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The Kadomtsev-Nedospasov theory of helical instability of a gaseous plasma has been ap-
plied to semiconductors by several authors. We have extended this theory to include the force
arising from a self-induced magnetic field. Such a force pulls the plasma to the center. He-
lical instability is due to the flux of charged particles to or from the surface, and thus depends
on the surface conditions. We have treated the effect of the self-induced field as a small
perturbation on this surface effect. It is predicted that the stability increases or decreases
if the Qux due to the self-induced field adds or substracts from the flux due to boundary con-
ditions.

INTRODUCTION

The onset of current oscillations in semicon-
ductors placed in parallel electric and magnetic
fields is in some cases due to helical instabilities
set up in the material. The theory of helical in-

stability was first presented by Kadomtsev and
Nedospasov. The original Kadomtsev-Nedos-
pasov paper is on gaseous plasma. Their ideas
have been applied to plasma in semiconductors by
several authors. Qne solves the problem of
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two fluids moving through each other. The hydro-
dynamic equations describing the positive and the
negative fluids connect the forces acting on the
fluids with the fluxes they produce.

The present paper differs from the work of other
authors by including the forces arising from the
self-induced magnetic field in the hydrodynamic
equations. Furthermore, we assume that the re-
combination properties of the material in the vol-
ume differ from those of the surface; and we use
different parameters to describe their rates of
recombination. It is shown that if these parame-
ters are equal, no instabilities can occur.

CALCULATIONS

slower than 1/r„where v, = p. ,m, /e are the mean
times between successive collisions with the lat-
tice of electrons and holes.

Collisions of free electrons and holes with the
lattice vibrations alone are considered, and colli-
sions between electrons and holes are neglected.
We solve for I', from Eq. (1) and substitute it in

(2); we thus have

V ~ [p, „~D, B(Vn ~ B)w p, ,p, nB, (B ~ E)+D,Vn

qD, p, , (Bx Vn ) v g, n E+ p, p. ,n (Bx E )]

We assume an intrinsic semiconductor, i. e. ,
the total number of free electrons and holes are
equal. The free electrons (holes) behave as a
nondegenerate gas. In the presence of external
field, the densities of electrons (holes) may be
functions of position and time. We assume the
density of free electrons to be equal to that of the
free holes everywhere in the sample. An internal
electric field may exist in the material, although
we neglect the existence of space charge. This
assumption of quasineutrality is reasonable, for
only small differences in the densities can pro-
duce very strong internal electric fields.

Denoting by + quantities associated with the
holes and electrons, we have the two fluid equa-
tions

I",+D, Vn+ p, ,nE+ p, , I', xB=P,

and the equations of continuity

II, (r) =, n (r ) v,r dr,
&g 0

(4)

where v, = v', —v, are the components of the drift
velocities. In the literature, B~ (r) has usually

been neglected. We assume a simple form for
B~ to be

8 o = e v,n, r/c

where n, is the average density of charges. The

above form of B ~ seems reasonable if v, is as-
sumed independent of position.

Here we have D, =D /(1+V &o~) " 4+ =&~/

2 2(1+V+& Oz) . For a sample in the shape of a

,cylinder, we use cylindrical coordinates with the z

axis along the direction of applied electric field E
and magnetic field Bo,. In addition to external

magnetic field, an internal magnetic field B (r)
will be induced,

where n is the number density of free electrons
or holes, and I', are the particle fluxes (i. e. ,
I', =nv, ), nv, are the drift velocities, D, = p, ,k&je
are the Einstein diffusion constants, p, , are the
mobilities, and T, are the temperatures of holes
and electrons. E and B are the actual (external
and internal) electric and magnetic fields. I/$ is
the mean bulk lifetime for excess carriers, and
n is the density Bt which no net recombinations or
generations take place. n may be a function of
external electric fields and is roughly of the order
of the average density of charged particles in the

sample. The continuity equation can only assume
the form of Eq. (2) in the special case when the
recombinations and regenerations are monomolec-
ular. The validity of such a form may depend

on the material. In Eq. (1) we assume that the
fluxes are in equilibrium with the instantaneous
values of the forces. This is a good approxima;
tion as long as we investigate processes that are

STEADY STATE SOLUTION

In this case, we assume &n/et =0 and &n/&P

=~n/st=0, s&,/s&=0, and&~=0. Eliminating

&O„between Eqs. (3), we have

s ~ + —+Ar —, —(po —2A )n+ pan = 0,2

~~ere ~a2= —","; "--, "; C~„~2,v'u. '(( +v. )

POR =. . . , FR,2 2 P-+P.
D + p, D

B& is the induced magnetic field at the boundary

of the cylinder ~=R. The boundary conditions are

r', (ft)=Stn(Z)-n, ] . (9)

Equation (9) relates the flux at the boundary with

the surface recombination velocity S. n, is the
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density at the boundary at which surface recom-
bination does not take pla, ce. n, depends on the
nature of the surfa, ce of the material.

Neglecting the induced magnetic field, the solu-
tion of (6) is

n =I))'olo (Por)+n,

The radial component of the internal electric
field Eo„ in the steady state can be determined
from the condition that the radial flux of the elec-
trons and of the holes must be equal,

(19)

where
8It —(n-n )o
~

s

(
It dlo(Por) '

po dr ,s 'r, (s-,s))

where n = (D,'- D ')/(p '+ i), ')

and a = (p, p '- p )), ')/(p '+ i), ')

TIME-DEPENDENT SOLUTION

Here we introduce

(20)

a'N y eN
+ -+Ar ——(p, —2&)iV=0,8g f' 8g (12)

where N =n —[Po/(Po —~)jn .
Treating the induced magnetic field as a pertur-
bation, we try a solution of E)l. (12) (up to first
order in 4)

N =l)Io [Io (Por) +at Io (Pt r)j, (14)

where a& is assumed linear in 4, From the meth-
ods of perturbation, it follows that

Including the induced magnetic field, we transform
E|l. (6) to the form

n= no+n)(&) and E=EQ+E)(t) (»)
here no and Eo are the steady state values of n

and E, while n, and Eq are their time-dependent
parts.

Vfe assume a helical form for the density n, and
the electrostatic potential Vg fl"onl which Ej ls de-
rived. Thus,

)(~)«ms as)«a ~ «r (r) e)(~t«s)8«ks)ng=J p$ 8 an&

(22)
where &u is the angular fre)luency, m (set =+1) and
4' are the wave numbers in the azimuthal and ~ di-
rections. Vfe assume

f (r) =fo~s ("or) and p (r) = lod& (d'or)/no, (2$)

where fo and lo are independent of r. ));o is deter
mined from (9). Thus,

fo d)(~.or)«r=(»/$)&, (~oB). (24)

-i)

(Pf- Po) Io{Pgr)r dr =ABog. (15)

Using the boundary conditions (9), we have

8 I' (8)=» (n (It) —n, ) = f {n(r)—n) ]r dr

(16)

The right-hand side of Eq. (16) merely states that
the total rate of generation over the cross section
of the sample is equal to the total rate of genera-
tion on the surface. Thus, we have

The expressions for n and V are substituted into
Egs. (3) and the resulting equations are multiplied
by Z&(@or) and integrated from 0 to B. The re-
sulting expressions are similar in form to those' '
obtained neglecting the self-magnetic field and can
be written in the form

A, fo+B. fo= 0 and A-fo+8-lo = 0, (25)

where it is assumed that (d=~, +i~a. The condi-
tion that Eqs. (25) have a nontrivial solution is

A.,a.-A a, =0.
We separate Eq. (I) into its real and imaginary
parts, and obtain two equations involving v& and
(d2 s

A~~~+Bj coa+Cl=0 and Az{d&+B&~2+Ca=0 .

and n = &o[lo(Por)+a, Io(P, r) j
+ [1+(2A/P', )j n

a, and p~ are determined from Eg. (15) and
(1V), respectively.

Aq Ca-ABC) = 0 . (26)

lt is known that the electron's (hole's) tempera-

Solve for ~z. Instability sets in if era & 0. There-
fore, at the threshold, we have
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ture and mobility are functions of the applied elec-
tric field EQ, . Dependence of the electron and
hole temperature on the electric field is a well
investigated subject. If one assumes that the
scattering is due to interactionwith acoustic modes,
one obtains simple expressions for field-depen-
dent mobility and electron or hole temperatures.
In sufficiently strong fields, we have

u, (Ep, ) = u', (C./u', &p, )"'(32/»)'"

and T, (Eo, ) = T, (p, Ep, /C, ) (3o'/32)'I,

(29)

(3o)

where T, , i],, are the temperatures and mobilities
of electrons or holes at vanishing electric fields
and C, is the velocity of sound in the medium.

If we neglect p, ,BQ, in comparison with unity,
Eq. (28) has the form for Z, & 1 (keeping terms
up 'to Zg):

b (i],-+(L[ ) Bog[H&(CR/Bog)+HsZi~~ +Hs(4R/Bo )Z&

+H4Z]~ +Ho(CR/Bog) Zqj +H p+H7Zq+Hs Zq ~ 0,

(31)
where b =EogR/(N&)'~ (T +T )—, Z& kR /N&, -

Hi=GiG4/K) ", Hs=-GsGg,

H, =- (2G, -G,)G,/(N, )'~', H4=G, ,

Hs = (G4- Gs)/(Ng)'~, Ho= G~ G,
H~= —Gg(2G-G, ), Hs=G+2G, ;

and G = 1 —PoR /N» Gq = (N, —N, )/N, ,

Gs=Ns/N& p Gs=Ns/N]
p

G4= 2+N4, Gg = 2+Ns .

(34)

Equation (35) together with Eq. (31) give the value
of k =kc ~

Eliminating Ep, between (31) and (35), we have

(3HsHs —HsH7) Zg+4(H)Hs —HsHs)

X((M/Bo ) Zii y (HsHs- 3HsHo) Zi

+ 2(H, H, - HsHp)( 4R/Bog) Z,'" H, H, =0-. (3&)

The equation obtained by differentiating Eq. (31)
with respect to k is

b (p + g )Bpg [Hs+ 2HS (CR/Bpg) ZI + 3H4Zg

+4Hs(4R/Bpg) Zg j=2HsZI +4HsZq

(35)

=P =- I')+I'2A.R
1 dnQ 2

nQ df

1 S — dIo(Por) 1
and P] =-—R —(n n, )-

n() $
' dr D ' (32)

We can calculate the angular frequency +& in the
same approximation, noting from Eq. (31) that
bp, ,BQ, is of the order p, ,BQ, '.

by (Gg Zg ) = b (p ]L )Bp g(G(+ Gs+GyZg) Zg

1 2 R S dIo (Ppr)
n PR 2 $ dr where

p, +p,. &R
N, (k/e) (T, + T )

(3V)

S
(
—

)
dIp (Por) 1 (sg

D =R(S/$)(1+-,'P s) s-+Rs(1s'+P Rs)s.

We use the notation

(F (r) )
-=f F(r)J, (d'or)dr/(1/R')

Q

x f "J',(~pr)r dr

in defining

d 1

d
Np

—[ (KKpPrp)g])pNp= = (Pp Tp (Kpr) ),
(33)

N ((/g') (r' p' " ), N = (r'Pp ptp~(Kpr) ),dr

[KPK&, tppr)]), N, = (PK& (Kpr) );d
dr

Thus, the frequency can be calculated when k and
EQ, are determined.

DISCUSSION

Consider first the steady state solution in the
limit I = 0, i. e. , neglect the influence of the azi-
muthal magnetic field. In this case, the solution
is given by Eq. (10). This solution is of the stan-
dard form ' containing Bessel functions. How-
ever, the coefficient Np of Ip vanishes if n =n, .
An examination of our solution (10) shows that the
density at x = 0 increases in the steady state if
n &n, . It seems possible theoretically that one
could have n &n, , in which case there would be
decrease of density at the origin in the steady
state. Previous authors ' have imposed the
boundary condition that the density of the plasma
is zero at the boundary. There is reasonable
agreement of their theories with some of the re-
cent experiments. "'" In the frame work of the
present theory, a zero density at the boundary is
achieved by requiring (n, /n) 0 and (B/R$)
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""=(l)'"('- ":)'"
1 1 S PpPRPn —n, 'CR
2 KDB $ If.038 n Bo, ' (38)

and from Eq. (31}the threshold value of Ep, Bp, ,

b (p +p. )Bp,=(2)"'
R] aRp — +9

(2) I S PpR n —n~ 4R
ttpR Rg KpR' n Bp,

The critical frequency ar, obtained from Eq. (3V),

. (39)

is

We believe that the density at the boundary is best
approximated by n&n, and (S/R$) & 1. n and n,
are the parameters that characterize the differ-
ence in the recombination properties of the bulk
and the surface. n &n, corresponds to a state of
lower density at the boundary than in the bulk.
It should be noted, that if the boundary properties
are not different from those of the bulk, i. e. ,
n =n, , our solution (10) gives a constant density
n.

If 4 &0, our solution (18) has additional terms.
These terms are due to the self-induced magnetic
field. Throughout this paper, it is assumed that
the effect of the self-induced field is small. The
density profile is now directly dependent on the
magnitude of the appliedelectricfield. In Eq. (10),
the electric field appears indirectly through p, ,
and T, . We observe that the self-induced mag-
netic field always pulls plasma inward, but the
effect of the boundary produces a flux out if n, (n .

Equations (31), (36), and (37) are derived on
the assumption that Eo, is sufficiently large so
that the use of the relations (29) and (30), and the
assumption p, ,BO,«1 is valid. If is possible to
compute numerically the critical values of Eo, ,
k, and &, from (31), (36), and (37).

We observe from Eq. (31) that if the steady
state solution is a constant density (i. e. , n =n, and

Q = 0} instability is not possible in any field; and

from Eq. (36), we note that no unique Z, exists if
the steady state is a constant.

The general forms of Eqs. (31), (36), and (37)
are similar to those derived by Glicksman. Ex-
cept that our equations contain the influence of the
azimuthal magnetic field, the present calculation
reveals the need for properties at the boundary to
differ from those of the bulk.

In order to get approximate values of the above
quantities, we expand the Bessel functions in terms
of their arguments and keep terms up to third
power of the arguments. The approximation has
been made by Hurwitz. We then obtain from
Eq. (36) the threshold value of Zi+(k),

( S PpR n —n,bi=6(p, —p, )Bo,
i R~,Rp

' +2
, «~oR

(2)'i 1 S piiR ii —ii, )' @R
x 1+—

2 &oR R) &oR ts Boa
. (4o)

If we neglect the 4 terms, the threshold values
for Z,', Eo+p, , and &u, are similar to those of
Hurwitz, except that our solutions are in terms
of n —n, . The terms involving (n —n, )/n and S/Rt'
become small when (n,/~) « I and (S/R$)» 1. In

order to determine the magnitude of 4-dependent
terms in Eqs. (38), (39), and (40), we estimate
a'pR and PpR. From Eq. (24) if (S/$R) &1 then Ji
(h:pR) =0, i. e. , (xpR) -8. From Eq. (V) if p
(PpR) -(es/p. kT ). We thus have the 4- dependent
term as

(3 p kT./es) (eR/Bo, ) .
If Bo, is small and R large, this term can be about
0. 1. Thus, the C'-dependent term may affect the
results by 10%. In its absolute magnitude, this
effect cannot be detected because we can never
switch off the self-induced magnetic field. We
note that the 4-dependent term increases the crit-
ical field necessary for the onset of instability.
This is in accord with Glicksman's theory, since
the self-induced magnetic field increases the den-
sity gradient, thus, increasing the forces which
oppose the instability. Glicksman has shown that
a decreased density gradient did reduce the thres-
hold for instability.

We observe, that the 4-dependent terms are
size dependent. This is understandable; for a
larger R leads to a stronger self-induced field:
Thus, the influence of the self-induced field can
be measured from the size dependence of Z& and
b andbg.

Another possibility for the measurement of the
influence of the 4-dependent term exists.

The number density of electrons and holes in
the material can be modified by illuminating the
sample with appropriate radiation. If the attenu-
ation length of the radiation is large compared
with the dimensions of the sample, the plasma
density may be increased uniformly in the sam-
ple. A higher density of charged carriers affects
only the 4-dependent term. Thus, if the carrier
density is increased by afactor of 2, the @ —depen-
dent term alone will increase by a factor of 2.
One may thus be able to measure the influence of
the self-induced magnetic field on the stability of
the plasma.

Thus, it is possible to check the predictions of
the present theory with experiments suggested
above. Recent results"'3 cannot be used to sep-
arate the effects of the self-induced field.
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The photoconductive response of some semiconductors to monoenergetic excitation shows
structure which is associated with the emission of optical phonons. A model for oscillatory
photoconductivity based on the Boltzmann equation has been suggested and partly investigated
by Stocker and Kaplan (SIO. An exact solution of the SK Boltzmann equation is presented in
this paper. A model valid for small electric fields is derived from the exact solution which
retains the main features of the SK model in a form particularly amenable to calculation.
The properties of the small-field model are illustrated by two series of calculations. In the
first series of calculations, the composition of a dip in the photoresponse caused by the
proximity of an optical phonon emission threshold to the electron injection energy is analyzed.
The shape and "intensity" of a dip depend on the relative values of the recombination life-
time, the strength of acoustical and optical phonon scattering, and the electric field. A
second series of calculations was designed to show how the periodic repetition of dips in the
photoresponse as a function of electron injection energy can be inhibited or destroyed by
competition from other optical phonons.

I, INTRODUCTION

The photoconductive response of certain semi-
conductors exhibits periodic dips as a function of
the monoenergetic exciting radiation. These "os-
cillations" were first observed in the extrinsic
photoconductivity of the InSb: Cu system' and have

since been seen in many systems. More recent
observations of the extrinsic photoconductivity of
Si have revealed dips which are repeated no more
than once, if at all. In all cases, the dips are
thought to arise from the onset of optical phonon
emission.

The phenomenon has been treated theoretically
in terms of a model based on the Boltzmann equa-
tion. The main innovation of the Stocker-Kaplan
(SK) model as compared with similar models for
electron transport is the explicit inclusion of an
electron generation term. It is this property of the
SK model which suggested a scheme leading to an
exact solution.

The theoretical development of the SK model as
described in the original paper is inadequate in
several respects. First, the calculations are based
on an expansion in spherical harmonics of the
Boltzmann distribution function in which only the
first tmo terms are retained. This truncation ap-
proximation is arbitrary and the resulting equations
are complicated. A solution was found only for a
limited region and special circumstances. Second,
the calculations do not consider more than one type
of optical phonon process. The experimental re-
sults for Si, which has three distinct optical phonon
processes operative, suggest that there is a com-
petition between the various optical phonon emis-
sion processes that tends to prevent the periodic
repetition of the dips. Even accepting the trunca-
tion approximation, it is not clear that the original
treatment can be extended to include more than one

type of phonon process.
It is the purpose of this paper to present an exact


