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To estimate the effect of carrier scattering on the low-frequency nonlinear optical re-
sponse of mobile carriers in semiconductors, the Boltzmann transport equation is solved
in a generalized relaxation-time approximation. Two cases, one in which the elastic scat-
tering of carriers by ionized impurities dominates the transport properties and the other in
which inelastic scattering by longitudinal optical phonons is the most important scattering
mechanism, are considered in detail for InSb, InAs, and GaAs. %'e find that the inclusion
of carrier scattering affects the third-order nonlinear susceptibility in two distinct ways.
First, the contribution due to nonparabolicity is modified in a nontrivial fashion. This mod-
ification becomes important in the optical-frequency-mixing experiments, when the difference
frequency j.s comparable to the "average" collision frequency. Second, an additional non-
linearity arises because of the energy dependence of carrier collision frequency. This is
estimated to be unimportant in most cases for which detailed experimental data are available
at present, but is shown to be quite important when the difference frequency becomes smaller.
It is found that, at low temperatures, the additional nonlinearity due to energy-dependent scat-
tering can be significant in InSb and InAs samples, with g =10 cm, even for the frequencies
used in the presently available experimental investigations.

I. INTRODUCTION

Using the infrared radiation from a CO& laser,
third-order optical-f requency- mixing experiments'
have been performed, in recent years, to measure
the magnitude of the nonlinear optical-susceptibility
tensor X,'&~~, (v„&o„—or~) in n-type III-V semicon-
ductors. The bound-electron contribution to X~ ' is
separated from that due to mobile carriers by mea-
suring y' ' as a function of the carrier concentration
n. The mobiLe-carrier contribution is principally
attributed to two sources: the interband k p inter-
action between the conduction and valence bands
which describes the nonparabolicity of the conduc-
tion band, and the energy dependence of the carrier
relaxation processes. 9 For the case, when 25(d,
and k(d, are small compared to the band gap E~, Jha
and Bloembergen have shown that a one-band ef-
fective Hamiltonian may be used to obtain the mo-
bile-carrier contribution to y' ' arising from the
nonparabolicity of the conduction band. It is ex-
pected that a semiclassical description of the elec-
tronic motion, employing the Boltzmann transport
equation, may be used to calculate the effect of car-
rier scattering on the Low-frequency optical re-
sponse of mobile carriers in n-type semiconductors.
In this approach, we represent the collision integral
in a generalized relaxation-time approximation
(RTA). A similar approach was used very recently,
by Wang and Ressler (WR). 7 They showed that
Kaw's earlier calculation of the carrier- scattering
contribution to y'3', based on the "hot-electron" ap-
proach, is inadequate for the purpose since it does
not incorporate changes described in terms of high-

er-order derivatives of the distribution function.
The treatment of WR is, however, valid only for
elastic scattering. WR also assume that all the in-
cident fields are polarized in the same direction.
The general solutions of the Boltzmann equation,
obtained in Sec. II, include the effect of elastic as
well as inelastic scattering of carriers and are valid
for arbitrary polarizations of the incident fields.
It is observed that a simple universal RTA, which
gives correct results for the linear response, may
overestimate the third-order nonlinearity due to
energy dependence of the relaxation time if the decay
of an isotropic perturbation is much slower than
that of anistropic perturbations.

In general, it is very difficult to determine the
energy dependence of the carrier relaxation time
from either experiments or theory because of the
great complexity of the problem. In limited ranges
of temperature and carrier concentration one can,
nevertheless, obtain reliable estimates of the en-
ergy dependence of the momentum relaxation time
by analyzing the low-field-mobility data. At Low

temperatures (T & 80 'K), the elastic scattering of
carriers by ionized impurities is the dominant
scattering mechanism in n-type InAs and InSb with
n &10'6 cm '. This is considered in Sec. III. Com-
pared to InAs and InSb, the low-temperature-mobil-
ity data for GaAs can depend considerably on the
sample preparation. The results obtained in this
section are, therefore, somewhat less realistic
for GaAs. We note that for the carrier energies
involved in our discussion, the energy dependence
of the momentum relaxation time 7' is much slower
than the 8 Ia dependence usually quoted in litera-
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ture. ' WR have used the 8 dependence to con-
clude, incorrectly, that the contribution of ionized-
impurity scattering to y' ' is at most of the order
((dr) It. is found that the contribution of order
((d7') ' is purely imaginary and is added to the real
contribution due to nonparabolicity. Energy relaxa-
tion processes become important when the differ-
ence frequency &, —&, becomes very small.

Carrier scattering from longitudinal optical (po-
lar) phonons, considered in Sec. IV, is the most
important mechanism' ' of carrier scattering in
III-V semiconductors at higher temperatures T
~300 'K. The collision integral for polar scattering
involves a difference operator in S. Only for car-
rier energy $»kw„ the polar-phonon energy, can
the collision integral be approximated to obtain an
effective RTA. For nondegenerate statistics the
use of RTA is strictly valid only for T»8D, the
Debye temperature. By comparing the variational
calculation of mobility with that using RTA, it is
expected that RTA is a fairly good approximation
for T &28~. In GaAs, for T=26D and n =10' cm
the nonlinearity due to the energy dependence of 7'

is found to be quite small. However, the effect of
including an average energy-independent (r) is not
small since 1j(r) is comparable to the difference
frequency co, —co,.

Finally, in Sec. V our results are summarized,
and the validity of various approximations in our
analysis is considered. Attention is drawn to the
fact that the relative importance of the two sources
of nonlinearity is a sensitive function of the differ-
ence frequency co, —&„and depends considerably
theband gap E„ the average carrier energy (8), the
carrier concentration n, and the temperature T.
The applicability of our results to Wynne's experi-
mental determination of the nonparabolicity of the
conduction band in GaAs is also discussed.

II. SOLUTION OF THE BOLTZMANN EQUATION

The motion of conduction electrons in n-type
semiconductors, under the influence of a slowly
varying electric field E(t), can be described by the
Boltzmann equation

f(k, t) ——E(t) ' f(k, t)=( ', (2. 1)
coll

where the distribution function f (k, t) is the proba-
bility of occupation of a state of Bloch wave vector
k at time t. The right-hand side of Eq. (2. 1) rep-
resents the collision integral, i. e. , the time rate
of change in f (k, t) due to carrier scattering. In

the long-wavelength limit for the incident electric
field, the space variation of f (k, t) is neglected.
It is implicitly assumed in this approach that E(t)
varies negligibly during a collision. Following Jha
and Bloembergen we expand the incident electric
field E(t)

E(t) =Q„, E((d,.)e (2. 2)

where && are the incident frequencies. Since all
E((d, ) are not necessarily in the same direction,
we expand f (k, t) in terms of spherical harmonics,

+ l

f(k, t)= E 2 f (&, t) I', (&„),
l=o m=-E

(2. 2)

where Qo —= (8„$o) are the spherical polar angles
specifying the orientation of k with respect to a
fixed set of axes and 8 is the carrier energy as-
sumed to be a function of k only. In our generalized
RTA, we assume that the collision integral may be
written as

A, = v(1/v 2)(A„+iA,), Ao=A, . (2. 6)

We use the gradient formula in terms of the
Glebsch-Gordon coefficients, ' ' to write

= —~ v((ft (& t) 6t, ofoo (~)j~) (I/o)(
Sf (k, t) (o&

co l 1 lm

(2. 4)

where v, 's are the collision frequencies (inverse of
relaxation times) whose energy dependence is gov-
erned by the details of scattering mechanisms, and

(2. 6)

denotes the equilibrium distribution function. The
collision frequency vo characterizing the decay of
an isotropic disturbance in f ~ ' is due entirely to
the inelastic scattering processes. Our results
indicate that it is a good approximation to assume
that all v, are independent of the perturbation.

In the spherical tensor notation, ' the components
of a vector A are given by

1/2

st f (' ~ (6 t)+vr (fi ~ —~),of oo ) = & ~ (-I) &- (t)~ ~,
lm +

r ~ 1+1
(/mlo'~/I l+1 m ')

s
—— f, (to, t) —5, (, 2/

(/mlo. ~/I l —1 m ') —+ f, (g, t) . (2. 7)

To solve Eq. (2. 7), we treat the effect of E(t) as a
small perturbation and expand

f) (&, t)=6),ofoo'+fr" +fi"'+f)"+", (2. 6)

where the superscript is used to denote the order
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4m "' ef'2" (&, f) =
3 hi, lg Z(-1)"E (oI;)

e-2~;sg (~ ) f f(o& (2. 9)

g2(&o) =-(v, —i&o) ', 1=0, 1, 2, . . . . (2. 10)

of the qu. antity in the incident fieM. It is important
to note that in treating E(f) as the incident field, we
have neglected the generated fields in the force
term. This is justified in the present case since,
in the electric dipole approximation, the conduction
electrons do not contribute to the second-order
nonlinearity.

Fl"0111 Eqs. (2. V) alld (2. 8), we call wl'lte tile dis-
tribution functions in the first, second, and third
order successively. It ls vex'lf led thRt to the
zeroth order in the incident field, f II„'(h, f)
= 5, o5„ofoioo'(8) is a solution of Eq. (2. V). In the
first order, vge obtain

When one combines this result vzith the general
expression'

1/2 Qg
6 3 (22I)s

Ini(f) ( 1)a-i dysys f Itl) (g f)gya 1s O

(2. 11)

for the 12th-order current density j '"'(f), one obtains
the familiar form of Qhm's law for the linear re-
ponse. In the second order, ere obtain

f IN'(h ~)=&2,of os'(~, ~)+&I,sfsm'(&, f) (2 12)

Equations (2. 11) and (2. 12) imply that the second-
order current density mould vanish, as expected.
The third-order distx"ibution function is given by

fi"(~, f)=&i,sfs"(~, f)+&I,lfi'(&, f), (2. 13)

where f st and fP' are known explicitely in terms
of 8, v„ f@' and their derivatives with respect to
k. We note, however, that to calculate j I '(f) we
need only f IIRI. After substitution in Eq. (2. 11),
me finally obtain

(2. 14)

j,is'(&u = Ioi+ &us+ &os) =R 2 Q E (&oi) E~(ops)Z „(ops) [5„, „(I/&3)(lisl p
~
1100)(001y ~ Oily) X(oi„oi„ops)

N 3lT e g

+~.„,„, „(2/~15)(I~IP~»2~+1)(2~+Ply~»1-2 ) I'(~I, ~R, ~s)]

+ (terms obtained by taking distinct permutations of oi„&os, &as),

with

x'(oi„(d„(ds) = f dksgi(oil) f'" (o) [[)'ssgo(oil+ ois)

&& (b 'gl(oi) ) '] '+-'&'go(ill+ &R) h 'gl(&) 3, (2 15)

I"(», ~R, ~s) = f, d~'gl(~I)f""(8

& [~'gs(~I+ ~R) [~ 'gl(~)] '] ', (2. 16)

%here the pI'lIQe d6notes dlffel entlRtlon %ith respect
to &R. Equations (2. 14)-(2. 16) enable us to calcu-
lRte the third-order cuI'x*ent density induced by the
incident electric fields vrith arbitrary polarizations.
When all the incident fields are polarized in the x
direction, we express our result in terms of the
susceptibility tensor' component

oo

X "'*(+I, R 8) =
3 8@2 ~; + o ( 1, 2, 2) )

d~'gl( i)f "'
[H

' [-'go(~1+ 2) + 1'5 gs( 1+ R)l[g'gi(+)1')'3)i' 2(d) IP

+ ~'g '(~2+ ~R) ~'gl(~)]], (2. 1V)

where v= v~+(dz+ e3, Rnd 6' denotes all permuta-
tions of frequencies (d„~„&&. The above expres-
sion for y'3' contains the contribution due to the
nonparaboUcity of the conduction band as well as
that due to the energy dependence of momentum
and energy relaxation times. We separate these
contributions by writing

(3)NX {3)8C (3)NS (2. 13)

vrhere the superscripts NP and SC specify the con-
tributions due to the nonparabolicity and the energy-

I

dependent scRtt6I'lng alone awhile the lRst teI'IQ g
is due to the coupling of the trio sources of nonlin-
earity. The contributions y~ '" and y

' are
easily obtained by collecting terms independent of
v, and 8, respectively, in the square brackets in
Eq. (2. 17).

%6 should remark that in a univeI'sal, but rather
de, laxat' -t pp o i at'o,

Eq. (2. 17) reduces to our earlier result. If v, are
not all equal but are of the same order of magnitude,
we find that Eq. (4) of Ref. 8, for the degenerate
case, should be modified to
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—co
e

Xzzzxr ( 1z 1z 2) 3 112
z»2 ~ 1e (2~ ~ )2

1 2 1 2

8
YQ 2 Y1F 2(+1 1d2)

Bh» 2 (Vmz —2(d1+2472)
(2. l9)

but the relation

where the subscript I' denotes values at the Fermi
level. Since in most cases at low temperatures the
energy relaxation processes are much less efficient
than those involving momentum relaxation, we ex-
pect vo«v„v2, so that the contribution of the terms
retained in E1l. (2. 19) may be much smaller than
that calculated in Ref. 8 WR did not obtain any such
terms since their treatment is valid for elastic
scattering only, so that, in their analysis vo= 0.

Explicit expressions for other nonvanishing com-
ponents of the susceptibility tensor are obtained
similarly. It is interesting to note that consistent
with the general symmetry considerations, ' we
obtain

(2. 2O)

state of wave vector k . The collision integral can
then be written as

S(k, 8„.) [f(k, t) —f(k, t)]dg»,
imp

= —Q v, f, (t», t) Y, (0»), (3.3)

,(a)=,i, z, tz(z+z) —
z ),2mN]e m+ z

z'h'k' + Z
(3. 5)

v2()'2) = 2' 2, [(3+6')ln(1+2) —6], (3. 6)

where we have used the expansion (2. 3) and the
orthogonality of spherical harmonics, with the
definition

v&=211 J S()2, 8) [1—&,(cos8)]sin8d8, (3.4)

where P,(cos8) denotes the'Legendre polynomial
of order l. Consistent with the fact that elastic
scattering does not contribute to the decay of an
isotropic perturbation on f' '(g), we observe that
vo vanishes while v, and v2 are given in the Brooks-
Herring formulation by

X»'xg» (+1& +2z +2) 2 Xrxzzz:(+1z +2z +2) (2. aS)

is not valid in general. In some limiting cases the
deviation from this relation may be helpful in sep-
arating g' ' from y

The energy dependence of vo, v1, and v2 will, in
general, depend on the relative importance of the
various mechanisms of carrier scattering which
can be a sensitive function of the details of sample
preparation. In Secs. III and IV, we will consider
two relevant situations in which it is possible to
explore the importance of carrier scattering in the
third-order response.

III. IONIZED-IMPURITY SCATTERING (ELASTIC)

Elastic scattering of carriers by ionized impuri-
ties dominates the momentum- relaxation processes
in the moderately doped n-type semiconductors InSb
and InAs at temperatures below the liquid-nitrogen
temperature. In the Brooks-Herring formulation'
of the ionized-impurity scattering, one replaces
each ionized impurity by a screened Coulomb
potential

V(r) = (e/~~) e "'", (3. l)
where v is the dc dielectric constant and R is the
screening length which is given by

3 4 2 (3. 2)

for a degenerate Fermi gas. Here, m* is the
average effective mass, assumed to be the same
as the band-edge effective mass for our calculation.
The Born approximation is used to calculate the
probability S(k, 8».) of an electron of wave vector
k to scatter elastically through an angle 0». to a

where N& is the density of ionized impurities and

z =4k A2 (3. 7)

It is important to emphasize that only v1 is in-
volved in the linear response of mobile carriers,
so that, by analyzing the low-field-mobility data,
we obtain the relative importance of scattering
mechanisms in determining v, only. One can rea-
sonably expect that the process giving the major
contribution to v1 also dominates in determining v»
since v1 and v2 both describe the decay of anisotropic
perturbations in the distribution function. However,
even at low temperatures, vo must be nonzero for
the system to be stable against isotropic perturba-
tions in the distribution function. In the following
we assume vo to be energy independent since vo is
expected to be small compared to v, and v2, espe-
cially in the degenerate case. Assuming only
ionized-impurity scattering, Kolodziejczak' has
explained the linear transport properties of n-type
InSb at low temperatures between 2 and 100 'K. The
data quoted by Hilsum and Bose Innes' are also in
good agreement with the theoretically calculated
values of mobility. For InAs also, the calculated
mobility agrees very well with the experimental
results for n = 10 -10 cm . We assume ¹ =n in
our calculations and replace m* in Ec(s. (3. 5) and
(3. 6) by its value at the Fermi level. The values
of all constants used in our calculations are given
in Table I.

To discuss the relative importance of the two non-
linearities in the low- temperature measurements
of Patel, Slusher, and Fluery, ' we write the var-
ious contributions to X„'.2„'„(&u„1d„—~,), to the lowest
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Band gap E~ (ev)
Band edge
Effective mass (m*/m)

InSb

0.22

InAs

0.35

GaAs Reference

1.4 4

0.013 0.021 0.072

Debye temperature 9D
('K)

Reduced mass M (amu)

Callen's effective
charge e*/e

264

59.1

0.16

45. 3

0.23

408

36.1

0. 20

TABLE I. Numerical values of parameters used
in calculations.

One must emphasize that there are two distinct
effects of including the collision integral in our cal-
culation. The contribution due to nonparabolicity
is modified in a way which is not equivalent to re-
placing all co; by +;+iv, . This modification has
nothing to do with the energy dependence of v„but
becomes important when Q is comparable to the
magnitude of v&. Energy dependence of v, introduces
an additional nonlinearity expressed by X' ' and

which are of the order
dc dielectric constant: If

E. (V/cm)

17.0

5. 15
x 102

14.5

2. 17
x].03

12.5

6.1
X 103

10
E~ k ~ v1

(3)sc i e n(1 +4$p/E, )
Xaaaa (+a~ +a~

m g~COa(d&(d

2 p ~ri 3 v 5 2vj —vp 4 2vy vpx (v~+ —k vi j ——+—
5 . 2 coa 3 vp —iQ 3 vz-iQ

S k2 ~ ~ 2v, —zQ——k v v
15 (vz —iQ)' (8. 9)

(3)NS( ) 4 e )z(1 + 4$p /E )
Xxx» a~ ap 5& 3 )Icing p

g a b

4 t (2v) —zQ) . 8 v) 2v) —vz

(X —vg . z +z ——
15 (v, -zQ)' 15 ~ v, —zQ

order in (v)/&u, ):

(z)mp(
)

e'zz(1+4 $„/E,) "'(1+8$p/5Ea)
I+ 2E (d~ cot, co

10 ~, (2v, —v, ) 8 ~, (2v, —v,)
9 ~ (vo —i Q) 9 (o (v, —in)

respectively, compared to the nonparabolicity con-
tribution. For n «10' cm, E~ and S„are com-
parable in InSb and InAs, so that, X' '" is more
important than X

' even at the frequencies used
by Patel et a/. ' For a given carrier concentration,
$p is nearly proportional to 1/E, . Thus, )(") is
much more important in GaAs than in InSb or InAs,
if the mechanism of scattering is same in all the
cases. Unfortunately, an analysis of the carrier
scattering mechanisms in GaAs is much more com-
plex than that in InSb and InAs. The major difficulty
arises from the fact that impurities in GaAs seem
to behave ' quite differently than those in InSb or
InAs. In Figs. 2 and 3 we plot the real and imagi-
nary parts of y"' versus n for InSb and InAs, with
and without the inclusion of carrier collisions, for
:&a=1.78&&10' sec-' and &=1. 96&&10 sec- .

For v&«Q, the lowest-order contribution in y' '

is proportional to

28 i

24—

. 2 v~ 2V~ —vp .3 v~
+Z ~ +Z

3 (d vp —zQ 5 40a

where Q = ~,—~„+= 2~, —~„m* is the band-edge
effective mass, and $p-Izzkzp/2m*. We have as-
sumed Kane's model' for the conduction band of
InSb and InAs:

20—

l6—

—12

0)
I))g 8

(3)
Re X.

It is important to note that the difference frequency
Q is an order of magnitude smaller than va and ~„
in the experiments of Patel et al. ' and Wynne. It
can, in principle, be made arbitrarily small. Owing
to this, we have not assumed Q to be large compared
to v& and v~. When Q becomes less than v& or V2,

vp also plays an important part. In Fig. 1 we have
plotted X~ ' as a function of Q, calculated with and
without the inclusion of carrier scattering for InSb
with n =10' cm and vp=3&10" sec '. As expected,
carrier scattering becomes more important when
Q is made smaller.

(3)WPx

—l2—

-IO -8 -6 -4 -2 0 2 4 6 8 IO

DIFFRENCE FREQUENCY Q. ( Id sec )

FIG. 1. Variation of real and imaginary parts of p„'»„
(w„„—~~) —= p with the difference frequency 0, for
degenerate InSb with carrier concentration n = 10 cm
po =3 && 10 sec ', and (da= 1.78 && 10'4 sec . y

3'~ de-
notes the values obtained by neglecting collisions.
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IO

cn 10

IO

IO IO

CARRIER CONCENTRATION n (em )

FIG. 2. Variation of real and imaginary parts of
g~~3~„(~„~„—u&) =—y

3' with the carrier concentration g
for degenerate InSb. y

3' denotes the values obtained
by neglecting collisions.

(
~ v) 2 p

~ vy

Bk 5 s(k )

which vanishes for v, =a&k, as discussed by VER.

We note, however, that at the energies under con-
sideration, the logarithmic terms modify the ener-

gy dependence of v, and va considerably. In fact,
v, =a, k appears to be a much better approximation

I

to the actual behavior than v& =a, k '. In our calcu-
lations me have considered the exact energy depen-
dence of v, and g as given by E(ls. (3. 5) and (3.6).
It is also interesting to note that at very high carrier
energies, where v, =a, k becomes a good approxi-

t'-, '.=3,
The importance of using correct statistics in the

calculation of transport properties of semiconduc-
tors is mell known. %'hen the approximation of de-
generate statistics is not valid, it is usually a good
approximation to evaluate the final integrals by re-
placing all slowly varying functions of energy by
their value at 80, the energy at which 8 ~'f ' ' at-
tains a maximum value. For the nondegenerate
case, $0= & k~T, where k~ is the Boltzmann con-
stant. In this case, the relative importance of the
tmo sources of nonlinearity is nearly independent
of the carrier concentration, but depends on the
temperature T of the system. For the chemical
potential go& —2k~T, it is a good approximation to
assume nondegenerate statistics, while degenerate
statistics may be used for all positive p, o.

IV. POLAR SCATTERING (INELASTIC)

Polar scattering of carriers by longitudinal optical
phonons play an important role in the transport
properties of InSb, InAs, and GaAs at high tempera-
tures, T ~ 300 'K. Assuming that the phonon dis-
tribution is always maintained in equilibrium, me

can write the collision integral, due to polar scat-
tering of electrons with an effective mass m*, as

)
=

2 f ~ ~
(g g'( (t't)( 8 @+ )IW l)f(Z )(( —f(k)) —Nf(k) (1 —f(k ))j

+~(& —&+h&)) [&f(& '){1—f(k))- (&+1)f(k){1—f(k '))]], (4. 1)

where &, is the longitudinal optical-phonon frequen-
cy, assumed to be independent of the phonon. wave
vector, N is the equilibrium phonon distribution
and Eo, an equivalent electric field) is given by

eE0=4mm*e e* /MK&o, V, , (4. 2)

where e~ is the effective charge defined by Callen.
Here M denotes the reduced mass of the two ions in
each unit cell and V, is the volume of the unit cell.
It should be noted that the collision integral could
be linearized by omitting the factors representing
the probability of final states being empty. In cal-
culating the nonlinear response, however, the terms
involving products of induced distribution functions
should be neglected only mhen such terms are small
compared to the corresponding contribution f rom
the force term.

To simplify the collision integral we use expan-
sions (2. 3), (2. 6), and

I

1 2m k'+k"
kk ' ~ @'

(4. 3)
where Q, 's are the I egendre functions of the second
kind. The nth (n~ 1) order (in the incident field)
contribution of the collision integral is then obtained

Z y,.(n, )g[y" 1-f'"(6))
lm

~ q„f&,".)(8+n~, ) —(~+f"'(8+@~,))q,,f t."'(b)]

+~(b-@ ) [(&+f'"(&))Q f'"'(&-@ )

—(%+1—f +)(8 —h(e, )) Qo f I")(g)]]
n-1

— hk' E 5 y,.(n, ) 1",.(~1,)f I".'&(S)
n'= j. lm l'm'

x [Q,.,f ';"„".)(8 hm, ) —8(g —h(e, ) Q, , f '„" ", )(8 —h(o, ) ],
(4. 4)
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IO h(u( 4g eE0 2g ()C0(0)(g)
2g h(L), (2m*g)"' 'c,(0)(g) sg

(4. 7)

(A

IO

IO

IO IO

CARRIER CONCENTRATION n ( cm ~)

10

FIG. 3. Variation of real and imaginary parts of
Xgg~ ((I, tt, —y) = X with the carrier concentration
n for degenerate InAs. X denotes the values obtained
by neglecting collisions.

(p)
f',".'(g, t) =-k, g

C',„"'(g, t), (4. 5)

where C,'""s are assumed to be slowly varying func-
tions of 8. For $»S~„ this reduces the collision
integral to the form given by Eq. (2. 4), with

eEp
v( = 3 vg=, ))gp (2N —1)(2m*I (4. 8)

where 8(g —h(d, ) is +I for g &k&a, and 0 for g &h(d„
and the suffixes + denote that the quantity is eval-
uated at 8 = 8+k~, . In the zeroth order, it is
easily verified that the complete collision integral
(4. 1) vanishes for f(k, t) = f ' '(g), the Fermi func-
tion. It can be seen from Eq. (4. 4) that the same
method of solving the Boltzmann equation succes-
sively in each order can be adopted, in general, ex-
cept that now we must solve a linear difference
equation for each f, . In particular, Eqs. (2. 12)
and (2. 13) are still valid.

It is interesting to note that the additional non-
linearity in the optical response, represented by the
second term in Eq. (4. 4), depends crucially on
the statistics of the carriers. For degenerate Fermi
gas, the changes induced in f(k, t) by the incident
field are nonvanishing only for Sin the interval S~
+ksT, so that products like f'"'(g)f'" '(gable, ) are
vanishingly small for h+, » k~T. For nondegenerate
statistics, the additional nonlinearity can be shown
to be negligible for T» 8~, the Debye temperature,
but for temperatures T & 8D this nonlinearity may
be sizable. We shall neglect this nonlinearity since
we will consider only the T» 8D case.

To obtain an effective RTA we write

The collision frequency vp is, therefore, not inde-
pendent of the isotropic perturbation on f ' '(g). One
should note, however, that for 8» 5, vp is con-
siderably smaller than v, and v2, if C00'(g) varies
as some small power of S. In a rough approxima-
tion, we replace vp by a constant value which is as-
sumed to be a small fraction of v, .

The utility of RTA for polar scattering is limited
by the fact that for most materials of interest the
Debye temperature 9n is quite large (see Table I)
and RTA is valid only for T» 8D. However, a
comparison' of the linear transport properties cal-
culated using a heuristic RTA with those obtained
by using a variational principle show that RTA may
be a good approximation to determine v, and v~ even
at T = 28 ~. In GaAs, at T = 28 D with n = 10' cm
we find v, (g= ,'ksT) =8.—5x10"sec ', which is com-
parable with 0= —1.8&10' sec ', in the experiments
of Patel et al. ' and Wynne. In this case, with vp

012 s ec 1 the ratios )(
(3 )N v

/ )(
(3 )w P

)(
(3 )Bc/ y

(3 )w P

and )((~)" /)((3)" are estimated" to be 1.17 —i 1.25,
—0. 16 —i0. 14, and 0. 10—i0. 11, respectively,
where y' ' is the third-order susceptibility cal-
culated for v, =0. These results show that although
the additional nonlinearity introduced by the energy
dependence of collision frequencies is small, the
effect of including an average collision frequency
is not negligible.

At lower temoeratures, the collision frequency
v, decreases so that a considerable reduction in
the effect of collisions on X' '" can be expected.
However, a more accurate treatment of vp is needed
in this case since our approximation of energy in-
dependent vp«v, is difficult to justify when 8 is
comparable to 5&,.

V. CONCLUSION

In a generalized relaxation- time approximation,
we have calculated the linear and nonlinear current
density induced in a semiconductor plasma by a
slowly varying electric field. The Boltzmann-
equation approach used in our work assumes that
the time duration of a collision is much smaller
than the time that a carrier spends between two
successive collisions and the time period of varia-
tion of the electric field. The relaxation time char-
acterizing the decay of a perturbation in the distri-
bution function f(k, t) depends on the angular de-
pendence of the perturbation in the k space. The
decay of an isotropic perturbation is governed en-
tirely by inelastic scattering of carriers and is
usually much slower than the decay of an anisotropic
perturbation which is caused by elastic as well as
inelastic scattering. Our method of the solution of
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the Boltzmann equation is similar to, but more gen-
eral than, that used by Wang and Ressler. First,
we have relaxed WR's condition that all fields be
polarized in the same direction. This enables us
to calculate all components of the third-order sus-
ceptibility tensor. Second, our treatment includes
elastic as well as inelastic scattering processes,
while the collision integral used by WR is valid for
elastic scattering only.

There are two distinct effects of including the col-
lision integral in our calculation. The third-order
nonlinearity due to the nonparabolicity is modified
in a way which is not equivalent to replacing all &&

by &&+iv in the result obtained by neglecting col-
lisions. This modification is important when v, is
comparable to the difference frequency Q. The
second effect is that an additional nonlinearity oc-
curs due to the energy dependence of the carrier
collision frequencies v&. Since v&'s usually vary
as a small power of the carrier energy, this effect
is also more important when v&'s become compar-
able to Q. It is pointed out that the relative impor-
tance of this effect increases with an increase in
the ratio E~/$0 of the band gap E, and the energy
80 of the carriers dominating the transport proper-
ties. Thus, this effect should be much more im-
portant for GaAs than for InSb or InAs, because the
calculated collision frequencies in the three cases
do not differ very much. As in most other proper-
ties of a semiconductor plasma, a correct consider-
ation of statistics plays an important role in our
discussion.

Any attempt to compare our results for InSb and
InAs at low temperatures with the present or future
experimental data must consider two limitations on
our calculations. First, the one-band description
used in our work is valid only when frequencies
2&, and ~ are small compared to the band gap E~.
At the frequencies used in the available experiment-
al' investigations, Jha and Bloembergen have
shown that a complete calculation of the mobile-
carrier contribution to y' ' in InSb and InAs gives

considerably different results than those obtained
by a one-band calculation by Wolff and Pearson.
For very low frequencies, on the other hand, lat-
tice contribution to the optical response must also
be considered. Since the band gap in GaAs is con-
siderably larger, the low-frequency limit is a good
approximation in this case even at the infrared
frequencies of a CO~ laser. Thus, in GaAs sam-
ples, in which ionized-impurity scattering is the

dominant carrier-scattering mechanism at low tem-
peratures, it should be possible to observe the non-
linearity due to the energy dependence of v&'s. It
is important to note that since for v, «& the lowest-
order contribution in y' ' due to energy-dependent
carrier scattering is purely imaginary, its effect
is much more pronounced in the phase of y' ' than
in its magnitude. This may be helpful in experi-
mentally separating the contribution due to the en-
ergy dependence of v, 's from that due to the non-
parabolicity. It is also apparent from our results
that the effect of carrier scattering on y' '(&o„v„u&,)
is less important than that on y+'((u„(u„—~~). The
third-harmonic generation experiments are, there-
fore, expected to yield a more accurate estimate of
the nonparabolicity of the conduction band in GaAs.

In many practical situations, two or more scat-
tering mechanisms, with v&'s having different ener-
gy dependences are effective. If two mechanisms
have opposite energy dependences of v&, their low-
est-order contribution to X' ' will tend to cancel
each other. Moderately doped InSb and InAs at room
temperature are such examples, where the acoustic-
phonon scattering (v, =ah) and the ionized-impurity
scattering are both quite important.
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