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The electron drift mobility in CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe is calculated by an
iterative solution of the Boltzmann equation for lattice scattering. Piezoelectric, deforma-
tion-potential acoustic-mode, and polar-mode scattering are included. The acoustic deforma-
tion potential appropriate to acoustic-mode scattering appears to be much higher than previ-
ously expected.

I. INTRODUCTION

The electron mobility in II-VI compound semicon-
ductors can be understood by a consideration of the
scattering of conduction electrons by fundamental
lattice vibrations. ' Although impurity scattering '

is also well known, this mechanism does not contri-
bute to the lattice mobility. Its effect in commonly
pure materials is negligible at temperatures above
- 100 'K. The theory of electron scattering by lat-
tice vibrations~ is exceptionally accurate for iso-
tropic direct-gap materials because of our knowl-
edge of the conduction-band structure. By an iter-
ative solution of the Boltzmann equation, ' the elec-
tron mobility follows exactly from the assumed mod-

el described below. The wurtzitelike and zinc-
blende-like crystals CdS, CdSe, CdTe, ZnS, ZnSe,
and ZnTe, being wide-gap semiconductors, are
especially well suited to calculation and are the only
materials discussed here. The direct-gap III-V
semiconductors have been discussed previously. '

There are five main conclusions evident from the
present work. First, the three scattering mecha-
nisms discussed by several authors"' are sufficient
to predict the lattice mobility, i. e. , polar-mode
scattering, acoustic mode via deformation-potential
coupling, "and acoustic mode via piezoelectric
coupling. ' Second, Matthiessen's rule' (reciprocal
mobility is the sum of reciprocal component mobili-
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ties du««ac»cattering mechanism acting alone)
is ac«»« to -15%. Third, the nonparabolicity
of the conduction band is fairly unimportant, lower-
ing the mobility in CdTe at 500 K by only "1%o.
Fouxth, the effect of the temperatuxe dependence of
the low-frequency dielectric constant' is largely
offset by a similar variation of the high-frequency
dielectric constant' which has been previously
ignox'ed. Thus, both dielectric constants a.re as-
s med, t good appro 'mati, to be temp rat re
independent. This assumption still leaves one with
1Rx'ge discx'epRDcles betweeQ experiment Rnd theox'y

at high temperatures. O'" The discxepancies, how-
ever, disappear upon the use of larger acoustic de-
formation potentials than those calculated by an
earlier method. Conduction-band nonparabolicity
removes only a small part of the diffex ence. The
fifth conclusion is then that acoustic deformation
potentlRls Rx'6 1Rrgex' Rnd the coll espondiQg compo-
nent mobilities are Rn order of magnitude lower than
those calculated earlier. Hot-electl Gn experiments
in CdS support this result.

Only R brief px esentation of the band-structure
model is required here since the details ean be
found elsewhere. ' The six crystals mentioned
earlier can be acquixed with the cubic zinc-blende
struetuxe. ' However, it is common that CdS and

Cd86 have the hexagonal wurtzite structure' Rnd

these two crystals will be considered to have the
wurtzite structure for the remainder of this papex'.

The only clear indication of mobility anisotx'opy in

the uniaxlal wux'tzlte stx'uctul 6 Gccux's a,t low tem-
peratul es lD pure cx'ystals Rnd cRQ be fai'll well

explained in terms of the piezoelectric stress ten-
sor (whose anisotropy we do retain) rather than by

anisotropy in the effective ma.ss. '3 In any case,
the conduction band is nearly spherical Rnd is as-
suIIled to be so hexe. The results of Kane can then

be used a.long with the approximation that spin-or-
bit splitting vanishes. The latter is an aecux'ate

assumption for GaAs (a III-V semiconductor) and

Rn even better assumption for the wide-gap II-VI
semiconductors.

The eleetxon effective mass at the conduction-
band edge m* is somewhat inexeased to that of the
pola, x'on Rs described by Frohlich. 3' Because of the
ionic QRtux'6 of the lRttlce, the electx'Gn induces a
virtual polax' phonon about itself which lowers the
electx'on energy and gives rise to R free carrier,
called R polRx*on, whose mRss exceeds th6 effective
ma.ss. The coupling is weak. Only about 0.2-0. 3
virtual phonons are typically present, and the cor-
responding mass increase is less than -10% (see
Table I). Since the polaron energy should approach
the effective-mass energy Rs the crystRl momentum

5 jp becomes la,rge because coupling to the phonon

field weakens, we would expect the polaron pertur-
bation energy to decxease for sufficiently large k.
Frohlieh's formulation applies to electrons in

parabolic bands and to electron energies less than

the polar-phonon energy whereas our px'esent in-
terest includes many electxons with higher as well

as lowex' 6Qex'gles. Thereforey the eleetx"on effec-
tive mass calculated fx"om Kane's band-stxueture

theory by Kurik" will be used exclusive of the po-
1Rx'GQ effect. To estlmRte the effect due to polax'on

coupling, the coupling constant ' o. (= 2xthe number

of virtual phonons ~) is calculated (see Table I):

(e'm*/2K'(u )'~'
Xo —X~

XQ Xco

w'hex'6 Xo Rnd X Rx"6, x'espectively, the 10%'- Rnd

high-fxequency relative dielectric constants and

Sm~, is the pola, r optical-phonon energy. At k=0,
the polaron mass" is m~ = m~/(I ——,' n).

The seattexing rate due to polar modes ' is
proportional to a which depends sensitively upon
the relatively small difference between the dielec-
tri constants. The low-frequency dieleetx'ic con-
stant is known to be tempexatux e dependent' Rnd this

dependence has been shown by Hegall et gl. '5 to re-
duce considerably the electron mobility in CdTe
above room temperature if the high-frequency di-
electric eonsta, nt indeed remains constant. One
cannot, evidently, neglect the temperature depen-
dence of X„. In general, the temperature coeffi-
cient of mobility due to polax -mode scattering is
proportional to Bin n/BT and can be related simply
to the temperature coefflcl6nts of Xo and X~:
8lnXO/BT and 8 lnX„/BT. Assuming m* and &o~ to
be constant, Eq. (1) yields

sino' X„BlnX~ XOB lnX„
0

For CdTe, "BinXQBT™2.S~lo-'/ K so that Bin~/
BT= 6. 8&10 '/'K if X is constant (see Table I).
However, between 300 and 500 'K we find' that

8 ln X„/8T= 0. 9& 10 'j K so that 8 ln n/8 T is only
about 3.2x10 / K. Similarly for CdS, we find
that the respective values of 8 ln n/BT for""
BlnX„/BT =0 and 1.4&10 4/'K are +1.7~10 /'K.
One finds similar behaviox' in the III-V semicon-
ductor GaAs where BlnXO/BT and BlnX /BT are
accurately known. These results suggest that the
simplified Lyddane-Sachs-Teller relation (Xo/X„
=~'„/~'„where ~& ts the energy o«he t»nsverse
polar optical phonon at the center of the Brillouin
zone) is accurate to a fraction of 1%, as is expected,
a,nd that tempexature-dependent dieleetrie constants
alone cRQDGt bx'ing the calculRted mobility into
Rgx'cement with experiment. Hence, we assume
that &0 Rnd 3'„are constant since their temperature
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dependences are not known in detail and probably
cancel to the present order of approximation.

From the foregoing model, the scattering terms
of the Boltzmann equation can be reduced exactly,
as shown previously for the zinc-blende structure.
The only necessary modifications to Ref. 8 are due
to the wurtzite structure. Specifically, there is
no change in the formulation regarding polar-mode
scattering. For deformation-potential acoustic-
mode scattering, the spherically avexaged elastic
stiffness constant c, (see Table I) must be related

to four independent elastic constants c,&
as shown

by Zook,

ci-3 ~2cii+c33~ is c~2

~x 11 + ~88 218 444

For piezoelectric scattering in the zinc-blende
structuxe, thex'e is only one independent element of
the piezoelectric tensor, denoted earlier' as e,/&0,
where &0 is the low-frequency dielectric permittiv-

TABLE I. Material parameters at 300 'K.

Material
Structure
Effective mass, m*/m
Polaron mass, m&/m
Coupling constant, n
Effective-mass energy
gap, E&+(GV)(Befs. 1 Rnd R)

Low-frequency relative
dielectric constant, Xo
High-frequency relative
dielectric constant, „
Polar-phonon equivalent
temperature, T, ( K)
Acoustic deformation
potential, E1 (eV)
Longitudinal acoustic-
mode elastic stiffness
constant, c

&
(10 N/m2)(Hef. 12)

TrRnsverse acoUs tie-mode
elastic stiffness constant,
c, {1O"N/m') {Hef. 12)

Piezoelectric tensor
elements

CdS (set I)
Wurtzite
O. 165 (Bef. 2O)

Q. 180
0.56

8.6O"

14.5 (Bef. 16)

l.90

CdS (set II)
Wurtzite
(Use m& of set I)

Same

9.19 (Bef. 18)

5.19 (Bef. 18)

Same

Same

CdSe
Wurtzite
O. 131 (Bef. 2O)

0.142
0.48

1.77

9.4O"

7.40

h, (1O' V/m)(Bef. 12)
h15 (10 V/m) (Ref. 12)
h8& (10 V/m) (Ref. 12)
h14 (198 V/m) (Bef. 12)

13.4
—2. 63

5.21

(l.40 x set-I
dRtR for pi( and
l.53 x set-I datR
for pz)

8.95
le 77
3.84

Material
Struc ture

m*/m
mp/m

~~(BGfs. 1 and a)
+0
Xoo

TpQ

c& (Bef. 12)
cg (Bef. 12)
h„(Bef. 12)
h)5 (Bef. 12)
h83 (Bef. 12)
h14 (Bef. 12)

CdTe
Zinc Mende

0.111
0.117
0.30
1.54
9.65"
7.21"

246 (Bef. 1)
9.5'
6.97
l.55

ZnS
Zinc blende

O. 230 (Bef. 20)
0.254
0.64
3.77
8.32 (Bef. 1)
5.13 (Bef. 1)

5O7'

12.89
3.60

ZnSe
Zinc blende

0.»O (Bef. 20)
0.193
0.43
2. 78
8.336
5.90'

36O"
11.5'
10.34
3.29

ZnTG
Zinc blende

0.151~
0.159
0.30
2.34
9.67
7.28'

297'
9.5
8.41
2.48

B. E. Halsted, in Bef. 1.
M, BRlkRnski~ in Bef, 10~

Extrapolated from E1 for CdS and ZnSe.
dExtrapolated from Bef. 20.

S. Ushioda, A. Pinczuk, W. Taylor, and E. Burstein,
in Ref. 10.

'mitted to high-temperature mobility data of Bef. 25.
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ity. In the wurtzite structure, the quantity e,4/
pe02u~ in Ref. 8 must be replaced by hgpu~a and
h'„/pu~2 which, respectively, apply to drift mobilities
measured perpendicular and parallel to the c axis
of the crystal. These spherically averaged coupling
constants include scattering by the longitudinal elec-
tric fieMs of longitudinal and transverse acoustic
modes. ' There are now three independent elements
h, &

(see Table I) of the piezoelectric tensor and

(Zook, ' for isotropic effective mass) the coupling
constants are

4ha 21+6k„/h„+h„/h'„
PQp

2 15
105e]

21 —24k„/h33+ 8h„/h3,+ 33 105c,

h2I ~ 21+18k„/hg5+ 5h„/h„
105']

„, 88 88@„/a-„+8I?/I,',+ 33 105c) (8)

h~ = h33 —h3~ —2h)5 (8)

Material parameters necessary for calculating
mobility are shown iv. Table I. Only theoretical
values of the effective mass are used. The electron
effective mass in CdS, CdSe, ZnS, and ZnSe has
been calculated by Kurik and determined for CdTe
and ZnTe by extrapolation. An isotropic effective
mass m* where

When the foregoing results are applied to the
scattering terms presented in Ref. 8, the finite dif-
ference equation which yields the electron distribu-
tion function perturbed by a small electric field can
be solved numerically as before by iteration. The
low-field drift mobility of electrons is then calcu-
lated from the perturbation distribution function.
Results are presented and compared with experi-
ment in Sec. III.

III. DRIFT MOBILITY

curate to about 1/o in mobility. Where the dielec-
tric permittivities are anisotropic, the isotropic
value

e = —,'(e„+2&,)

is used for the calculation. The remaining param-
eters with the exception of E„can be found in the
indicated references and in the foregoing discus-
sion. Deformation potentials E& have been extra-
polated from hot-electron experiments' on CdS
and high-temperature mobility data ' ' on CdSe
and ZnSe (see below).

A. CdS: Wurtzite Structure

Figure 1 shows the calculated drift mobility of
CdS compared to experimental Hall mobility. ' '

All of the experimental data in this paper are Hall
mobilities for which the Hall factor is not accurate-
ly known, although the correction therefrom (& 20'7o)

is within the uncertainty of the calculation due to
inaccuracies in the assumed material parameters.
This particular sample' ' of CdS is the only semi-
conductor thus far observed to exhibit a monotonic
negative temperature coefficient down to 2 K.
Ordinarily, impurity scattering dominates at low
temperatures. Thus, CdS presents a nearly ideal
mobility curve suitable for studying piezoelectric
scattering which becomes dominant at low temper-
atures (as indicated by the mobility' p,

- 1/7' de-
pendence). Polar-mode scattering dominates above
100 'K where the mobility is isotropic to within
experimental error. ' The portion of the curves

lo I ~ I I I

v) lO+
I

fQo IO&

I/m+ = —(I/m++ 2/mf) I

lO

l

l00 lOOO

is used in the calculations and tabulated in Table I.
The effective-mass energy gap E* at room tem-
perature is calculated from the optical gap E by

z,*(8oo 'K) =-,'z, (o 'K)+-,' z,(8oo 'K},

which is approximately true. Values for E~ di-
rectly affect nonparabolicity, which should be ac-

TEMPERATURE, T (oK3

FIG. 1. Electron mobility in CdS. Data points from
Hefs. 19 (0,), 26(X), and 27 (&) represent Hall mo-
bilities. Dashed curves are calculated from set-I pa-
rameters in Table I. Solid curves are calculated from
set-II parameters in Table I with readjusted piezoelec-
tric constants. Note the large range of temperature.
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around 80 'K is equally affected by piezoelectric,
deformation-potential acoustic, and polar-mode
scattering for the deformation potential E, =14. 5 eV
listed in Table I. From the formula

(ez,
)

where K is the compressibility, one finds E, = 2.9
eV, but Kobayashi' has shown this value to be much
too small to explain the experimental mobility.
Saitoh' finds E, =16+2 eV from a hot-electron ex-
periment, and we have found E, = 14. 5 eV to fit the
observed mobility as shown in Fig. 1.

The data (circles) at low temperatures display
the expected anisotropy due mainly to the piezoelec-
tric tensor. A more accurate estimate of the ratio
p, /p, „can be obtained by including the effective-
mass anisotropy as Zook' has done. The dashed
curves were cal"ulated from CdS parameters in
Table I labeled set I. The solid curves were cal-
culated from set-II parameters and indicate the
typical uncertainty of the present results above
100 K. The low-temperature data were fitted to
the solid curves by increasing the piezoelectric
tensor elements by factors of 1.53 for p,~ and 1.40
for p„. By correctly including mass anisotropy in
the piezoelectric coupling constants these factors
could be made nearly equal, but the reason for the

discrepancy between the low-temperature data and
the dashed curves remains unexplained since
Herlincourt et a/. ' measured the h,-& to within a
few percent accuracy. It seems unlikely that a
combination of impurity-scattering mechanisms '

could conspire to maintain the 1/T'i dependence.
In any case, these data show that one need not

quantize the acoustic-phonon distribution even at
these low temperatures since, if this were the
case, the mobility would decrease faster than
1/T'i' as T increases. The equipartition assump-
tion is expected to be valid if the electron velocity
e is much greater than twice the sound speed p.
At 2. 0 'K in Fig. 1, this condition is bareLy satis-
fied (e=4p). Furthermore, Eq. (11) evidently is
not reliable for estimating the deformation poten-
tial. The mobility due to deformation-potential
scattering is proportional to 1/E& and is lower than
that predicted by Eq. (11)by the factor (14.5/2. 9)
= 25.

Figure 2 demonstrates the accuracy of Matthies-
sen's rule' ' applied to CdS for deformation-po-
tential acoustic-mode, piezoelectric, and polar-
mode scattering. The respective mobilities p, ~,
p„, and JM„due to each mechanism acting alone
were calculated by the iterative technique and are
shown in Fig. 2. Kohler has shown that p,„rep-
resents an upper limit for the total mobility p., i.e.,

1/p„= 1/p~+1/p, „+1/p„(1/p, , (12)

ro5

—I.lo

—!.05

IO I

to

TEMPERATURE, T ( K)

loo
I.oo

looo

FIG. 2. Electron mobility calculated from Matthies-
sen s 1'Qle p~ compared to actllal mobility p . p ~ 18 d8-
formation-potential acoustic mode, p~, is piezoelectric,
and p~, is polar-mode scattering limited mobility.

The mobility of CdSe shown in Fig. 3 for conduc-
tion parallel or perpendicular to the e axis of the
crystal resembles that of CdS, Fig. 1. Experimen-
ta, l data' " ' on sufficiently pure material which
would confirm the predicted anisotropy have not
been attained. Impurity scattering tends to limit
the experimental mobilities shown in Fig. 3 below

60 K. At higher temperatures where lattice-limited
mobilities are observed, the agreement is satisfac-
tory for the extrapolated deformation potential E,
=11.5 shown in Table I, which is that found for
Znse by fitting high-temperature mobility data (see
below).

and p„/p, should be near unity when one scattering
mechanism dominates all others. This occurs for
piezoelectric scattering at low temperatures and for
polar-mode scattering at high temperatures in
Fig. 2, where, indeed, p„/p, approaches unity.
Even near 140 K, where all three scattering mech-
anisms are comparable, Eq. (12) is seen to be
rather accurate, p„/p = l. 12.

It will be helpful for the reader to keep in mind
the relative magnitudes and trends of p~, (- 1/T i ),
iL~(-1/Tsi2), and p„appearing in Fig. 2 for all
the direct-gap polar semiconductors as they are
all similar. In particular, the slight positive cur-
vature of p.„at higher temperatures will eventually
allow p, ~ to become nearly as small as p,„at ele-
vated temperatures. Hence, the acoustic deforma-
tion potential E, can strongly influence mobility re-
sults for Tp1000'K.

B. CdSe." Vfurtzite Structure
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—IO4
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I

N
E
C3

I—

(Xl
O~ 103

I ~ I I ~ I of an eV above the (0, 0, 0) valley. '
CdTe has the smallest energy gap of the six ma-

terials being considered and should therefore ex-
hibit the largest effect due to conduction-band non-
parabolicity. Figure 5 compares the mobility in
parabolic and nonparabolic bands. The effective
mass I*=0. 111 in either case, and the curves at
temperatures greater than It00'K are illustrative
only since multivalley conduction sets in at this
point. At 500'K, nonparabolicity lowers the mo-
bility by only about 15/0.

D. ZnS and ZnTe: Zinc-Blende Structure

02, I

40
I i I

60 100
I

200
I I & I

400 600 1000

TEMPERATURE, T( K)

FIG. 3. Electron mobility in CdSe. Data points from
Hefs. 30 (Q), l (X), 24 (+), 3l {A). Solid curves are
calculated from parameters in Table I. Agreement is
satisfactory over more than an order of magnitude in

temperature. Impurity scattering limits the low-tem-
perature experimental mobility so that the data do not

show the predicted anisotropy.

ZnS in sufficiently pure form for mobility studies
is not generally available. ' The data' ' shown in
Fig. 6 may be limited by impurity scattering even
at room temperature. However, several authors
do find similar 300 'K mobility values which are
much lower than the predicted value 285 cm /V sec.
Some reported values are 140, " 165," 142, ' and
180 cm2/V sec" (this last value is reported for a
hexagonal structure and the crystal may have been
contaminated with Cd). Lenz (quoted in Ref. 35)
has, however, found a value of 285 cm2/V sec,
which agrees with the predicted value. A detailed

C. CdTe: Zinc-Blende Structure

Figure 4 shows the mobility"" of CdTe calcu-
lated for the zinc-blende structure. The relatively
low experimental mobilities" (data circles) below
60 'K are again due to impurity scattering. From
60 to 600 'K, the agreement is reasonable for the
purer sample measured by Segall et al. " In Fig. 7
of their work, they have achieved agreement be-
tween theory and experiment nearly as good as that
shown in the present Fig. 4 by assuming a temper-
ature-dependent Xo. X„was considered constant.
However, from our discussion of Sec. II it appears
that X.o and 3:„can be consistently considered con-
stant to the present approximation. The previous
disagreement" between theory and experiment is
then removed by the use of a larger deformation
potential E, than that predicted by Eq. (11). E,
=9. 5 eV, as shown in TableI, was extrapolated
from the results on CdS and CdSe. At temperatures
greater than 700 K, the high-temperature mobility
data of Smith fall well below the dashed curve in
Fig. 4. This difference cannot be suitably removed
by readjustments of the deformation potential and
is probably due to simultaneous conduction in
higher-lying ( 111) minima which are a few tenths

Io5

I

cu 0I

O

3
Io

L
L

L

10
20

I I I I

40 100

TEMPERATURE, T ( K)

400 1000

FIG. 4. Electron mobility in CdTe. Data points
from H,efs. 15 (Q), 32 (X), 33 (k.). Solid curve is cal-
culated from parameters in Table I for the zinc-blende
structure. Impurity scattering is evident below 60'K
for the 0 data and below 200'K for the X data. The
rapid decrease above 700'K of the A data suggests
multivalley conduction.
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explanation for the discrepancy in Fig. 6 is not
presently available.

ZnTe ordinarily (however, see Ref. 1) exhibits
p-type conduction and a detailed comparison with
the predicted electron mobility shown in Fig. 7
must await measurements on pure material.

IO4 I
I

I

E. ZnSe: Zinc-Blende Structure

The mobility in ZnSe, ' ' shown in Fig. 8 as a
solid curve, follows from the parameters in Table
I. The dashed line corresponds to a lower deforma-
tion potential E, = 2. 4 eV derived from Eq. (11).
At low temperatures, below 150'K, the experi-
mental mobility' is dominated by impurity scatter-
ing. For intermediate temperatures, in the neigh-
borhood of room temperature, the agreement with
either theoretical curve is satisfactory. But at
elevated temperatures, greater than 600'K, the
agreement not only in absolute magnitude but also
in functional dependence is seen to be much better

IO4

o 10~—
CD
V)

I

CU

E
O

I-

CD

102 X

101

100
I I I

200 400
TEMPERATURE, T( K)

I I I

600 800

FIG. 6. Electron mobility in ZnS. Data points from
Refs. 36 (0), 37 (X) and 35 (i) are probably limited
by impurities to values well below the solid curve cal-
culated from parameters in Table I.

105

N
E
O

IP5

Q3
O

O
CD
(h
I

N
E

I-

QI
O
X

IO4

I02

TEMPERATURE, T( K)
102 I I I

40 60 100
I

200
I I

400 600 .
FIG. 5. Electron mobility in CdTe calculated for a

parabolic conduction-band valley and compared to that
for the correct nonparabolic band. The parabolic mod-
el always predicts a higher mobility and is in error by
15% at 500'K.
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FIG. 7. Electron mobility in ZnTe. Extensive mo-
bility data are not yet available on ZnTe which ordin-
arily exhibits p-type conduction.



ELECTRON MOBILITY IN II-VI SEMICONDUCTORS 4043

105

o 104

I)
E
O

I-

CQ

O
10~

40 60 100 200 400 600 1000
TEMPERATURE, T ('K)

for the larger deformation potential. Multivalley
conduction does not appear to be a complicating
factor here as it is in Fig. 4 since no abrupt change
in slope of the data versus temperature is evident.

In conclusion, it appears that discrepancies be-
tween theory and experiment at high temperatures
can be removed partially by the inclusion of conduc-
tion-band nonparabolicity but mainly by use of con-
sistently higher deformation potentials than those
calculated from Eq. (11). More high-temperature
experiments such as those by Smith"'" "would be
helpful in this area. Also needed are detailed mea-
surements of the dependences of the high- and low-

frequency dielectric constants upon temperature,
especially at high temperatures. The accuracy of
the present assumption of temperature-independent
dielectric constants could be estimated through
Eq. (2). Finally, it appears that the effective
masses calculated from Kane's theory by Kurik
are sufficiently accurate in cases where careful
comparisons with experiment are possible.

FIG. 8. Electron mobility in ZnSe. Data points
from Refs. 39 (Q), 9 (X), and 25 (+). Solid curve is
calculated from parameters in Table I for the zinc-
blende structure. Dashed curve is calculated for E~
= 2. 4 eV. The low-temperature data exhibit impurity
scattering. High-temperature data suggest that the
larger deformation potential shown in Table I is more
accurate than the lower value calculated from Eq. (11).
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Dielectric Theory of Impurity Binding Energies. III. Group-III Acceptors in Si and Ge
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Chemical shifts of ground-state energies and g factors of acceptors X in Si or Gehostcrystals
are analyzed within the framework of effective-mass theory. The unit cell centered on the
impurity is regarded as a unit cell of a hypothetical SiX of GeX crystal. The differences in
energy levels of valence and conduction bands of this hypothetical crystal at I", X, and I are
calculated according to the semiempirical spectroscopic rules developed by Phillips and Van
Vechten to describe levels of zinc-blende crystals. These energy differences are compared
with those of the host crystal and are used to renormalize effective masses in the impurity
unit cell. Rough estimates then show that this approach yields chemical trends in good agree-
ment with experimentand explains several quantitative features of the data that cannot be ex-
plained by qualitative models based on ionic radii or electronegativity differences.

I. INIODUCTION

In two preceding papers, ' an analysis of the
chemical shifts of ground-state energies of donor
impurities in Si, Ge, and GaP has been made based
on a spectroscopic theory ' of the covalent bond in
tetrahedra]. ly coordinated A B " semiconductors.
Both experiment and theory' agree thai the effec-
tive-mass approximation (EMA) of a point-charge
impurity embedded in a dielectric quasicontinuum
gives an excellent account of the energies and wave
functions of excited states of shallow impurities in
semiconductors. However, there is now abundant
experimental evidence to show that the EMA fails
both quantitatively and qualitatively to account for
ground-state energies. Quantitatively there is the
obvious point that ground-state energies vary from
one donor impurity to another (or from one accep-
tor impurity to another) in the same host crystal,
whereas according to the EMA the binding energies
of all states are determined only by properties of
the host crystal.

It has been customary' to explain these "chemical
shifts" in terms of a "central cell correction, " the
breakdown of the hydrogenic approximation for the
effective potential in the atomic cell containing the
impurity. This brings us no closer to understanding
ground-state energies, but it has the convenient
feature of relegating the problem to another dis-
cipline which already has its own full quota of un-
solved problems. The qualitative value of this clas-
sification, however, became doubtful when Hopfield
and Thomase discovered that even in III-V semicon-
ductors, isoelectronic impurities (such as N in
GaP) could bind electrons and holes although the

effective impurity potential was zero in the EMA.
Thus, the EMA is qualitatively wrong in this case,
and it appears that we must face up to the problem
of shallow impurity states associated with donors
and acceptors as well as isoe1.ectronic impurities
or isoelectronic-impurity complexes (e. g. , CdO
in GaP). '

The first point to recognize is that in the presence
of a short-range potential only, one would not gen-
erally expect to find shallow impurity states. Either
the potential is not strong enough to produce any
bound states, or else it is likely to produce states
with a binding energy which is a significant fraction
of the energy gap. In practice, unless the difference
in electronegativity is very large (e. g. , 0 in GaP),
one usually finds small binding energies comparable
to EMA binding energies for donors on acceptors
and of the same order of magnitude for isoelectronic
complexes.

The explanationv for this behavior, which for
some time made the EMA appear to be more ac-
curate than it really is, is that because most semi-
conductors are highly polarizable, a strain field
develops around each impurity to prevent the ac-
cumulation of electronic charge much above or more
below the requirements of the valence bonds of the
host lattice.

In the case of shallow donor impurities in Si or
Ge, the central cell corrections 4E~= EI —Eo do
not vary monotonically with impurity size. Here
EI is the donor ground-state energy and Eo is the
EMA ground-state energy. Instead, 4E~ is found
to reach a minimum value at Sb in both Si and Ge
host crystals. This suggested to us that one could
account' for the chemical shifts in 4E~ primarily


