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The thermal conductivities of single crystals of silicon and of calcium fluoride have been mea-
sured in the temperature range 3—40°K and 2.5-30°K, respectively. For samples in the form
of square cross-section rods, the conductivity in the boundary scattering regime was found to

depend on the orientation of the rod axis, the variation being as much as 50% for silicon.

This

anisotropy is accounted for in terms of phonon focusing due to the fact that in elastically aniso-

tropic crystals the phonon phase and group velocities are, in general, not collinear.

Casimir’s

theory of the thermal conduction in the boundary scattering regime has been generalized to in-
clude the effects of focusing; the predictions of this generalized theory are in quantitative agree-

ment with the experimental results.

It is predicted that anisotropic thermal conductivity in

the boundary scattering regime is a general property of elastically anisotropic cubic crystals.

I. INTRODUCTION

At sufficiently low temperatures the mean free
path of thermal phonons in a dielectric crystal of
high purity and perfection becomes limited by the
boundaries of the sample.! A theory of the thermal
conductivity applicable to this temperature range
was first developed by Casimir,? whose result may
be expressed in the equivalent forms

k= 2Tk /157°) s DA T® 1)
= 3CUsH/(s™HA, (2)

where {s-%) and (s-®) are, respectively, averages of
the inverse square and inverse cube of the phonon
phase velocity, T is the temperature, and C the
specific heat per unit volume. A, the Casimir
length, may be regarded as the effective phonon
mean free path. For a circular cross-section rod,
A, is equal to the rod diameter and for a square
rod of side D ’

A,=1.12D . ®3)

Experimental measurements of the thermal con-
ductivity under conditions where the Casimir theory
should apply were first performed by de Haas and

Biermasz® on quartz and potassium chloride. These

experiments and more recent work are in agree-
ment with Eqs. (1) and (2) in that the conductivity is
generally found to vary with temperature as T3 and
increases linearly with the transverse dimensions
of the crystal. The thermal conductivity calculated
from this theory is also of the same order of mag-
nitude as measured experimentally, but quantitative
agreement between theoretical predictions and ex-
perimental results is often lacking. There are
several possible reasons for this and in particular
the following points have been made:

Length covvection, Casimir’s theory assumes
that the sample has a length very much greater than
its transverse dimensions. A correction to take

2

account of the finite ratio of sample length to sample
width was derived by Berman and co-workers. %
This effect reduces the conductivity below that pre-
dicted by Casimir.

Specular reflection. Casimir assumed that the
walls of the sample acted as diffuse scatterers of
phonons, i.e., a phonon striking the surface of the
crystal would be reradiated with random direction.
However, in general, one expects that a certain
fraction of the phonons will be specularly reflected.
It has been shown*® that this effect increases the
conductivity by a factor

1+p)/1-p) .

p varies with the surface condition and may also
depend upon temperature. The variation with tem-
perature occurs because with decreasing tempera-
ture the average phonon wavelength increases and
consequently a surface of given roughness appears
smoother.

In this paper we describe another way in which
the conductivity may differ from the predictions of
Egs. (1) and (2). Heat-pulse studies® have shown
that when phonons are excited in a given region of
an elastically anisotropic crystal, the energy flow
will be enhanced or focused in some directions and
decreased in others even if the angular distribution
of wave vectors is uniform. This enhancement or
decrease arises because the group velocity ¥V is not
generally in the same direction as the wave vector
K or the phase velocity §. One therefore expects
that the thermal conduction in the boundary scatter-
ing regime should depend on the direction of the rod
axis and should be larger than average when the
axis is parallel to a crystallographic direction in
which the energy flow is enhanced. This is shown
schematically in Fig. 1.

At temperatures much less than the Debye tem-
perature most of the thermal energy of a solid is
contained in the transverse modes because of their
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FIG. 1. Schematic diagram showing phonon focusing.

A uniform angular distribution of wave vectors is shown.
The deviation in direction of the group Velocity vectors ¥
relative to their corresponding wave vectors k is such
that there are more phonons traveling nearly parallel to
the rod axis than there would be for an isotropic solid.

lower velocity. Thus, one expects that transverse
phonons will make the major contribution to the
heat conduction. It follows that, if focusing is in-
deed important, an enhanced conductivity should
occur for those directions in which transverse pho-
nons are most strongly focused. To investigate
this possibility we have measured the conductivity
in several differently oriented rods of silicon and
calcium fluoride. The experimental procedure and
results are described in Sec. II. In Sec. III, Cas~
imir’s theory is generalized to allow for phonon
focusing, and in Sec. IV, we compare the predictions
of this theory with the experimental results.

II. EXPERIMENTAL PROCEDURE

The thermal conductivity was measured in a cryo-
stat of fairly conventional design using liquid helium
as a coolant. The temperature gradient along the
sample was determined using an annealed Au-0. 02
at. %-Fe versus Chromel P differential thermocou-
ple.” The thermocouple junctions were fastened to
knife-edge clamps of high-conductivity copper which
were mounted on the specimen at approximately
equal distances from the heat source and sink. The
output of the thermocouple was measured by a
Keithley model 148 nanovoltmeter. Allen-Bradley
15-W carbon resistors located on the thermocouple
clamps were used to measure the sample tempera-
ture. These resistors were calibrated against a
germanium thermometer (Texas Instruments Model
106) from 4 to 40 °K and against the vapor pressure
of helium below 4 °K. The output of the thermocou-
ple, the current and the voltage applied to the heater,
and the output of the thermometers were continuously
monitored on a Leeds and Northrup 12-point Speed-
omax recorder. The over-all accuracy of the ther-
mal conductivity measurement is estimated to be
+4%.

All samples were prepared from a p-type silicon
single crystal supplied by the Texas Instruments
Company. The room-temperature electrical resis-

AND ELBAUM 2
tivity of the crystal was approximately 200 @ cm and
the dislocation density was less than 500 cm™. The
dimensions and orientations of the various samples
are shown in Table I. The surfaces of all samples
including end faces were abraded using 200-J grade
emery cloth supplied by the Behr Manning Company.
The four square cross-section samples were abraded
simultaneously to achieve as similar surface condi-
tions as possible. Surfaces of the two rectangular
cross-section samples were prepared in the same
way. For the square cross-section samples, the dis-
tance between the heater and sink was 2.9 cm and be-
tween the thermocouple junctions 1,63 cm. The cor-
responding distances for the rectangular cross-sec-
tion samples were 3.5 and 2, 22 cm, respectively.

Results for the square samples are shown in Fig.
2 and for the two rectangular samples in Fig. 3.

The thermal conductivity of all six silicon samples
agreed to within experimental uncertainty at 40 °K,
but they had significantly different conductivities
at lower temperatures. Table I lists the conduc-
tivities at 3 °K for all samples. An effective mean
free path A, has been calculated from the con-
ductivity at 3 °K and this is also shown in Table I.
This mean free path was determined using the re-
lation

Aexpt= 3Kexpt<s-a>/(c<s-z>) B (4)

where k., is the experimental thermal conductivity.
(s2y/(s®) was calculated using the elastic constants
and density given in Table II and was found to be
5.66 X10° cm sec™. For the square samples, A,
has been expressed in units of the side dimension,
and should therefore be 1. 12 according to Casimir’s
theory. For the rectangular cross-section samples,
the mean free path is expressed in units of the
geometric mean of the two side dimensions.

Detailed measurements of the thermal conductivity
in silicon as a function of the direction of heat flow
have previously been reported by Hurst and Frankl.®
They also found that in the boundary scattering
regime, the conductivity of (100) axis rods was
greater than that of rods with (110) or (111) axes.
Quantitative comparison between their results and
ours is somewhat complicated because their sam-
ples did not have the same ratios of length to width
as ours. However, when these differences are
taken into account the two sets of data appear to be
in essential agreement.

Calcium Fluoride

The samples were single crystals of “optical
grade” material supplied by the Harshaw Chemical
Company. The orientations and dimensions are
listed in Table I. The surface of all samples were
prepared in the same way as the silicon samples.
Measurements of thermal conductivity were made
from 2.5 to 30 °K and these results are shown in
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TABLE I.

ANISOTROPIC HEAT CONDUCTION IN CUBIC
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Summary of experimental and theoretical results for silicon and calcium fluoride. For the rectangular

cross-section rods the orientation of the wide face is denoted by an asterisk. The mean free paths are given in units of
the geometric mean of the side dimensions of the rods. Apeors Acorrs 80d Agyeyt are defined in the text. Cross-sectional
dimensions accurate to+0,01 mm.

Material Rod axis Side faces Dimensions (mm) k at ?{°K . Atheor Agrr Vexpt £4%
(W em™ °K™)
(100) {100} 31%2,93%2.93 1.24 1.86 1.45 1.41
{100) {110} 37x%2.93%2, 93 1.16 1.84 1.43 1.32
. (110) {100} {110} 37%2,93%2,93 0,87 1.29 1.06 0.98
Silicon
(111) {110} {112} 37x2,93%2,93 0.81 1.09 0.98 0.91
{110) {100}* {110} 38%6.38x%1,85 1.17 1.49 1.14 1.13
(110) {110}* {100} 38%6.38%1.85 0.88 1.02 0.88 0.86
. {100) {100} 36 x4, 00X4,00 2.11 0.98 0.90 0.86
Cal '
ﬂi:;?:; (110) {100} {110} 36%4.00x4. 00 2.76 1.30 1.12 1.12
111) {110} {112} 36 %4, 00%X4, 00 3.03 1.45 1,24 1.23
Fig. 4. In all of these experiments, the distance IlI. THEORY

between the clamps was 2. 00 cm and between the

heater and sink 3.3 cm.
ductivity at 3 °’K are shown in Table I.

The results for the con-
The effective

experimental mean free path was calculated in the

same way as for silicon.

The value of (s-%)/(s"%)

was found to be® 3.88 X10° cm sec™,

30¢t
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Thermal conductivity of four square cross-

The dimensions of the sam~

In this section we generalize Casimir’s theory to
allow for phonon focusing effects. Consider a rod
of length L having uniform cross section (Fig. 5).
Let us specify any point on the surface of the rod
by a coordinate X; measured around the circumfer-
ence and a coordinate X; measured along the rod
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FIG. 3. Thermal conductivity of two rectangular sam-
ples of silicon. The dimensions of the samples are given
in Table 1.
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plane normal to the (111) direction but the resulting
error is expected to be small. Further comments
on this point are given in Sec. IV. (c) The tem-
perature gradient along the rod is assumed to be
uniform. For an infinitely long rod this assumption
is rigorously valid. In the case of a finite length
rod, however, one expects that the temperature
gradient will be slightly greater near the ends of
the rod.* One can show that the fractional error
introduced into the conductivity by this assumption
is of the order (D/L)? which, in the present ex-
periments at least, is small. The “length correc-
tion” to the conductivity referred to in the Introduc-
tion is of order D/L.

Consider some element of surface area dS near
the point (X, X;). Let i(X,) be a unit vector normal
to the surface at this point and directed towards the
interior. Then the number of phonons with wave
vector k and polarization j leaving this element of
surface per unit time is

f(x,) - V(j)N(jX;) dS

where v(k]) is the group velocity of phonon k] and
N (k]Xa) is the Bose-Einstein distribution function
corresponding to the temperature T(X3) at the sur-
face element. Thus

={expl7w (kj)/ksT(X5)] -

N(&jx;) 1}, (5)

where w(Ej) is the frequency of the phonon k j. The
phonons leaving dS will travel across and along the
rod and eventually strike the surface. Let the dis-
tance they travel down the rod before they hit the
surface be denoted by A,(KjX,;). Consider now the
energy flowing to the right past the plane X3=0
(Fig. 5). This will be the sum of the energies of the
phonons radiated by all surface elements dS to the
left of the plane, provided these phonons have suf-
ficiently long mean free paths A4(KjX;) along the rod
to pass the plane. The energy flow to the right is
thus

Qr =§ S, S TG DO - T SIN GRS X)
x0[ng(KjX,) +X,]dX,dX;5 (6)

where we have used the Heaviside step function de-
fined by

0(x)=1 ,
:0 5

Xz0
X<0

The integral over X, extends around the circumfer-
ence of the rod. The X integration is from -« to
0 only when the rod is infinitely long. We consider
this case first and will obtain a correction to the
heat flow for a finite length rod later. The energy
flow to the left may similarly be written

4081
[ =%} ke, S o TR0 - ()N jx,)
x (- A jX,) - X5]dX,dX, . (7)

Assuming the temperature gradient is small and un-
iform, we have

T(X3) = T(0) + 5{% |0X3 , @)

oN (kj) oT

NEix,) =N or
(] 3) (]0)+ oT 3X3 . 3

(9)

If Eq. (9) is inserted into the expressions for Q@
and @ and the integrals over X, are performed,
then we find that the net heat flow to the right is

_ 18T | s, = 8N (k)
Q“QR'—QL‘ - 2 aX3 OEZ:j hjw(kj) 8T

XL R(X,) - TERMEFIX,) ax, . (10)
1

Hence, the thermal conductivity as usually defined
is

1 > ON&j) [ = - -
K= —Z‘J Ty ) &N (kj) A(x,) - v&iniE&ix,) dx, ,
2A %, 8T Jy,

(11)
where A is the cross-sectional area. For not too
complicated shapes of the cross section, the inte-
gral over X; may be performed analytically. For
a circular rod the integral has the value

=1 (16R%)v3(kj)/[v* () - v3H)]M/2 (12)

where R is the radius of the specimen and vs(k]) is
the component of v(k]) in the direction of the rod
axis. For a rectangular rod with side dimensions
D and #D the integral is

- 28D (3050, @) - o),

|0, &5)| >n| v, &5)]

- D5 3, |0, &) | - |orD)]],

3v (k])

|0,(&5) | <n|v,y(k) |
(13)

where vl(ﬁj) and vz(ﬁj) are the components of the
group velocity parallel to the sides having lengths
nD and D, respectively.

Having performed the integrals over X, we are
left with the summation over Ej. For isotropic
solids this may be performed analytically and for
square and circular cross-section rods the results
obtained agree with Casimir’s [see Eq. (2)]. For
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a rod with rectangular cross section, the conduc-
tivity is also given by an equation of the form of Eq.
(2) and in this case it can be shown that

A,=(3Dn* %) {3 21n[n"t + "+ 1)"/2]
+3n7Y21nfn + 2+ 1)"?]

2l yn )2t/ (14)

- (n+n®) /2

For anisotropic crystals, the summation over k
and j in Eq. (11) must be performed numerically.
We have done this'® for silicon, calcium fluoride,
and a number of other cubic crystals and the results
are shown in Tables I and II. We have presented the
results as the theoretical mean free path Ay, for
an infinite length crystal defined by

Atneor= 3Ktheor<s .3>/(Ctheo r(s -2>)

Here Kineor is the thermal conductivity calculated
theoretically from Eq. (11) and C\er is the theo-
retical specific heat given by

C thoor = (27k5 /513 ) (s T3 .

Cineor Was also calculated and is included in Table II.
The above analysis only applies to the conductivity
in an infinitely long crystal. For a finite length
crystal it is necessary to take into account the pho-
nons which are emitted or absorbed by the end faces
of the crystal. One way to proceed is to calculate
explicitly the contributions to @z and @ from these
phonons and to include these in the net heat flow.
A simpler method* which gives the same result is
to replace the actual finite crystal by an “equivalent
infinite crystal” having a temperature distribution
of the form shown by the solid line in Fig. 6. The
infinite length of crystal to the left of Xg3=—L/2
radiates phonons to the right of X;=~ L/2 in exactly
the same way as the “black” left end face of the
real finite crystal does. Qz and @ are then still
given by Eqgs. (6) and (7) but now

(15)

(16)

N7 -NE 5+ 2 D) 170y - 70)], (%)
where
T(X5) = T(0) + BT é’— X,>L/2
=T(0)+ , = L/25X,<L/2
=T(0) - aT L X;<-L/2 .

021

The calculation of @ and k is then straightforward
and the result is that, compared to the infinite
length crystal, the conductivity is reduced by

Ax-—z rw( >3N(k“f ) - 5(5)
Xy

X[ a(kix,) | - L/2Pax, | (18)
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T(X3) Lt

L L
"z 0 2 X3

FIG. 6. Temperature distribution in the “equivalent
infinite crystal” discussed in the text (heavy solid line).
The temperature distribution in an infinite crystal is
indicated by the dotted line.

where the prime on the summation indicates that
only those phonons with mean free paths such that
Ixa(Ele)! >L/2 are to be included in the summation.
These phonons are the only ones contributing to

the end effect correction because other phonons do
not have a sufficiently long mean free path to reach
the plane X;3=0 from the end faces of the rod.

The integral over X; may be performed analyt-
ically for circular, square, and rectangular cross-
section samples and then the sum over E]’ must be
carried out numerically. We have done this for
each of the six silicon and three calcium fluoride
crystals used in the experiments and have thus ob-
tained a corrected theoretical conductivity. The
results are shown in Table I expressed as a cor-
rected theoretical mean free path A,,.,. The length
of the crystal used in these calculations was the
distance between the heater and sink.

IV. DISCUSSION

The agreement between A, the theoretical
mean free path corrected by the end effect, and
Agxpt, the experimentally determined mean free
path, is very good (see Table I). For the nine
crystals measured, the difference between theory
and experiment is never greater than 8%, and for
six of the crystals is less than 4%. This is par-
ticularly satisfactory since there are no adjustable
parameters in the theory, the only ingredients being
the dimensions of the crystal, the elastic constants,
and the density. It is interesting that this agree-
ment is obtained without having to invoke the pos-
sibility of any degree of specular reflection of pho-
nons at the crystal surfaces. One might expect
that specular reflection would become more likely
at lower temperatures. There is some indication
of this in our experiments since the conductivity
of calcium fluoride does not exhibit an exact T°
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temperature dependence even at the lowest temper-
atures investigated. For example, the (110) direc-
tion varies as T?%. Thus if we had used the con-
ductivity at 2.5 °K to calculate the experimental
mean free path A,,,;, we would have obtained a re-
sult approximately 4% higher than the value given
for Ayt in Table I. In the case of silicon, the con-
ductivity varies as T°, to within experimental un-
certainty, below 3.5 °K.

We note that the agreement between theory and ex-
periment for the (111) axis samples is as good as
for the (100) and (110) crystals. This strongly sug-
gests that assuming the isothermals to be planes
normal to the rod axis (see Sec. III) does not lead
to serious error even when it is not rigorously jus-
tifiable.

Hurst and Frankl® attempted to explain the aniso-
tropy in the conductivity of silicon that they observed
by invoking specular reflection. This was assumed
to be larger for the (100) than for the (110) and (111)
axis rods. They stress that to explain their obser-
vations in this way one has to assume that the degree
of specularity depends on the heat flux direction and
not on the crystallographic orientation of the side
faces of the sample. This assumption was neces-
sary because experimentally the conductivity of
(100) axis square cross-section rods is approxi-
mately independent of whether the side faces are
{100} or {110}. As Hurst and Frankl point out, it
is rather hard to understand why the specular re-
flection should be dependent upon the heat flow di-
rection and it is proposed here that the present in-
terpretation in terms of phonon focusing due to
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elastic anisotropy is the correct one.

We note that ithe experimental results can indeed
be understood in terms of the focusing concepts dis-
cussed in the Introduction. For silicon the heat-
pulse experiments of Pomerantz and von Gutfeld!!
have been interpreted® as evidence of very strong
focusing of transverse waves in the (100) directions.
Unpublished computer calculations by Taylor'? show
that transverse wave focusing also occurs for all
directions lying in {100} planes, and that there is
a low intensity of transverse phonons near the (111)
directions. This is clearly in agreement with the
experimental result that (100) rods have the greatest
conductivity and (111) rods the smallest. One can
also understand why a rectangular cross-section
rod with [110] axis has a larger conductivity if its
wide side faces are (001) than if the narrow side
faces are (001). If the wide side faces are (001)
the focused phonons traveling parallel to this plane
will have longer mean free paths than if the narrow
faces are (001). For calcium fluoride, computer
calculations'? show that strong transverse wave
focusing occurs in the (111) directions and that the
lowest intensity is in the (100) directions. This is
also consistent with the thermal conductivity results.

Finally we note that anisotropy of the thermal
conductivity in the boundary scattering regime ap-
pears to be a general property of elastically aniso-
tropic cubic crystals. In Table II we present the
results of calculations of the theoretical mean free
path in a number of cubic crystals. These results
are for infinitely long rods. In all cases a signifi-
cant degree of anisotropy is present.

*Work supported in part by the National Science Found-
ation and by the Advanced Research Projects Agency.
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