low and intermediate
regions of electric field (Ohm's law is an exponen-
tially increasing curve on such a plot). Figure 2
reveals at To = —,'8 and H= 0, a "precursor" plateau
occurring prior to saturation. The same effect is
seen also at the higher temperature of TO=8/3. 75
as a nearly linear region. These precursors begin
at the electric field for which the electron temper-
ature begins increasing (see Fig. 5). The quantum-
limit curve at To= 88 shows the precursor plateau
to have developed into a region of negative differ-

0.6

E
Enp

0.01 0.1

H=0--——Quantum Limit

QJ = I.OI Q)0

I 10
I I I I IIII) I I I I IIII

0.4

0.2

0.001 0.01

I I I I I I Ill

0.1

E/E»

I I I I I I III I I I I I I II

10

FIG. 2. Variation of reduced drift velocity with reduced
electric field (semilog plot) for H=O, H near the first
resonance, and H in the quantum limit. Scale at top refers
to quantum limit. Numbers on curves give values of
e/z, .

entia]. mobility (ndm), followed by runaway before
the final plateau can be achieved. At the higher
temperature TO=8/2. 61, there is no quantum limit
ndm, and runaway occurs at about the same value
of electric field as the lower temperature. Notice
that in the quantum limit, the external parameter
is the combination E/H (the quantum-limit scale
is at the top of Fig. 2); runaway occurs at (E/E~)/
(co/+0) =0.21. For the curve near resonance, the
initial mobility is smaller than at H= 0, but greater
than in the quantum limit. However, the drift ve-
locity rises to a considerably higher maximum val-
ue, before finally decreasing in a region of ndm.

In Fig. 3, we again show the dependence of drift
velocity upon field, this time on a linear E scale,
at the low temperature To= 88, and several values
of magnetic field. Apart from the curves close to
resonance, these curves show the progressive
development of ndm with increasing magnetic field.
Although the ndm can begin at electron temperatures
somewhat below the lattice temperature, in the
main it is connected with the higher electron tem-
peratures. Upon further increase of electric field,
the drift velocity rises to a saturation value. No-
tice that even at the extremely high magnetic field
corresponding to ~ =10m&0, electron runaway does
not occur (the quantum-limit condition is violated
before runaway occurs), although a rather sharp
increase in drift velocity takes place, followed by
saturation. Two curves near resonance are also
shown, at v/a&0 = 1+ 10 ~ and 1+10 '. Although the
maximum drift velocity rises considerably as reso-
nance is approached, of more significance is the
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FIG. 3. Variation of reduced drift velocity rvith reduced
electric field at To = 88 (both scales linear). Numbers on
curves give values of f~/~0.

narrowness of the span of H for which this increase
is large. Thus there e@n be a considerable nega-
tive magnetoresistance near the resonance points
in the hot-electron region, but the "linewidth" is
small.

The nonresonant magnetic-field-induced ndm is
a low-temperature phenomenon. In Fig. 4 we show
the &o/&F0=0, 1+10, and 10 curves for To ———', 0.
At this temperature, the ndm at very large magnetic
fieM has vanished, leaving a very flat portion in the
v —E characteristic. There is still a sharp increase
in drift velocity, however, toward the saturation
value, at about the same electric field as at lower
temperature. The resonance curve, however, is
quite similar to that at the lower temperature,
differing principally in the low-E region. The
maximum velocity and degree of ndm are not
changed materially.

Perhaps we should mention at this point that for
finite H, the computer was allowed to sum over as
many Landau levels as necessary to achieve the
specified accuracy; our criterion was that for each
point in the integration in the collision integrals,
summation over Landau levels would continue until
a term was reached whose contribution to the inte-
grands was less than 10 3 in magnitude of the sum
of the preceding contributions.

The features seen in Figs. 2-4 can be understood
on physical grounds. (One must recognize of course
that the finer details, such as the difference between
a small ndm and a flat portion of the g —E charac-
teristic, or the delicate balance between "restraint"
and runaway, cannot usually be resolved by general
physical arguments. ) Consider first the "precur-
sor" plateaus which appear at the lowest tempera-
tures at H=O on the semilog plot. The prior de-
crease of electron temperatux"e reQects the tenden-
cy of the number of "active" carriers (those capable
of spontaneously emitting an optical phonon) to re-
main small, as discussed in Sec. III. %hen the
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FIG. 4. Variation of reduced drift velocity rvith reduced
electric field at 7.'0 ——+&9 (both scales linear). Numbers on
curves give values of M/0.

electron temperature begins its rise, the backward
scattering of active carriers increases first, pro-
ducing the first elbow, i. e. , the precursor"
plateau, in the v —E characteristic. However, as
long as T is in the neighborhood of To, absorptive
processes are not negligible and these dilute the
backward scattering. %hen T is considerably
greater than To, the emissive processes greatly
predominate, and the net scattering probability in-
creases, producing the final plateau.

It is evidently the high final density of states for
the energetic carriers at H=O which tips the bal-
ance in favor of restraint rather than runaway. We
mentioned above that in the quantum limit, the
smaller density of states for energetic carriers
makes runaway at large E understandable in this
limit. At smaller E and low temperature, one can
also understand why there is a tendency toward
ndm. That is, T must increase more rapidly once
past its minimum, in the quantum limit than at
H=O, as explained at the beginning of this section.
The first effect is a strong increase in the back-
ward scattering of active carriers, stronger than
at H=O, and leading to ndm. As T continues to
rise, forward scattering begins to occur; since
the mean of the distribution is closer to A;, =0 than
it is at H = Q, the forward scattering of active car-
riers at negative k, now begins to play a more im-
portant role than at H = 0, reducing the scattering
probability and contributing to the runaway.

The steplike behavior of the p —E characteristic
at large E and very large but finite magnetic field
is readily understood: at sufficiently large E, the
electron temperature has become high enough that
the most energetic carriers —those with energy
greater than %coo —are able to scatter with high
probability into the high density-of-states k, = 0
region of the next-higher Landau level (X =+ 1 trans-
itions). This scattering is sufficiently strong to
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prevent runaway.

The resonance curves are also understandable.
Close to resonance, energy exchange is very effi-
cient, but net energy transfer is very small at low

E, because absorption and stimulated emission in-
volving "passive" carriers dominate, and the ener-
gy transfers are nearly canceled. In the language
of temperature, one would say that the electron
temperature changes little (as shown in Fig. 5).
The principal effect is a shift of the distribution
function to the right. The shift will be further than
in the quantum limit because the forward scattering
due to active carriers does not decrease as rapidly
as in the quantum limit. This tendency persists to
moderate values of E: resonance scattering keeps
absorption and stimulated emission influential, and
the drift velocity can rise to a high value. Finally,
however, the large displacement of the distribution
function combined with an increasing temperature
brings about efficient back scattering of carriers
of energy greater than M+0 via hl =+1 transitions,
and, as it happens, the scattering is strong enough
to produce ndm.

Figure 5 shows the variation of electron temper-
ature with electric field at II= 0 and the quantum
limit at TD= —80 and at the critical temperatures.
We also show the temperature variation for the
magnetic field near the first resonance: e/+II=1
+10 ' for T0= —,'e. Clearly evident is the tendency
of the electron temperature to remain closer to the
lattice temperature than at nonresonant values.

In Fig. 6 we show the variation of electron tem-

E CU

Ef)P cdP

2. 2 I I I

1.6—

T
TQ

1.0

v v

V p

0.4 I I I I I I I I I

1.0 2.0

FIG. 6. Variation of reduced electron temperature
with reduced magnetic field. Numbers on curves give
values of E/E».

perature with magnetic field at Ta = —;8and 8/3. 75,
for several values of electric field outside the
Ohmic region. Resonant structure, occurring when
the optical phonon frequency is a multiple of the
cyclotron frequency, is evident. As mentioned in
Sec. III, the electron temperature rises toward
the lattice temperature at resonance in the cool-
electron region, and falls in the hot-electron
region. The "linewidth" becomes very small as
the lattice temperature is approached, and we have
not continued the curves to the lattice temperature
for this reason.

Figure 3 makes it evident that there is also a
resonant structure in the longitudinal magnetore-
sistance. By the usual definition, we have

I 00
0.001 0.01 0.1

~p p(z, a) I (E, 0)
p. p(z, o) I (E, ff)

(55)

10 =
The mobilities in Eq. (55) are defined as the ratio
of drift velocity to electric field, rather than as
differential mobilities. Thus the longitudinal mag-
netoresistance may also be written as

bp v(E 0) Av

p, V(z, H) v(z, 0)
(56)

~ I I IIIII I I I I IIIII I I I IIIIII I I I I IIIII I0.
0.001 0.01 0.1

E/E„p

FIG. 5. Variation of reduced electron temperature
with reduced electric field for H=0, H very close to the
first resonance, and H in quantum limit. Scale at top
refers to quantum limit. Numbers on curves give values
of 0/T, .

The approximate equality in Eq. (56) results if
lbvl = Iv(E, 0) —V(E, H)[ «v(z, o). Because of the
appearance of v in the denominator, the conven-
tional method of defining magnetoresistance tends
to magnify structure at the lower values of v,
hence E, provided one is outside the Ohm's law
region. This effect is evident in Fig. 7, in which
magnetoresistance is plotted as a function of mag-
netic field strength. Curves are given for E/E„~
=0 and 0. 1 at T0=8/3. 75 (upper graph), and for
E/E„~=o, 0. 001, 0. Ol, and 0. 1 at TD= —,'8 (lower



NUMERICAI. STUDY' OF DEFORMATION-POTENTIAL-

0.5

I I I I

i
I I I I

0

hp
p(Q)

0.5

I I I I I I I I

FIG. '7, Variation of longitudinal magnetoresistance
with reduced magnetic field. Upper graph: To = 8j3.75;
lower graph: TO=89. Numbers on curves give values of
gjg

graph). (The 0. 001 and 0.01 curves at To = 8/3. 75
lie quite close to the E= 0 curve and are not
plotted. )

The 8= 0 curves show the minor resonance struc-
ture which is now well known. The 0.001 curve
at T0=-', 8 (which Fig. 2 confirms as in the non-
Ohmic region) shows an unexpectedly large struc-
ture, mhich, homever, is explained in large part
by the argument in the preceding paragraph. At
E/E»=0. 01 and Ta= ,'8, the reson—ant structure
has largely vanished, although it reappears at
E/E»=0. 1. Note also the regions of negative mag-
netoresistance, occurring near the resonance
points when the electrons are hot, and near ~
= l. 5Ido for E/E»= 0. 001 and To = —', 8.

Of interest is the fact that the "spikes" point up
fox some electric fields and down for others. This
is related to the electron temperature: fox temper-
atures belom the lattice temperature, the spikes
rise as resonance is approached, whereas if the
electrons are hot, the spikes fall. The resonance
structures in Fig. 7 are quite sharp because at the
electric fields chosen, the electron temperature
is distinctly different from the lattice temperature,
except very close to resonance. However, for
fields at about 0.02 E„~, the tmo temperatures are
close (see Fig. 5) and the magnetoresistance
cux'ves do not necessaxily have their extrema at
the resonance points, and are then not cusplike.
(Unpublished computations based on polar optical
phonon scattering also show this. ) Thus, optical
phonon frequencies are not readily measurable
from magnetoresistance structure, even for the
simple model of band structure considered here,
unless the electric field is properly chosen.

In conclusion, me have emphasized in thi. s paper

the temperature region for which To is considerably
smaller than the Debye temperature 8, because only
at such temperatures do the more interesting effects
discussed here occur. It should be kept in mind,
however, that for To«e, other scattering mecha-
nisms, for example, involving acoustic phonons or
impurities, usually become dominant in real semi-
conductors. The pronounced magnetoresistance
resonance structure and the negative differential
mobility will both be diminished in magnitude by
such scattering mechanisms. Nevertheless, it is
important to understand what may be expected from
each scattering mechanism separately.

The physical discussions me have given are to a
large extent independent of the details of the dis-
tribution function used. In most instances "electron
temperature" is simply a convenient may of refer-
ring to the width of the distribution. The principal
unphysical aspect of the drifted Maxwellian, at
low enough carrier concentrations that it cannot be
justified, seems to us to be the restriction against
skewness, or asymmetry about the mean. Forward
scattering of active carriers in the negative-k re-
gion would then seem to be underestimated. Board-
man, Fawcett, and Rees' drew a similar conclusion
from comparing the drifted MaxweQian with a Monte
Carlo technique. This implies that the restraining
effects on the drift velocity mould be somewhat
smaller than given by the drifted Maxwellian.
Nevertheless, the non-Maxwellian technique of
Sato" predicts complete restraint at H= 0 and gives
precisely the same saturation velocity as the
drifted Maxwellian; however, Sato assumed a sym-
metric distribution about the mean. Of course the
details of the backward scattering are also not ac-
curately handled at lorn carrier concentx ation, so
it is difficult to make definitive statements in this
x'eglon.

It is our opinion that a solution of the Boltzmann
equation including nonpolar optical phonon scatter-
ing and carrier-carrier scattering mould shorn,
even at "moderate" carrier concentrations, the
same general features found in this paper: complete
restraint at H= 0; runamay in the quantum limit
preceded by a region of ndm if To«e; steplike
behavior of the e —E characteristic at magnetic
fields such that co» +0, for To«8; and pronounced
resonant structure, including ndm near resonance
at large E.
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Electrical Properties of the GaAs X, ~ Minima at Low Electric Fields from a
High-Pressure Experiment
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Hall-effect measurements at pressures extending to 60 kbar were made on single crystals
of n-type GaAs grown by liquid epitaxy, vapor epitaxy, and bulk techniques over the carrier-
concentration range 10~ —10 cm 3 and with Se, Si, Sn, and Te dopants. The X&& Hall mobility
at 50 kbar for material in the 10 —10 -cm range was 375+45 cm /V sec after transfer from

the I'&& minimum. [The labeling of states follows the notation of Wigner where the added sub-

scripts C (as used in X&&) and V (used in I'&5&) refer to conduction- and valence-band states,
respectively. ] Extrapolation to atmospheric pressure gives a conductivity mobility of 328+ 50

cm /V sec. Theoretical fits for the high-pressure data indicate a subband gap (XfQ r«) of
0. 38 + 0. 01 eV and a density-of-states ratio of (N„/Nr) p- p

=45 whlchimpllesX&g density-of-
states effective mass of (0. 85+0. 10)m,. The loss of carriers at high pressures to impurity
levels associated with the X&~ minima has been observed. The activation energies relative to
the X«minima are estimated at 0. 045+0. 01 eV for 10 -cm material with Si, Se, Te doping.
Results have been analyzed in terms of the simple hydrogenic model. Ionized-impurity scat-
tering in the X«minima has been shown to be unimportant for material with carrier concentra-
tions below 10' cm

I. INTRODUCTION

High-pressure experiments ' were instrumental
in determining the physical mechanism of the Gunn
effect in GaAs. The threshold field for Gunn oscil-

lations was found to decrease as the light- eff ective-
mass I,c [000] conduction band moved towards the
heavy-effective-mass Ã, c (100) conduction-band
minima with pressure. This showed that the nega-
tive differential resistance which occurs near 3 kV/


