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Wannier Exciton in an Electric Field.

I. Optical Absorption by Bound and Continuum States*
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A comprehensive study of electric field effects on optical absorption by Wannier excitons is
presented, showing field effects on both bound and continuum states. The calculations and re-
sults have been simplified by defining appropriate dimensionless parameters such that the
eigenvalues are independent of field when expressed in terms of these parameters. A general
normalization procedure for wave functions with continuous eigenvalues is outlined. The effect
of the electron-hole interaction on the electric-field-induced oscillations is demonstrated, with
the result that the electron-hole interaction enhances these oscillations near an Mo-type edge
(positive effective masses) and quenches these oscillations near an Ma-type edge (negative ef-
fective masses). This effect would inhibit the observation of M3-type edges in electroreflec-
tance.

I. INTRODUCTION

The hydrogen atom in an electric field is per-
haps the simplest quantum-mechanical problem
for which there is no known analytic solution. The
solution to this problem has applications in several
areas, such as, field-controlled photogeneration of
carriers in solids, trap-controlled mobilities, field
ionization, and any problem which deals with a
bound charge under the influence of an electric
field. The problem that will be dealt with in detail
here is the effect of an electric field on optical ab-
sorption by Wannier excitons. The Wannier exciton
is an electron-hole pair created by photoexcitation
of a crystalline solid. ' This type of exciton is a
hydrogenie atom typified by the effective masses of
tice electron and hole and by the dielectric constant
of the solid. This model for the exciton is appli-
cable to crystals which can generate charge carri-
ers upon exposure to light, i.e. , photoconductors.
Also, from the formalism of the theory, it is re-
quired that the effective size of the excitation cover
several unit cells of the crystal. The size of the
excitation is related to how much an electron is
shared among the various lattice sites. For co-
valently bonded crystals, the electron is shared
equally among many sites and, consequently, the
excitation covers many sites, but, for ionic, mo-
lecular, and rare gas solids, the electronic motion
is much more restricted and the excitations are
thereby more localized. These localized excita-
tions are generally called Frenkel excitons. '
Thus, the Wannier theory for excitons is primarily
applicable to semiconductor crystals, ' particularly
from group IV of the Periodic Table; but many of
the more qualitative results of this theory are ap-
plicable to noncovalently bonded crystals.

By use of the effective-mass approximation, the
Wannier exciton is equivalent to the hydrogen atom
differing only in the values of the effective masses

h, = R/ea = (p/m) e 3'x 2. 59 x 109 V/cm . (4)

In Table I, there is a listing of energy gaps, binding
energies, and ionization fields for various semi-
conductors and insulators calculated from tabulated
values of effective masses and dielectric con-
stants" '; the crystals are ordered by increasing
value of energy gap.

There are very few published calculations on
electric field effects on the hydrogenie atom. For

. calculation of Stark shifts and splittings, '

of the electron and hole and the dielectric constant
of the medium. The bound states of the electron-
hole pair occur in the forbidden gap of semiconduc-
tors and insulators at energies given by

E„=F —Rn

where F~ is the energy gap and R is the effective
Rydberg energy. The intensities of the absorption
lines for these bound levels are proportional to
n '. These lines blend into a quasicontinuum for
energies very near but just below the gap energy
and then become a true continuum above the gap.
The effective Rydberg R is given by

R=pe/&A% =(p/m)e e x 13. 6 eV,

where p, is the reduced mass of the electron-hole
pair, m is the electronic mass, and e is the static
dielectric constant of the solid. The radius (effec-
tive Bohr radius) of the exciton is given by

a=5 &/pe'= (p. /m) 'e x 5. 29x10 ' cm.

Thus, we see that a, small effective mass (highly
mobile carriers) and a large dielectric constant
both combine to give large radii for the excitons,
which is one of the criteria for validity of the
Wannier theory. The electric field which is capable
of ionizing the exciton must provide at least a po-
tential drop of 1R across the effective Bohr
radius, i. e. , the ionization field 81 is defined as

3976



WANNIE R EXC ITON IN AN E LE C TRIC F IE LD . I. ~ ~ ~ 39'77

TABLE I. Energy gaps, exciton binding energies
(exciton associated with highest energy split-off valence
band), and ionization fields for various semiconductors
and insulators.

Crystal gl
(103 V/cm)

R
(meV)(eV)

InSb
InAs
Ge
GaSb
InP
GaAs
AISb
CdTe
CdSe
ZnTe
Pblp
CdS
ZnSe
ZnS

0, 2357
0.360
0, 800
0, 813
1.29
1.41
1.6
1.606
1.8415
2. 301
2. 55
2. 5831
2. 818
3.9115

0. 5
1, 8
1.4
1.8
6. 5
5. 1
7. 5

10.0
15.7
13.0
73. 0
29.4
19.0
40. 1

0. 08
0. 70
0. 55
1.00
7. 8
5. 7

12
31
60
47

460
140
75

200

perturbation methods are appropriate if & /8z«1.
But for electric fields on the order of or larger
than h &, the electric field dominates the Coulomb
potential and a nonperturbative solution is needed.
The first nonperturbative approach was proposed
by Duke and Alferieff in which they reduced the
electric field plus Coulomb potentials to the ana-
lytically solvable model of only the Coulomb po-
tential inside a given radius and only the electric
field potential outside the given radius. This
model is adequate in the high-field limit but fails
to predict correct Stark shifts in the low-field
limit. To improve on the results of Duke's model,
numerical integrations of the hydrogenic Schrodinger
equation have been performed by Ralph, ' Dow and

Redfield, and the author. "' Ralph ' calculated
the shifts and broadenings of the 1s hydrogenic
level, and Dow and Redfield demonstrated the
electric field dependence of the excitonic absorp-
tion tail in the band gap and compared this with
Urbaeh's rule. 5 Enderlein used a Green's-func-
tion approach to solve the problem, but one of his
assumptions made his results only valid in the limit
8/g, » 1.~7'28 Excitonic electroabsorption curves
and measurable parameters will be displayed in a
subsequent paper as functions of electric field and
temperature (broadening). The theory of optical
absorption by Wannier excitons is briefly reviewed
in Sec. II. The electric field effects on both bound
and continuum exeiton states are demonstrated in
Sec. III. In Sec. III, it is shown that the parabolic
coordinate eigenstates give both resonant peaks
below the edge and electric-field-induced oscillations
in the continuum, each oscillation being due to a
different eigenstate. The calculation of WEB eigen-
values, which were within 1%%uq of the actual eigen-
values, is presented in the Appendix. Extensive

electroabsorption reviews may be found elsewhere.
Several useful excitonic electro-absorption param-
eters may be found in Table II.

II. WANNIER EXCITON THEORY

A. Effective-Mass Equation

x ~", „",(k,', k„') = 0,

where E,(f,) and E„(kg define the energy bands for
the conduction- and valence-band states and
y(r, —r„) is any potential which causes mixing of
the Bloch waves; in our case, the Coulomb potential
is screened by a medium with dielectric constant

Quantity

Effective Ry

TABLE lI. Definitions.

Symbol Definition

p, e4/25'e'

Units

eV

Effective Bohr radius a

Ionization field

5'
q/rLt, e

R/ea

cm

V/cm

Reduced mass of
electron-hole pair

m,m„/(m, + mq) g

Electro-optical energy 58 (~/& )'"R
= {N2e2g2/2p) & ~3

eV

Broadening parameter I eV

From the band theoretical point of view, the ab-
sorption of light by a crystal is accomplished by
creation of an electron-hole pair. The ground
state of the crystal is assumed to be the state in
which the valence band is completely filled and the
conduction band is completely empty. The electron
and hole in the final or excited state may interact
via the Coulomb potential. This electron-hole in-
teraction breaks the translational symmetry of the
crystalline potential and mixes the Bloch waves.
The excited state of the crystal may be approximated
by a linear combination of Bloch electron and hole
wave functions as follows

y" "(r„r„)= 7 ) A", ,'„(k„k„)p,,f (r,)y„„.(r„),
Clke Vtkh

(5)

where m and K =—k, +k„are used to label the excited
state, and g, p and P„„„arethe electron and hole
Bloeh wave functions. The notation used here is
consistent with that of Dimmock. The energy dif-
ference E between the excited state 4"' and ground
state 40 of the crystal may be determined from the
following set of equations:

[E,(k, ) —E„(fg —E j X", „'(k„fg

+ p y' (ck, : vfalv(r, —ra)Ic'k, ': v'k„')
c gk~ vgk
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& and an external electric field is applied, whereby
the electron-hole pair sees the combined potential

V(r) = —e jar e-h r, (7)

where r = r, —r„and 8 is the electric field. This
potential is shown in Fig. 1 for zero and finite elec-
tric field. The major effect of the electric field
is to lower the lip of the potential well which causes
the bound levels to be mixed and broadened into a
continuum. A secondary effect of the electric field
is a slight widening of the Coulomb well, which
causes a shift of the 18 level to lower energies,
which in turn produces the well-known phenomena
of the second-order Stark shift.

As an aside, it should be noted that the Coulomb
potential is not quite an accurate representation of
the electron-hole 1nteraetlon. This ls due to the
fact that the electron and hole are not truly point
particles but, in effect, have the dimensions of a
unit cell of the crystal. This means that if the
electron and hole are located in the same unit cell
their charge clouds are overlapping and the poten-
tial well has a bottom on it instead of singular point
at r = 0. 1 Using the Coulomb potential as being the
electron-hole interaction causes overestimation
of the binding energy of the lowest bound exciton
level. In materials where more than two bound

levels are observable, it has been shown that the
Is level deviates slightly from the (E„=E,—An 2)

rule.
The effective-mass equation of Dresselhaus is

obtained by introducing the Fourier transform of
A",'„(k, , k), ) which is defined as

e" "(r r ) -ZZe'"~'"e'"~'))A" ~(R k ) (3)
k~ k~

If we assume that V(r) varies slowly over the dis-
tance of a unit cell and that the energy bands are non-
degenerate, then 4,"'„(r,, r„) satisfies the differential
equat1on

[Z,(fr, ) -E„(-fog+ V(r) —E] C",;„*(r„r„)=o . (9)

Using the effective-mass approximation and as-
suming that the bands are isotropic near the band

edge gives

where E„=E-E~, E~ is the energy gap at the band

edge, and Q„(r) is defined by the equation

C".;„"(r„r„)=a*""y„('r) . (11)

Here r is the relative coordinate, R is the center-
of-mass coordinate, p, is the reduced mass of the
electron-hole pair, and M is the sum of the elec-
tron and hole masses. Equation (10) is the equation
that must be solved to determine the wave function
for the Wannier exciton in an electric field, but
before we seek a solution it is appropriate to deter-
mine the relationship between the optical absorption
by Wannier excitons and (())„(r).

8. A11owed and Forbidden Optica1 Transitions

If we include both bound and continuum exeiton
levels, then it may be stated that the entire absorp-
tion spectra is due to the formation of exeitons.
This is said to emphasize the point that the single-
particle optical density of states is altered by the
electron-hole interaction not only in the region di-
rectly below the energy gap but throughout the entire
spectra. Thus we will be interested in ealeulating
absorption by not only the bound exciton states but
also the continuum exciton states.

The matrix element that determines the transi-
tion rate for optical transitions between the ground
state 40 and the excited state 4"'"is given by

where A =Ace"' '"' is the vector potential of the
electromagnetic wave. Using 4'"'* from Eq. (5) and
neglecting the momentum of the photon Aq relative
to the crystal momentum kk, the matrix element
M ' may be expressed as

x dru*&& Vu„p +i& k 4ru~ g u~ j

(13)

FIG. I. Electron-hole interactions with and without
, externally applied electric field.

where A is the volume of the unit cell of the crystal.
The function ug is defined in the normal manner as
the part of the Bloch wave possessing the crystal-
line translational symmetry, i.e. ,

g L/2 iPc ~ 9wf- up .
Combining Eqs. (8) and (13), and assuming that the
integrals in Eq. (13) are slowly varying functions
of k, one obtains the result3
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p ((eRA) g

x —p..(.(o)+&.. & &4. .=s) ((4)

vrhere P,„and U,„are defined by the integrals

Pq„= (g/z) J d ran ( Vtc„,I (15a)

(15b}

Fox' allowed transitions, u, and u„are antisym-
metric Rnd U~= 0; for forbidden transitions, u, and
u„have the same point group symmetry and P~ = O.

The lmRglQRx'y pRrt of the dielectric constRnt 18 x'6-

lated to M"'" by the relation

(16)
CyV

Thus for allowed transitions, &2 is given by

p ng, j» p j'jy„(0}j'n(z,+E„-e~),
R, o (I'7)

and forbidden transitions is given by

4m e
»3= ~ ~ ~ t g, oj&.,j'I'j» ~e. j, -o

E„(R)= (a /2m„)(R -R„')', (19b)

x 5(zz+E„—hv).

The imaginary pRrt of the dl616ctx'lc coQstRQt 18 px'o-

portional to the absorption coefficient n, i. e. , &2

= neo(/ro where n is the index of refraction. The
imaginary pRx't of the dielectric. constant 18 also re-
lated to the reflectance R through a Kramers-
Kronig transformation.

In addition to the direct transitions, there are
less probable transitions between extrema in the
conducti. on and valence bands known as indirect
transitions. These transitions go through interme-
diate states in the excitation process Rod are usual-
ly phonon-assisted. s 36 Because of the absorption
and emission of phonons, the total wave vector K
is no longer a consex'ved quantity, and the initial
and final electron states do not have to be at the
8RD16 k vector. Indll ect trRQsltlons cRQ be cRused

by any imperfection in the lattice such as impurities
or defects, but phonons are generally considered
to give the strongest effect. Because they are sec-
ond-order effects, indirect transitions are only ob-
served if the indirect gap is less than the direct
gap. If we consider the simple band model near the
band edges in which

Z, (k) = Z, + (a'/2~, )(k - k 0)', (19a)

and the extremal points ko and k~ are not the same,
then &2 becomes

2 2

P j
C',

j j
(t("' (0) j 5 (Aced E—+ K(d i),

(20)

where C', includes interband and phonon-interaction
matrix elements for phonon of energy N~-„and

(21)

If there is a continuum of states, g - f dz„and

(2M3)"'
(22)

K 0

qrith these substitutions, E(l. (20) becomes

x dz' (z, -z') '"jy„(0)j',
w CO

$0= IQP Eg+ S(0) (24)

Thus if we know Q (0) as a function of energy, then
»z"~ may be calculated from Eq. (23). If (t( (0) is
proportional to the square root of energy, then &2

shows the energy squared dependence,

»p ~ (A(0 —E&+ AQ)i) . (25)

The additonal integral over energy for indirect
transitions tends to smooth out any structure that
might be present in p (0) and thereby makes the
electric-field-induced structure in &2' very subtle.

In Sec. II, it was shown that, for direct allowed
transitions, the imaginary part of the dielectric
constant c2 is proportional to a sum over amplitudes

I P„(0)I where n denotes the hydrogenic state of en-
61 gy E„. lQ this 8ectlon, R dlmenslonless denslty-
of-states function (t (0) is defined which contains all
electric field phenomena and is normalized such
that it approaches the free-particle continuum limit
[(h(d —E~)/It I'i for (h&u E~) )& R, w—here E~ is the
gap energy and R the exciton binding energy. The
properly normalized (t( (0) is defined as

y'(0) =«"' Z j y.(0) j'I) „" (26)

where a is the exciton radiuS and g„(r) satisfies
Eq. (10) with K= 0. For 8= 0, the amplitudes

j P„(0)j' »e equ» «(sa') ' for s-like hydrogenic
states and zero for any other, whereby

Wk

OO

n=& B



3980 DANIE L F. BLOSSE Y

P (0)= », h~&E
1 —exp(- 2m[(I~ &,-)/R j '"'I'

Equation (2Vb) is the continuum expression of El-
liott~ which approaches the limit [(Iv —E~)/R
for (if&@ -E )»R. Equations (2Va) and (27b) both

approach the limit 2v for h+ = E„(2Va) as a quasi-
continuum and (2Vb) as a continuum. It will be
shown in the following how the electric field alters
Eqs. (2V). The density-of-states function p (0) is
related to the imaginary part of the dielectric con-
stant &2 through Eq. (1V), which may be rewritten
as

(23)

separation into parabolic coordinates followed by a
numerical integration of the resulting differential
equations.

Because of the linearity of the electric field po-
tential, Eq. (31) is separable in parabolic coordi-
nates. Parabolic coordinates, in fact, are useful
in the treatment of all kinds of problems in which
a particular direction in space is distinguished by
some external force. ' The parabolic coordinates
r. , q, and Q are defined as

f=r+ e, q=r —z, and /=tan '(y/g) . (32)

The surf aces f = const and g = const are paraboloids
of revolution about the z axis having the origin as
focus. The volume element is given by

where & is the static dielectric constant, g is the
unit polarization vector for the electromagnetic
wave, a is the exciton radius, and it is assumed

that P,„ is a slowly varying function of k. If a di-
pole matrix element p.,„ is defined as

d r= —,
' (K+7l) dgd7ldp,

and the Laplacian operator is defined as

V = —f —+—g — +—

(33)

(34)

p, ,„=(e/m~) P,„; (29) Equation (21) may be separated by defining Q„(r) as
a product of parabolic coordinate functions,

then for unpolarized radiation

e, =+a~ p, ,„/ea~'y'(0) . (so) 4&„(r)=Af„(q)g„,(l)e™,v'= v+ pe /eS, (s5)

Thus, in this form, it is evident that the exciton
absorptive strength is proportional to the ratio
squared of the interband transition dipole moment
to the exciton dipole moment with P (0) containing
any electric-field-induced structure. In the follow-
ing, we will only concern ourselves with effects
near the direct gap where exciton effects are so
predominant.

A. Separation of Effective-Mass Equation

The assumption of direct transitions requires
that K=k, +k„=0. Knowing that only solutions with
K = 0 are needed, the differential equation for P„(r)
reduces to

2

V ———e h e P„(r)=E„P„(r),(31)
&2p,

where the electric field b is taken to be in the z
direction. This is the Schrodinger equation for the
hydrogenic atom in an electric field, with p, being
the reduced mass of the electron-hole pair and &

the static dielectric constant of the crystal. As
mentioned previously, the externally applied elec-
tric field in the crystal can be large enough so that
it is not simply a perturbation on the Coulomb field.
Fields on the order of 10' V/cm are sufficient to
ionize excitons in most crystals which means that
the electric field can be comparable if not stronger
than the Coulomb field. Thus, in the following, we
will not treat the electric field as simply being a
perturbation on the Coulomb field but will treat
both equally. Our approach is to solve Eq. (31) by

1 d df„m2 v pE„peggy
4

'
2a 4e

(36a)

1 d dg, ~ p jLl,E„Q88$
l dl dl' 4f~ l' 2h 2 Ci~

(sI )
At this point in the calculation, it is convenient

to define dimensionless variables so that the calcu-
lated eigenvalues will not be directly dependent on
the values of the electric field, reduced mass, and
static dielectric constant, but will be dependent only
on two dimensionless parameters containing these
variables. The two dimensionless parameters of
importance are a dimensionless energy P and a di-
mensionless field 8/8, . The dimensionless energy
P is

p = zgae = (z —E,)/ee, (37)

where 58 is the electro-optical energy and is de-
fined as

88 = (8'e' g '/2 p )'~' . (38)

The separation constants, or eigenvalues, p and v'

may be made dimensionless by defining new vari-
ables tc and ~' which are given by

x=(48'/peh)'i' v, x'=a+2(h, /g )'i', (39)

where hl is the ionization field for the ground state
of the exciton and is defined by Eq. (3).

where A. is a normalization constant and the functions
f„and g„. satisfy the equations
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Let us also define a dimensionless distance x such
that 10

I I I I
'

I I I I I I I I I I I

x=(b/g, )'" (q/2a), x&0

x= ( b/h, )' ' (t'/2a), x & 0

(4Oa)

(40b) -10
K

1

where a is the effective Bohr radius.
With these substitutions Eqs. (36a) and (36b) be-

come

-20

-40

-8 -6 -4 -2 0 2 4 6 8

x&0
x&0 ' (41)

FIG. 3. Eigenvalues f(:& as functions of p = (b/5'I)
& [(&-E~)l~l =(E-E~)/0'0 for eigenvalues i =1-8.

Since in Eq. (17) we are only interested in calcu-
lating p„(r) = 0, it should be noted that the only non-
zero values for p„(r) at r= 0 come from the m= 0
terms, since

f(x)-(.x)"", (x-O.). (42)

Thus only the m= 0 terms contribute to the exciton
for direct allowed transitions. For m=0 Eq. (41)
reduces to

+ x'(- x+ p)
'i'+ n j, (44)

20

/3

-10

-20

M I I

-15 -10 -5 0 0
X

I I

5
X

IO 15

FIG. 2. Effective potentials for parabolic coordinate
eigenfunctions {a) g„(x) and (b) f„{x).

(43)
where x'=@+2 ( 81/b)'i

B. Eigenvalues and Wave-Function Normalization

The effective potential in Eq. (43) has singulari-
ties at the origin and at plus and minus infinity as
shown in Fig. 2. Thus the solutions f and g for
x&0 and x&0 respectively may be obtained by con-
necting the regular solution at infinity to the regular
solution at the origin by either numerical integra-
tion or some other sort of interpolation scheme.
The value of g(x) at the origin may be determined
by connecting the oscillatory asymptotic solution,
given by

g„. «(x) - (- x+ p)
' ' sin[«~ (-x+ p)

where n is an arbitrary phase angle, to a regular
solution at the origin. Since the phase angle n is
arbitrary, g(0) is continuous function of x' and p.

The asymptotic solution for f(x) must fall off ex-
ponentially for x &&P. Since only the exponentially
decaying solution is allowed for large positive x,
only certain values (eigenvalues) of x will connect
the regular solution at the origin to the asymptotic
solution. The asymptotic solution for f(x) is given

by

f„,(x)-(x-p) '~' exp[--', (x- p)'i'+x(x-p) ' '].
(46)

Connecting this solution to a regular solution at the
origin determines a set of eigenvalues a, which are
continuous functions of the dimensionless energy
P. ~ A very good approximation to these eigenvalues
II. , may be obtained using the WKB approximation for
calculating phase changes between classical turning
points. The ~B eigenvalues x,"" are defined by
the relationship (see the Appendix)

f WKB 1/2
dx — ' +p-x =(i ——,')v, i=1, 2, 3, 4, . ..

Xf x
(46)

where x& and x2 are the classical turning points,
i.e. , the zeros of the integrand. It is interesting
to note that the percent difference between x, and

the actual x, was less than 1/o so that the a,"" serve
as a good starting point for an iteration procedure to
find the x, . The solution of Eq. (46) is a hypergeo-
metric function which may easily be calculated from
various approximate series. ' The g,. approach the
asymptotic limit x, = —(2i —1) (-p)'I for large neg-
ative p. Since the eigenvalues are continuous func-
tions of energy, the normalization of the wave func-
tion is quite different from normalization of wave
functions which have discrete energy levels. The
calculated eigenvalues x, (P) are shown in Fig. 3.

Since P„(r) has continuous eigenvalues with re-
spect to energy, it is necessary to normabze the
integral of the wave function squared to a Dirac 5
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Tbe first term on the right-hand side of Eq. (50} is
zero since f(q) is zero at infinity and q is, of
course, zero at q = 0. Realizing also that the limit
at f = 0 of tIle second term on the right-hand side of
Eq. (50) contributes nothing, we are left with

p- (E'-z)5~ „=RwA (Jl dqf'"f)

Since the fs„ form a discrete set at a given energy
Z, let f be normalized so that

f dqf'*f=5„. p (S /h) 1~ 2a (52 )

function ln energy instead of a Kronecker 5, The
normalization expression is given by

f dr yg, „...{r)y,„.(r)=5(Z'-Z)5„, , „5„.,..
(4V)

where E is the energy, v is the separation constant,
and m is the azimuthal quantum number. The wave
function is a product of functions of the parabolic
coordinates f, q, and Q

As... (r}=&fs„, ((V) a's... (&)e" ' (48)

The volume element dr and the Laplacian operator
are given in Eqs. (33) and (34) in terms of parabolic
coordinates. The e" ~ part of the wave function
leads directly to the 5„, normalization. The f(1))
function is bounded so that the integral of its modu-
lus squared may be calculated by machine. The
difficulty in evaluating the integral in Eq. (4V) nu-
n161'1cRlly 1s tllRt t116 g(f) fllIlctloll is oscillatol'y R11d

falls off slowly as is evident from its asymptotic
solution in Eq. {44). Calculating the integral of its
modulus squared is not possible by machine because
this integral gives the Dirac 5 function normaliza-
tion which blows up for E' = E. Thus a different
method for calculating the integral in Eq. (4V) must
be devised.

From Eq. (31), it is clear that

~ (( ~'( (v'( *(-p' (~'@=/&'(-"(
(49)

where the primed function g' has eigenvalues Z', v',
and m'. Combining Eqs. (31), (33), (48), and (49)
gives the result

+ (z' z)5(z' z-)5, -
00 a d d lg ce

=2w& ding'*g '1''*—-qf
0 .

,

' d() 'V ~ 0

P 0O

+ 2' I dqf'*f gg'*—- lg — . (50)df dt; 0

or

f dxf'*f=5„.„. (52b)

Tbe remaining part of Eq. (51) to evaluate is tbe
asymptotic limit of the term containing g(l') and
g'(f) which from Eq. (44) is

g~&[0 ~ g ~ Sin

Z'-E
(N- ) - v(Z' Z)5-(Z'-Z).8

where the 5 function in energy has been eliminated
by integrating over energy as implied from g„. The
sum over states n means a sum over the azimuthal
quantum number m (only m = 0 terms are nonzero},
a sum over the eigenvalues x& at each energy E,
and an integral over energy since the electric field
causes all states to form a continuum in energy.
The normalization for (t( (0) for {k(d -Z~) &&R holds
for Eq. (55) as well as for Eq. (2V) if it is also re-
quired that (Au& -Z~) &&h8. This aforementioned
normalization requires that p (0) approach
[(k(0 -Z,)/R]'~' far above the gap energy.

The values off„, (0) are plotted as a function of
dimensionless energy P in Fig. 4. These f0 (0)
values are calculated by connecting the asymptotic
solution for f(x) given in Eq. (45) to a regular solu-
tion at the origin. For large negative P the f0.(0)
functions all approach the limit 2(-P)'~'. The
fg (0) fR11 off quickly 'to zelo fol' p & p1, wllel'6

p, =[-:.( --'}j"', (56)

and the P& are approximately the zeros of the a', (P)
as calculated in the Appendix. From Fig. 2(b) it
is clear that the effective potential for f(x) is re-
pulsive near the origin for Jt(& 0 and attxactive for
x& 0, thus causing the zeros of tbe x, (P) to be cut-
off points for the f0, (0).

Several curves of g0, (0) as a function of x' at con-
stant P are plotted in Pig. 5. The eigenvalues g'
and x1 are related by Eq. (39) and the x,'depend on
the electric field strength. The resonant peaks in
g„.(0) increase in height and number for increasing
negative p. The smaller the electric field the larger
the VRlue of (Kg —Kg) Rlld 'tile sbR1'pel' the peRks 111

g„;(0). Figure 6 shows, for E=g/8 = 10008, the

Substituting Eqs. (52) and (53) into Eq. (51), and
solving for A we find that

A =(4vVB) '. (5

Combining Eqs. (26), (48), and (52) gives the den-
sity-of-states function (t( {0)in terms of f„{0)and

g.' (0) Rs

1jg 0o

y'(0) = — Z f'„, (0) (0),
h
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f (K.,O)
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0 -8 -6 -4 -2 0 2 4 6 8

FIG. 4. Amplitudes f„,(0) as functions of p for eigen-
values i =1-8.

points of intersection of the && curves with the peak
positions in g„.(0). This figure shows schematically
how the n = 2 hydrogenic level is split by the electric
field into two eigenstates of the parabolic coordinate
Schrodinger equation. The i = 1 parabolic coordinate
eigenstate also contains the n =1 hydrogenic level
whose peak position can be determined by continuing

K] to the point of intersection with the first resonant
peak position of g„.(0) at larger negative P. In fact,
the i = 1 state contains the lowest-energy split-off
branch of each hydrogenic level n, the i = 2 state
contains the second branch of each level n starting
with n = 2, the i =3 state contains the third branch
of each level n starting with n= 3, etc. This result
will be demonstrated in more detail in Sec. IV.

-- 30

K

Vl
LU

IO—
Ki

n*2 PEAKS

F %.008

C/J~ -10

g -20
C9

4J

K!

ia 2

-30
-IO -8 -6 -4

E ~ F-afs
-2

FIG. 6. Peak positions
of g„&(0), eigenvalues K;,
and values of ~,' versus P
for F = 8/$1 ——0. 008. The
drawing shows how the ~;
intercept the peak positions
in g„s (0) which correspond
to the bound hydrogenic
levels. Here it is shown
that the electric field
causes a splitting in the n
=2 level with the lower-
energy branch correspond-
ing to the i = 1 eigenstate
and the upper branch cor-
responding to the i =2
eigenstate.

ry (Stark effect). Each resonant state may be de-
scribed by the parabolic coordinate quantum num-
bers (n, i, m) and these quantum numbers have a
definite correspondence to the quantum numbers
of the hydrogen atom (n, f, m), in fact, n=n, m=m. '

Thus it would seem that the quantum number i re-
places the orbital quantum number l and indeed this
is the case. For example, for the case of n =2,
i =1, nz = 0, and 6 =0, the parabolic eigenfunction
(t(z, o is related to the R„, Y,„spherical coordinate
eigenfunctions by the relation

C. Bound States

In the limit of small electric fields (8/gz «1)
the peaks in (t( (0) represent the bound exciton
states whose energies agree with perturbation theo-

4'ohio = (V z )Rao Yoo+ (Wz) Ro& Y~o. (5V)

Thus the effect of using parabolic coordinates is to
mix degenerate states along the direction of the
field, in this case, and 8 and P, states for the n
= 2 level. Application of a field in the z direction
gives preference to the parabolic coordinates and
mixes the syherical coordinate eigenstates. In

general, the parabolic-coordinate eigenfunctions
are given by (for m =0)

IO

exp [-(1/2n)(f+ q)]
0 so=n wit (n-i)! (i 1)!Lo (q/ ). (58)

IO

10
g'(0)

where g=r+z, q=r -z and the L, (x) are the as-
sociated Laquerre functions, which are defined by
a generating function as

IO (1 o' exp( )=z, l. (x)—- (59)

5 IO

—lo

20

FIG. 5. Amplitudes g„.(0) as functions of ~' and P. The
specific values of &' needed for a given field 8 are given

by ~,'=&,.+2($/81) ' '.

Table III shows the (t(„,o for n = 1, 2, 8 as functions
of the spherical coordinate hydrogen atom eigen-
functions R„, F, .

The addition of the electric field then perturbs
the states P„,„and causes shifts in the energy of
these states. To third order in electric fields, the
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energy of the various states (nim) is given by

E„&„/R= -1/n ——', (8/8z) n (n 2-i -m+ 1)

—
ss (8/8z) n' [17n -3(n 2-i -m+I) -9m +19]

Qs(0) will be normalized such that it approaches
(E —Es)'~s for E»E~. This is in accordance with
Elliott's continuum density of states for optical ab-
sorption by excitons. He calculated that for zero
electric field'

—
+ass (8/8z)' n' (n 2s--m + 1)

x [23n -(n —2s -m+1) + 11m +39]. (60)

p (0) = 2v/[1 —exp(- 2'&�"'')], E &E~

where

(61)

E,=E-E, and p'(0)-(E-E,)"' for E»E,.

TABLE IH. Parabolic coordinate eigenfunctions in
terms of spherical coordinate eigenfunctions for hydrogen
atom in the limit of g 0. The m&0 states are not in-
cluded, because they do not contribute to the direct ex-
citon spectrum.

Anil

~2io

ft'220 =

~3io

@320=

@330=

Rio Yoo

~R2o Yoo+ &-,' R2i Yio

P~ Rlp Ypo &2R2i Yip

s Bsp Yoo+L~Rsg Ygp++ Rss Ysp

W~R30 Ypp —A~ R32 Y2p

—R30 Ypp-LR3i Yip+WGR32 Y20

As indicated before, these low-field eigenstates
correspond to peaks in

y'(0) =(S/S,)' 'P, f„', (0) g„'. (0)

and that each peak is associated with a certain ei-
genvalue ~&. Figure 5 shows that for I(,'&0, P &0,
resonant peaks can occur in g„,, (0) and the peak
height increases with increasing negative P.

A few general features of the effect of an electric
field can be seen by simply examining the effect of
a uniform electric field on the Coulomb potential.
The Coulomb potential with and without electric
field was shown in Fig. 1. The major effect of the
electric field is to lower the lip of the well and
thereby change discrete bound states into continuum
states. When the lip of the well moves below the
energy of a bound level, then it takes no extra en-
ergy to separate the electron and hole and that
level is said to be ionized. A secondary effect of
the electric field is to slightly widen the well. This
causes the ground exciton state to shift to a lower
energy because, from the WEB point of view, a
wave function with given quantum numbers must
retain a certain phase shift between classical turn-
ing points. Thus if the well widens, the level must
shift to a lower energy. These results will be seen
in more detail in Sec. IV.

In the following, the function P (0), which is pro-
portional to es (the imaginary part of the dielectric
constant) and o. (the absorption coefficient), will be
plotted as a function of energy for several values
of g/hz. The energy units will be effective Ry and

Elliott also calculated that the zero-field intensity
of the bound exciton lines (E &E,) was given by 4osss

and

Ps(0) = +4on 5(E —E,+n s), E (E,. (62)
t1 =1

For n ~, it may be shown that P (0) approaches
the continuum value of 2m. It will be shown in what

way the electric field alters the zero-field spectrum
as described by Eqs. (61) and (62). Equations (61)
and (62) do not include the possibility of line broad-
ening which must be included if a valid comparison
between theory and experiment is to be made.
Broadening will be included in a subsequent paper
so that experiment and theory may be compared.

In Fig. V, the exciton spectrum is shown for four
different values of E= 8/Sz. For F =0. 005, it is
evident that the electric field has had little effect on
the 1s or 2s hydrogenic levels. The n = 3 and higher
levels are however greatly affected by this magni-
tude of electric field. The n =3 level is split into
three parts by this field and all higher levels are
smeared into a continuum. The three Stark-split
branches of the n = 3 level correspond to mixtures
of the 3s, 3P, and 3d hydrogenic states for small
F. States with zero s character have been omitted.
In terms of the B„,Y, hydrogenic wave functions,
the three branches correspond to

K sRso Yoo + KsRs) Y(o + V ass Ysp1

(lower branch)

p(n = 3) = ( V's Rso Yoo ~s Rss Yso (middle branch)

l V'-s'RspYpp —v sRsgYgp+gvRssYsp

(upper branch).
(63)

One very interesting effect of this splitting is that
the lower branch which presumably lies deepest in
the well is the one most broadened by the electric
field. This broadening is a result of the spacial
distribution of the wave functions in the well. If
the wave function is more concentrated on the lip
side of the well then the chances of the electron es-
caping from the hole are improved and the proba-
bility Q (0) is reduced. This is exactly the case
here The Ps(0.) for the lower branch is broader
because the wave function is concentrated on the lip
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FIG. 7. Electric field effect on bound exciton levels
for E=S/8& ——0.005, 0. 02, 0.25, and 1.0. The bound

states are split and subseqUentlg Mixed iDto a continuum.

as the electric fieM lovrers the lip of the Coulombic weQ.

side of the mell Rnd that level is more sgsceptible
to ionization. This affect has been observed in the
Stark effect on hydrogen. ' Increasing I' from
0. 005 to 0. 02 smears the n =3 levels into the con-
tinuum Rnd splits the s = 2 level linto t~o parts. The
two Stark-split branches of the e = 2 level corre-
spond to mixtures of 28 and 2P hydrogenic states for
smaH I'. In terms of the B„,F, the Nro branches
are given by

fkR20F00+ KgRagF(0 (10%er branch)
P(n= 2) =

W&RI,F00- K&R2,F,O (upper branch).

Again the cowes«nergy branch has been broadened
the most by the electric field which is due to the
fact that its wave function has a higher probability
on, the lip side of the vgell and thus a greater chance
to escape. Increasing I' froxn G. 02 to 0. 25 smears
the e = 2 levels into the continuum and broadens and
shifts the n =1 exciton level, . The n =1 level cor-
responds to the 1s hydrogenic state, which is given
by

FIG. 9. Electric field effect on e = 2 hydrogenic level
for I' =8/81=0. 010, 0, 016, and 0.025.

p(n = 1)=R,OF00.

This ground state of the exciton shows the quadrat-
ic Stark shift to love) er energies for E & 0. 5 and at
E = 0. 7 starts shifting back to higher energies due
to mixing vgith the continuum. For I' —1..0, no
bound exciton levels are distinguishable and the
electric field has completely ioi&ized the exciton. .

In Pigs. 8-10 the effect of a uniform electric
field on transitions to the first three bound exciton
levels is seen in more detai. l. Figure 8 omits the
n = 1 and n = 2 levels and shows the Stark splittings,
shif ts, and broadening of the n = 3 level for I' =

= 0. 0025 and 0. 0040. Again it j.s interesting to note
that the lower branch is shifted and broadened more
extensively than the higher tao branches of the n = 3
level. Figure 9 omits the e —1 level Rnd shows the
Stark spllttlngs shifts Rnd broadening of the 8 = 2
level for I' = 0. 010, 0. 016, and 0. 025. Figure 10
shows the Stark shift and broadening of the n, = 1
level for E=G. 10, 0. 32, and 1.0. These shifts
Rgree Quite ~ell 'tan'ith the ene1gles Rs CRlculRted
from perturbation theory as given by Eq. (60) for
I' &0, 5. But for E &0. 5, the perturbative result
differs from the actual result as the hydrogenic
set of wave functions cannot describe the continuum

IQe

IQ"—

IQs
IQ—

(0) F =,IQ
(V) F =.S2
(c) F = I.Q

IQ

I'-.ZQ -.I6 ".I2 -.Qe
(E - Eq)

I

-.Q4 Q

FIG. 8. Electric field effect on 5 = 3 h+drogenic level
for E= 8/gr=0. 0025 and 0.0040.

FIG. 3.0. Electric field effect on I= 3. hydrogenic lev ...1
for I' =~/BI=0. 10, 0.32, and 1.0.
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2 dS

I
~~E..(k)l

p E,„)= (66)

where S is a surface of constant interband energy
E,„(k). Equation (66) does not include the electron-
hole interaction or the electric field and is thereby
inadequate for our purposes, but it does demon-
strate which regions of k space are important in
terms of causing structure in the interband density
of states. In the immediate vicinity of a critical
point Ro in the Brillouin zone, the energy E(%) is a
quadratic function of the directional components of
k —ko, namely, bk„=(k k,):

E(k) =E(fc )
jtL g pp p, 3

(67)

spectrum resulting from the application of the elec-
tric field.

D. Continuum States

For F & ], p'(0) approaches the limit in which
the electric field completely dominates the Coulomb
field. In fact, for I' &10 there is very little differ-
ence between the Q (0) calculated including Coulomb
potential and Q (0) calculated excluding the Coulomb
potential. For electric fields I' &1, absorption by
the bound exciton states no longer dominates the
spectrum, and the continuum exciton states become
important. Since Eq. (31) for Q„(F) does not specify
whether the reduced mass p. of the electron-hole
pair be positive or negative, it is possible to use
Eq. (31) to calculate the electric field plus Coulomb
field effects near both Mo(positive p) and M, (negative
p) type critical points in the energy band structure.
Critical points in the energy band structure are
points in R space where the conduction and valence
bands are parallel. At a critical point V„-(E, E„)—
=0 which causes a singularity in the interband den-
sity of states which may be expressed as

In our case where both the Coulomb potential and

electric field are included, it was necessary to as-
sume an isotropic mass to make the problem so]u
ble. Thus we are limited to the case where p, „jLt,~,

and p, 3 are all equal and have the same sign. The
Mo (positive p) and M, (negative p) critical points
are referred to as being absorption edges; the Mo

edge is the fundamental edge at the band gap and
the M3 edge corresponds to transitions from the
bottom of the valence band to the top of the conduc-
tion band.

The use of parabolic coordinates gives a clear
picture of the origin of the electric-field-induced
oscillations in the continuum of Q (0), as demon-
strated in Fig. 11 for F = 8/Sz = 1. As shown in

Fig. 11, the total function P (0) is a sum over in-
dividual functions P&(0) where

y((0) = (&/&I)'"f '.((0)g', (o),

~', = x, + 2($/h, )"',
(69)

where these functions have been defined previously.
Each function Q;(0) contributes a bump in the spec-
tra with the total result being an induced oscillation
in the density of states. For high fields h/Sz» 1,
the bumps center on the P& defined in Eq. (56) and

(70)

where y; decreases slowly with increasing i. For
large P (E»E,) it may be demonstrated that Q (0)
=g~ P;(0) approaches the desired limit [(E—E~)/R j'~2

using the $&(0) as defined in Eq. (70). 0

Figure 12 shows Q (0) near an Mo-type edge for
E=1, 10, and 100. For E=1, a small exciton peak
below the edge is still in evidence. If a comparison
were made between the calculated values of the
amplitude of the oscillations in P'(0) above the edge

where the p, are defined as
)fc ]= VE ~~ +Sl I ~ ~ (68)

l2.5

where m, and m„are the effective masses for the
electron and hole along the & direction. There are
four types of critical points Mo My Ma and M3
zvhich may be defined as

Mo p gp p 2p p 3 all positive;

M, =- p. „p.2 positive, p, 3 negative;

M2= p. &, p. 2 negative, p,, positive;

M, -=p, „p„p,, all negative.

(0.0-

7Q-

$'(0)
5.0-

OP
-3 0 I

(E- E9)

The number of critical points for transitions be-
tween two bands depends on each individual band
structure, but the minimum number of critical
points is fixed by the number of nondegenerate high-
symmetry points in the Brillouin zone.

I'IG. 11. Contributions of individual amplitudes Q~(0)
for E = 8/$1 ——I. Each eigenvalue contributes one bump
to the continuum for h~ ~~1 and in the limit 8» 81, these
bumps are centered on (E—&z) - (g/gl) P;, where
P; = t(-', ~~--.')]"'.
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FIG. 12. Field dependence of optical absorption near
an Mo-type edge for E= 8jBI= 1.0, 10, 0, and 100.0.

The theoretical results contained within this pa-
per require several assumptions: (a) The excita-
tion spans several unit cells of the crystal; (b) the
conduction and valence bands are isotropic near the
band edge and have constant curvature; (c) the elec-
tric field is uniform; (d) the optical transitions are
direct (vertical in k space) and allowed; and (e) the
effective charges on the electron and hole are

with and without the electron-hole interaction lt
would be quite evident that the Coulomb potential
enhances the electric-field-induced oscillations
above the edge as well as causing absorption peaks
below the edge. Thus, even if the electric field is
strong enough to ionize the bound exciton levels,
the Coulomb potential still contributes through the
amplitude of the electric-field-induced oscillations
above the edge. For I' = 10 and 100, the oseilla-
tions spread out approximately as I' ~ and no peaks
below the edge are noticeable.

Figure 13 shows p'(0) near Rn Ms-type edge for
I' = 1, 10, and 100. Having a negative mass and an
attractive Coulomb potential is the same thing math-
ematicaQy as having a positive mass and a repul-
sive Coulomb potential. Thus we mould expect that
inclusion of the electron-hole interaction mould de-
cl'6Rse Q (0) 116R1' RI1 M3-type edge. Tllis ls to sRy
that if P (0) is the probability of an electron and

hole being at the same point in the crystal then in-
clusion of a repulsive electron-hole interaction
should reduce Q (0). This is exactly what happens.
The repulsive Coulomb potential not only reduces
the magnitude of Q (0) but it also reduces the am-

plitude of the electric-field-induced oscillations
near an M&-type edge. This is perhaps one reason
why M3'edges have not been observed in electrore-
flectance, i, e. , the optical density of states is ac-
tually changing so slowly near an M3-type edge that
electl'lc-field-induced changes al e lnsignlf leant.

rv. oIscUSSro~

screened by the static dielectric constant. All of
these assumptions allow the problem of the %annier
exciton in an electric field to be reduced to the prob-
lem of a hydrogenlike atom in a uniform electric
field. The Schrodinger equation for the hydrogenic
atom in a uniform electric field is separable in par-
abolic coordinates thereby allowing the equation to
be solved numerically. In parabolic coordinates,
the eigenvalues are an azimuthal quantum number
m, a separation constant v, and energy E. For fi-
nite electric fields, energy is a continuous eigen-
value and normalization to a Dirac 5 function instead
of a Kronecker 5 is required. A normalizati. on pro-
cedure for continuous eigenvalues is outlined in Sec„
IIIB showing that the coefficient of the oscillatory
asymptotic solution determines the proper normal-
ization for the energy eigenvalue.

The connection between physical parameters,
such as the absorption coefficient a or the imaginary
part of the dielectric constant e~, and the calculated
wave functions was demonstrated in Sec. II and the
first part of Sec. III. The absorption coefficient e
and the imaginary part of the dielectric constant ea
are related by

63 = (ne/Io)n,

where n is the index of refraction of the solid, c is
the speed of light in vacuum, and & =2wp, where p

is the frequency of the electromagnetic wave. By
Eq. (30) 116R1' the dil'ec't edge, ep is Rlso givell by

6&= 36
~
()1,.!«)~'0'(0), ('72)

where e is the static dielectric constant, p, ,„ is an
interband dipole matrix element defined by Eq.

20

I,O

oo-20 -l5 -IO -5
(E- E,)

FIG. 13. Field dependence of optical absorption near
an M3-type edge for I = g/g1=1. 0, 10.0, and 100.0, By
comparison of the Mo and M, edges, it is evident that the
electron-hole interaction enhances the electric-field-in-
duced oscillations near an Mo edge (positive effective
masses) and quenches these osciOations near an M3 edge
(negative 6ffective Inasses) .
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1 —exp —2m

SOP& E&. (VR)

Equation (V5a) exhibits the hydrogenic series with
absorptive strengths proportional to n and Eq.
(V5b) exhibits the continuum above the edge and has
the desired limiting form of Eq. (73). Both Eqs.
(V5a) and {75b) approach the limit of Q'(0) = 2v for
Nu =E~, below the edge as a quasicontinuum,

and as a continuum above the edge.
The solution to the hydrogenic Schrodinger equa-

tion for finite electric field is discussed in detail
in Secs. IIIA and IIIB. This solution requires sep-
aration in parabolic coordinates and normalization
for a continuous energy eigenvalue as discussed
previously. With appropriate definition of dimen-
sionless variables, the solution requires evaluating
two functions f„(x)for x &0 and g„.(x) for x & 0 where
x, x', and x are defined by Eqs. {39)and (40). The
solutions of the equation for f„(x)determine eigen-
values z&, i =1, 2, 3, 4, ... , which are continuous

(29), e is the electronic charge, a is the exciton ra-
dius, and /~(0) is a density-of-states function nor-
malized 'to approach

P'( 0) - [(h~ —E,)/It]'~', (hro —E,)»8 (73)

where E~ is the direct energy gap and Sf is the exci-
ton binding energy. From Eq. (V2) it ls evident
that the oscillator strength of the interband transi-
tion enters only as a prefactor to the density-of-
states function Q (0) along with the size of the exci-
tation. The exeiton radius a is given by Eq. (3) and
increases linearly with increasing dielectric con-
stant for constant effective mass. In most cases,
higher dielectric constants imply more mobile car-
riers and smaller effective masses, thus the radius
a should increase at a greater rate than linearly
with increasing dielectric constant which would
cause the exciton absorptive strength to be propor-
tional to c where b &1.

The density-of-states function P~(0) contains all
the excitonic structure and all electric field effects.
The wave function &f&„(r) is the solution to the hydro-
genic Schrodinger equation for the state n with en-
ergy E„and is related to &f& (0) by Eq. (26),

y'(0) =4~'s'p„
f y„(0)/'n[(Z, +8„-e~)/~], (74)

which for zero field h = 0 reduces to Eqs. (2V),

2( ) p ~ (h(o —E~+ Rn )
f3~ 1 8 J

Aa& & E, (V5a)

functions of energy. The expression for p'(0) in
terms of these parabolic coordinate eigenfunctions
f and g is, at every energy, given by

x,'=x, +2(h/8, ) ~'. (75b)

The amplitude f„,(0) is a slowly varying function
of energy, but falls off quickly for z& &0. The ze-
roes of the x, are dependent on the field 8 and are
given by x& (E,) = 0, where E, is approximated by

E, =E,+~($/8, )s'p„ (77a)

P, =[-', s(f--'. )]"', =~I, 2, 3, 4, .. . . (77b)

Thus for E &E, the amplitude f 2 (0) falls off rapidly.
Below the edge,

f„', {0)-(h/b,)-"[{E,—h )/~]'".
The excitonic peaks are contained in g„,(0) as dem-
onstrated in Secs. IIIB and IIIC.

The degree that a bound state is affected by the
electric field and the type of effect are dependent on
two factors: (a) the depth of the level in the well
and (b) the spaeial distribution of the wave function
in the well. The importance of the first factor is
obvious as it is simply a measure of the binding en-
ergy of the level; but the importance of the second
factor is not so obvious and is due to the asymmetry
of the electric field potential. For instance, since
the electric field lomers only one side of the Cou-
lombic well as shown in Fig. 1, an electron which
spends more time on the lip side has a greater prob-
ability of escaping. This is evident from the differ-
ent broadenings of the two split-off branches of the
n=2 hydrogenic level as shown in Fig. 9. The low-
er-energy branch is broadened more extensively by
the electric field because it has a higher probability
of being on the lip side of the mell. A second-order
effect of the electric field is to slightly widen the
well which causes the symmetric n = 1 hydrogenic
level to move domn in the well. As the electric field
increases, the lip of the well passes one bound level
after another until for 8 & 8, all bound levels are
mixed into a continuum as shown 1D Flg. 7.

For 8 & Sz, the exciton lines dominate the spectra,
but, for 8 & SI, the electric-field-induced oscilla-
tions in the continuum are of primary interest.
These oscillations have been calculated in the no
electron-hole interaction limit, ' but the effect of
the electron-hole interaction on these oscillations
has not been demonstrated before. There are two
cases treated in Sec. IIID: (a) for an Mo-type edge
(positive effective masses) and (b) for an M, -type
edge (negative effective masses). The unequivocal
result is that the electron-hole interaction enhances
the electric-field-induced oscillations near an Mo-
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type edge and quenches these oscillations near an
M, -type edge. This result may explain the fact that
M3-type edges have not been obsexved in electrore-
flectance.

In summary, this paper presents a comprehensive
study of electric field effects on optical absorption
by the hydrogenlike Wannier exciton. The field ef-
fects on both bound and continuum states are pre-
sented. The calculations and results have been sim-
pllf1ed by defining appropriate dimensionless param-
eters. A general normalization procedure for wave
functions with continuous eigenvalues is outlined.
The effect of the electron-hole interaction on the
electric-field-induced oscillations is demonstrated
for the fix st time. Some related problems that are
still outstanding are: (a) field effects on forbidden
transitions, as in Cu,O,""(b) inhomogeneous field
effects in excitonic electroabsorption, and (c) ex-
citonic electroabsorption near M, and M3 critical
points, where the masses not only are anisotropic,
but are eithex positive or negative depending on di-
rection. Excitonic electroabsorption will be pre-
sented RIll compared with experiment 1n a 8ubse-
queI t paper.

and calculate the integral in E(ls. (A3).

For x&0 the class1cal turning po1nts are x, =0,
xB=B, thus

(i -y)m =
( dx

(x -A)(a -x))'+

where B is the P function, Jl is a hypergeometric
function and Z~B/(B-A}. If we define a set of
functions

f, =(i ——,')vB-'(B -X)-v'

then these may be plotted versus

s'. =B(-;, —,')z(--,', —,'; 2; z)

(A5}

The solution of E(ls. (AS) for x& = 0 is given as

to achieve a graphical solution of E(I. (81) as shown
in Fig. 14(a).
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APPENDIX: WKB EIGENVALUES

The differential equation that determines the ei-
genvalues )(;,(P) is given by E(I. (43):

1d df —x——x—+ +p-x f=O, O&x. (Al)
X dX dX X

In the %KB approximation, it is possible to calcu-
late these eigenvalues by requiring that the change
in phase of the wave function between classical
turning points be given by

Thus the zeros of the g&
"~ occur at

p( = [-,' s(i ——,')]~' . (Av)

GRAPHIC SOLUTtav
FOR @KB EtGENVat UES ~.

,[P)
2.0—

For z & 0 the classical turning points are x, =A
and x~=B, thus

bc -A)(B —
x))

~'
(j -', )v= ~

dx
X

j"' dx(- x,/x + P —x)'~' = (i ——,
' )s, i = 1, 2„3,4, ...

Xl

(A2)

where x, and xa are the classical turning points.
As it turns out. these values z"," are very good
starting points for calculating the x, (P) numerically.
All of the x,""s were well within 1% of the actual
eigenvalues. Calculation of the %KB eigenvalues
may be divided into three parts; &&0, x=0, and
x& 0.

Let us define the parameters A and 8 as

I-
~.0

Z

(FOR
p= s)

I

0 Ya

Z = 8/(8-A)
ih

z = (8-w)i g

=CLASSlcAL TURN~pe
POINTS

W=-,'[p-(p'-4x)~'],
B=-,' [P +(P'-4x)"] (Asb}

FIG. 14. Graphical solution for WEB eigenvalues
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= (B A)'—B '"B(' —,')F-(-,', —,'; 8; Z), (A8) f, = (f - —,') vB' "(B-A)-', (AS)

where Z= (B A)-/B. If we again define a set of
functions f, as

then Eg. (A9) may be solved graphically by plotting

f, ver. sus F,=B( —,', —,')F(—,', —„8;Z) as shown in Fig.
14(b).
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