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Calculation of the Dielectric Function for a Degenerate Electron Gas with Interactions.
I. Static Limit*
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A new procedure for calculating the frequency- and wave-vector-dependent dielectric re-
sponse function is described. It is based on decoupling and solving the equations of motion
for the Green' s functions of the charge-density operators by a moment-conserving method
which is discussed. By use of this method an expression for the dielectric function in
the static limit (~ 0) is obtained; it depends on a function G(k), for which numerical values
are calculated and tabulated. Evidence that the procedure described here leads to reliable
values of G(k) for small, intermediate, and large values of k is presented.

I. INTRODUCTION

It has proved possible to relate many of the im-
portant properties of metals to a model in which
the ions are replaced by a uniform distribution of
positive charge and the conduction electrons are
treated as a Fermi gas (which for metals under
normal conditions is highly degenerate). Much
has been learned by ignoring the Coulomb inter-
actions between the electrons, but in recent years
efforts have been made to include these interactions
in the theory. Many such efforts have been focused
on calculating the frequency- and wave-vector-de-
pendent dielectric response (or screening) function
«(k, ~), because this function is the key to under-
standing many of the properties of metals —in-
cluding those related to transport phenomena.

It is well known that the expression for «(k, &u)

first given by I indhard, ' which can be obtained by
making the random-phase approximation' (RPA),
leads to some unphysical features of the pair dis-
tribution function in the range of metallic densities
(2 ~r,~ 5). In a classic paper~ Hubbard proposed
to replace the I indhard expression

1 —1/«(k, ~) = Qo(k, v)/[I+ Qo(k, e)] (l. 1)

by the more general (and hopefully more accurate)
expression

Qo(k, ~)
«(k, (g) 1+[1—G(k)J Qo(%, (o)

with

q, (k, (o) = 4X'Eo(k, (o)/k',

X'= (ma, k~) '= o.~,/w;

n = (4/9w)'", E,(k, (o)

is the polarizability of the free-electron gas. The
function G(k) appearing in (1.2) takes into account
exchange and correlation effects; Hubbard pro-
posed for it the form

G(k) = —.'[~'/(u'+ n,')],
with y~ the Fermi momentum. Many other forms
of G(k) have since been proposed (for a review see
Geldart and Vosko' and Shawe), but we shall refer
particularly to one suggested by Singwi, Tosi,
Land, and Sjolander' ' (STLS). STLS arrived at
an expression formally equivalent to (l. 2) by an
equation-of-motion method which relates G(k),
S(k) (the static form factor), and «(k, &o) self-con-
sistently.

In a recent paper Shaw has emphasized that cal-
culations of metallic properties depend strongly
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on the form of G(R); in addition, using the STLS
results he has derived two important relations
directly connecting G(k) with g(r), the pair-dis-
tribution function. One key result of his paper is
the relation'0 G(~) = 1-g(0) which necessarily im-
plies for the asymptotic value G(~) of G(k):

2 &: G(e))( 1,. (1.5)

The G(k) determined by the self-consistent pro-
cedures of STLS depends on x,. As calculated in
Ref. 7 (STLS I), it satisfies the condition (1.5) for
r, & 5; as calculated in Ref. 9 (STLS III) —where
the procedure of STLS I is modified and the re-
sulting G(k) is in better accord with the compres-
sibility sum rule —it satisfies the condition (l. 5)
for a smaller range of values.

In the present paper, starting from "first prin-
ciples", we derive a general expression for &(k, &o)

which turns out to be closely related to but more
general than (l. 2). In the static limit a& = 0, our
expression is also a functional of G(k), and we

obtain for G(k) an expression containing no ad-
justable parameters which in addition to having an
asymptotic limit satisfying the condition (l. 5) also
satisfies the compressibility sum rule. " As will

be seen our calculation is based on a straightfor-
ward method for decoupling and solving the equa-
tions of motion for the time-transformed Green's
functions suggested by recent work of Tahir-Kehli
and Jarret. This method possesses the special
virtue that it conserves the frequency moments of
all the spectral functions involved.

g, = t~(t - t')&[tt(t), (t')]),
p-„(t) =Q a;, (t)al, ;, ,(t),

(2. 2)

with a and a Fermi creation and annihilation op-
erators in the Heisenberg representation and
v„.= 4ve~/k~ We m. ay write Eq. (2. 1) as

II; GENERAL THEORY

It is well known' that the theory of linear dis-
sipative processes yields for the dielectric re-
sponse function

1 —I/e(k, ~) = v;&&pg(t); p„-'(O))) '„=v-„b (k, ~), (2. 1)

where, as in Ref. 13, the symbol «C(t);$(t')&)x't„
stands for the Fourier transform with respect to
time of the double-time-retarded Green's function,

(2. 3)

with E;„..."2,2(k, &o) the Fourier transform with re-
spect to time of

z;...,;...(,t) = «al...(t)a„-,;, .(t); f';„„(0);...(0)»" .
(2. 4)

By differentiating Eq. (2. 4) with respect to time
we obtain

—(([H, a;. ..(t)a.„,"...,(t)]; a„.~, (0)a", , (0)))

(2. 5)

where H is the usual Hamiltonian

kpH=~
2

g g m

= —5(t)&[a;.,..(t)W~. ..(t), af~g .,(o)a;...(o)l&
1+ Q ,vl.,at,.+..—a;p;a.;,;as,~=Ho+% .

k'80; s, t,e,o'

(2. 5)

For a completely degenerate gas it is easily shown that

d
'4'i '12'a' '

= 5(t)(~~, —n;, )5, , 5;; + ur(q &, k) E;, ;, (t) + Q v„"&&(a",,,„(t)a„"„"„(t)a;,,(t)a;,,|„f...„(t)
s y klieg e~

-a; f... (t)a„".,;, (t)a"... (t)a", ,"„,(t)); ay~~, (0)a;, (0)))' (2. 7)
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«())$9(&&j/«0)(g(0&j (2. 11)

(o(q,k) = (ii /2&n)[(q+k) —q ]
and n~ is the Fermi distribution function, which
fox' a degenerate gas is a step function. Taking
the Fourier transform of both sides of Eq. (2. 7)
and assuming that the lntex'action 18 switched oD

slowly (adiabatic assumption) leads to

[(d (d(q)i k)+ N]Eg )in., tn

(»= (nI~, ,) —ng), ))8,1 n 6;, g
'+ ~ E

81~ Igk' vfyygagelslya P

(2. 8)
with E"' given by the Fouriex transform of the
second term in the right-hand side of Eq. (2. '7).
It is to be noted that if we decouple Eq. (2. 8) by
putting k= -%' and then pairing off the equal mo-
mentum operators by setting (a~,a~ g = ni, , we
obtain

[Q) co(q) q k)+ $5]En, n;T& n &&f(nf~), n) nn), n))
I

=!n- - n-)') )'3 1'3

(2. 8)

which leads directly to the RPA result. Thus lt
is reasonable to expect that use of a less crude
method for decoupling wiQ yield better results
than can be obtained with RPA.

Tahir-Kehli and Jarrett proposed that one de-
coupie by expressing g (E)q tile Fourler time
transform of a hlghex'-order Green's function as a
sum of the lowex' ordex' ones with appropriately
chosen coefficients.

9(n)(@) ~ 9(n-&&(@)

+~ 9'n"&(Z)+ ~ ~ +~ g«)(Z). (2. 10)

We determine the A coefficients by requiring con-
sexvation of the fix st n-frequency moments ~("' of
the spectral function associated with 9'"'. [As ap-
plied ln the px'esent context, this px'ocedul6 differs
significantly from any considered in Ref. 12; com-
ments as to its motivation and justification will be
found after Eqs. (2. 12) and (2. 14).] That is, if
we restrict oux'selves to calculating 8»", we will
have

g(j.) ~ q(0&

AO= J J (M)(ddQJ/J J (hl)Q)de

(d (gj= f J(«)(0 40

llm g 8 t p z t n

We note that this method will be very good for large
v, and not worse than other decoupling methods for
small (d. '4 Before applying this method to our prob-
lem, we modify slightly Eq. (2. 8). As we are
primarily interested in™-4"):&2~'2(k, (o),

&l~~l~&a~~a

we sum both sides of Eq. (2. 8) over q~ and o~
to obtain

[« -«(q), k)+ i5]8'g „,(k, «)

(t)=(nf~ „-n;, „)+Kg, (k, «),

F(» — Y'. y(12
g1 &eg ~ Ivk~&/~ay~ &gaea

gavSyk boa

Now, observing that the RPA decoupling expx'esses
&~ ', as a, linear combination of all the F'8, i. e. ,

8:g',,&,,(k, &o) =Ay, „,Q P„-„(k,«),
f5y 0

(2. 14)

we try to express our g' ' in the same way (2. 14)
with At„,, to be determined by Eq. (2. 11) via Eq.
(2. Ig). Determining the set of A, , in this way is
equivalent to requiring conservation of the integral
ove1 all fx'equeDcles of the spectx'al deDslty asso-
ciated with 8 '. As is shown below, this procedure
results in a G(k) with many features which corre-
spond to the requirements of physics. However,
at px'esent lt ls diff lcult to px'ovlde an 8 ptvow' Jus-
tification for the conservation requix'ement based
on anything other than its heuristic value. It should
be noted that, as is clear from Eq. (2. 14), our

with J'0)(«) and J'"(td) spectral functions corre-
sponding, respectively, top(0' and g"', and ~' '

{9' 'j and «o&(9'0&j first-frequency moments ofJ"&(«) and J'0&(&o). It should be noted that in order
to calculate «"&(9"&j and «"&/9'0&j it is not neces-
sary to know explicitly P &(«) and J'0&(«), as, if
we have the Green's function

9 =&«(f);(f')»,
with spectral function J(&u), then



F„",,= g(k, (o),
f»t» 0

we substitute Eq. {2.14) into Eq. {2.13) to obtain

{n»~„„-nt„„)+A(t„,g(k, (o)

(o —(o(qg~ R}+N
(2. 15)

" ~X»ty1

8(k, (o)= Zt, e~ (o —(o( q g q %) + N

decoupling procedure differs from those discussed
in Ref. 12 in that @re relate one q, 0 component of
5' ' to the Sgm of RQ the components of p rather
than to one only.

Noting that

thus obtained back into (2. 1) we arrive at the final
x'6suit

a,e(o-(o(q, k)+N (t,e (o-(o(q, k)+N

(2. 1V)

which is formally equivalent to Eq. (2. 1), as will
be shown more explicitly in Sec. GL

III. DERIVATION OF A~,,
According to Gux' definition Gf Ag& ~& Rnd to the

previously estaMished notations, it follows that

{3.1)

Solving for 9{k, (o) and substituting the expression

(o"'(5'p'g= -lim Q vf, ([[e,{ag „(t)a~i;», (t)«, (t)«,f,e. , (t)

(3.2)

(o"'( Q St„j= -lim Q (([H,«.,..(t)a„,»„„(t)j, (((~~...(o)«...(0)j) .
4' (~

tres�

"tea
(3.3)

One finds after a lengthy calculation and after having discarded the terms in (3.2) coming from H& (see
Appendix A),

&; „=-eg(nlrb„-ng„, )+Qqp(o{q(, k)(nt, ,„-„,-nt„,)(nt,.";...-nl, ,f f...)/Q ((qo%»)(n gf,„,-n „g)
3»~8

+pet, ~,(o(q», k){nf,t ...-ng „)(ng,,-„,, -n(t „)/ Q (o(q„)(s»g, „-n». ..)
43 3» 3

It shouM be noted Rt this point that the first tel IQ

on the right-hand side of Eq. (3.4) is the only one
retained in the RPA. It is easy to see that the re-
maining bvo terms take account of px'ocesses in-
volving exchange; This is clear from the appear-
ance of ~ ~ in the third term, and also in the

3
second terxG if it is first transformed by a chRng'6

f

of the summation index fs' to q &
—qz. Now in order

to exhibit the fox mRl eqUivalence l3et%6en Eqs.
(2. 1V) and (1.2) we write the term

8101A

t~, e( (o —(o( q(, k)+ N

in the denominator of Eq. {2.1V) as

r
A %&,e W, e)

(~ kq .5 1 Z Z 'U(( $ [(o(qgk) (o(q»p%)j(8$ pf e sf e )(nt e s(tgf( e)

1Q (o(qa, k)(n»~. ,..-nl...)[(o-(o(q„k)+Njj ' Q, ,' -„' . , =q, (k, (o) 1- -' —,(3.5)
~3~3
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where wehaveusedthechangek'-q, -q2in(3. 4), and

qo(kp ~) &s the +indhard polarization functj, on~ while

Po(k, ~) includes exchange and correlation effects
omitted in qo(k, ur). It is now easy to recogmze
that %'1th

G{k, (o) = Po(k, (o)/q, (k, (0), (3. 6)

Eq. (2. 1V) becomes

1 qo(k, (g)

«(k, ~) 1+ qo(k, u))[1 —G(k, &o)]

which shows that in our case 6 depends explicitly
also on w, and hence is a generalization of the cor-
responding function appearing in Eq. (1.2).

IV. STATIC CASE

In this paper we carx'y out explicit calculations
for the static ease, that is we specialize the genex'al
Eq. (3.V) to

q, (k, o)

«(k, o) 1+ [1 —G{k, o)]q,(k, o)
'

Noting that for a completely degenerate gas one
obtains

Ak ky

~a&~3

and setting M= 0, %'e may write

Po(k, o)= —,, ~ Q u«g 1—2m(3v') (o( q „k)
& «, .Ca &(qs~

)& (n«, g -n; ){ng.«, -n«, )

And writing

(n«„g —n;, )(n„-,g - n; )

= 8({qi+ k) 8){qi) 8((&+q, )8){qa)

—8)(q )+k)8&(qg)8&(q, + k)8)(qa)

-8((q, +R)8)(q, )8)(q, +k)8((q, )

+8,(q, +k)8,{q,)8,(q, +k)8,(q,), (4. 4)

8 (P) lq P&ky
0, I' &k&

8,(P) =1-8, (P),

% e see ttlat fox' cax'x'ying out the suxnxnation a tecil-
nique similar to that used by Geldart and Taylor'
is useful: That is, first of all we change q into
—q —k whenever we have 8&(q+ R); so doing one
obtains

( )
4 ~ 4ve3nnz g 1 2qak+k

a'u'n'
Cg gC3'- 2q 2+0'

2q3 %+Pa
~ ql q2 ~ 2ql, '~+~ Iqg+q 3+k I

&& 8&(q, )8&(q,)8&{q,+k)8)(q, +k) . (4. 5)

obtaining

P(k, o)=- »,48gsme' q ~ k
@ ~~f gg qy' tq —q l

g+ga~ k 1 g
ql'k I@+qaI

~ 8,(q, - k)8,(q, + k)8,(q, +-,'k) . (4. 6)

And finally we symmetrize the sum in (4. 6) with
respect to q& and qz and divide by 2, obtaining the
form

(q -q ).k] [(q +q ).k] 8(q ——'k)8(q --.'k)8(q + —'R)8 {q + —'k)
p, (a, o)= . .. Q, +

5 k k& qua tqq —. qat l qj+qaI (q, k)(qp ~ k)

This expression is now conveniently wx'itten in order to change the sums into integrals; then we express
the momenta in units of k& so as to have

P,(u, O) = ,'(n&;/v')(S-+ P'), — (4. 8)

ql+qa k 8& ql —~k 8& qZ ——'
8& ql+ W 8& q2+ —'

The Coulomb singularity in Eq. (4. 9) is explicitly
cancelled by the numerator, and the resulting in-

tegral is smooth. The limits of integration implied
by the product of 8's may be included in x» xa,
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the cosines of the angles between q j, q2, and k,
and in q&, q2 so that the integration over dy& and
dq&2 may be carried out analytically to give '

(ql q2) + 4qlq2[qiq2( i ~ 2) ~ xlxR(q1 q2) ]

(4. 11)
The factor

with

d(pp ~ z

(4. 10)

8 &( g i —2k) 8&( g a —pk) 8)( C i + kk) 8)( &k 2+ gk)

defines two different k regions for the domain of
integration. Replacing x& or x& by x and q~ or qa

by q we have

0&x&1
k&2,

--',ax+[i+-,'a'(x'-&&&'"-q--'. &x+jl —,'RP&x'-&&&'"
$

(4. 12)
4 )rgb

&x&1
k )

—,'kx —[1+—,'k (x —1)]' & q & —,'kx+ [1+~k (x —1)]"
k&2.

With rescaling of the variables as in Ref. 15 it,'

is easily seen that the two integrals are reduced
to

2

Eo(k, 0) =
2

+
2 (1 ——,'k ) ln

~

k is in units of k„as usual.

V, COMPRESSIBILITY

(4. 16)

with
I

q =+ kx(s —g+ [1+—,'k'(x'- 1)]'~

(4. 18)

for k &2

One of the most important and distinctive results
of this calculation concerns the limit of G(k)/k
for small k. From the compressibility sum rule, '

limk'e(k, 0)=4k'(C/Co) as k-0,

1

F'= z 1 — 1 -~ dy& dy~ dsq

where c and co are respectively the compressibility
of the interacting gas and of the free-electron gas.

X ds2 4 1+41k2 1-1 1/21+41k2 x2-1 1/2

with

x q1q2(+xi+ q2 2)

x,x,[R'...(x„x,)]'" (4. 14) 0.8

co 0.6
C

x=y 1-~ + 1-~ 0.4

and

q= 2kx+ (s —1)[1+—,'km(x —1]' ~ for k ~2.
0.2

We recall that

( )
8nr, (E+E')
8 w Qo(k, 0)

the explicit form of Qo(k, 0) is

QO(k, 0) =, ' Eo(k, 0),
where

(4. 15)
FIG. 1. Ratio of free electron to interacting electron

compressibilities Co/C, versus r, . Curves 1, 2, and 3
are, respectively, the results of RPA, Hubbard (same
as STLS ), and improved STLS. '9 Curve 5 shows the re-
sults of the present paper; curve 4 gives the values ob-
tained by differentiation of the energy.
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TABLE I. Values of G{k). VI. RESULTS AND REMARKS

0. 1
0.2

0.3
0 4
0. 5
0. 6
0.7
0. 8
0. 9
l. 0
1.1
1.2

l. 3
1.4
l. 5
l. 6
1.7
1.8
l. 9
1.95
2.
2. 1
2.2

G(k)

0. 002 51
0. 01001
0. 022 57
0. 04021
0. 062 96
0. 09081
0. 12374
0. 16171
0.204 61
0.252 31
0.304 60
0.361 17
0.42162
0.48534
0. 551 47
0. 618 71
0.68493
0.74631
0.79435
0. 806 67
0.78999
0. 74824
0. 73439

Equation (5. 1) implies

Co/C=1-4yX,

where

2. 3
2. 4
2. 5
2. 6
2. 7
2. 8
2. 9
3.0
3.1
3.2

3.3
3.4
3. 5
3.6
3.7
3.8
3.9
4. 0
5. 0
6. 0
7. 0

8. 0
2 x 10'

G(k)

0. 727 56
0.72416
0, 72275
0. 722 54
0. 723 09
0. 724 18
0. 725 58
0. 727 10
0. 728 73
0.73037
0.731 99
0.733 55
0.735 03
0.736 44
0. 737 76
0. 739 00
0.740 16
0. 74124
0. 748 86
0.753 00
0.75547
0. 75705
0. 762 13

(5.2)

Integrals (4. 13) and (4. 15) were evaluated nu-
merically; the results obtained for

G(k, 0) = Po(k, 0)/Qo(k, 0) (6. 1)

are given in Table I. This table gives for the as-
ymptotic value of G(k, 0) about 0. 762:

limG(k, 0) = 0. 762 as k - ~, (6 2)

which agrees with (1.5), confirming that the
method used here takes into account not only sta-
tisical effects, but also some of the effects of the
Coulomb repulsion between the electrons.

In Fig. 2 we compare the values of the quantity
G(k)/k obtained in this paper with the correspond-
ing results of STLS. ~ This quantity plays the role
of an effective electron-electron interaction; Geld-
art and Taylor" have argued that it does not de-
crease monotonically but instead must possess a
peak for k & 2 if one assumes that Eq. (l. 2) is cor-
rect. As Fig. 2 shows, our treatment does indeed
predict such a peak in significant contrast to STLS
and Hubbard. In summary, there is evidence that
our theoretical expression for G(k), Eq. (4. 15),
and the values computed from it, Table I, are re-
liable for small and large values of k and correct
in exhibiting a peak for values of k less than 2.

The natural extension of these calculations is
the evaluation of G(k, &u), that is the calculation of
the quantity given in Eq. (3. 5) for nonvanishing &e,

y= lim[G(k)/k ] as k- 0. (5. 3)

In our case, as is shown in Appendix B, we obtain

1
Y 4 ~ (5.4)

This value gives compressibilities in close agree-
ment with those tabulated by Rice. According to
Hedin and Lundqvist' in fact, z=~ is obtained from
an exact calculation of the compressibility. On the
other hand both STLS and Hubbard failed to obtain
this result, and in order to calculate the compres-
sibility they had to use the thermodynamic defini-
tion of C/Co. The improved G(k) of STLS' leads
to better results as indicated in Fig. 1.

In Fig. 1 values of the compressibility obtained
from various calculations of e(k, 0) via Eq. (5. 1)
are compared with values obtained from the sec-
ond derivative of the energy, which are usually
regarded as the most reliable because of the good
agreement in the results obtained by several au-
thors using different approximations. It is clear
that of the compressibilities derived using the sum
rule (5. 1), ours agree best with the energy-derived
compressibilities. The fact that our calculation
leads directly to the value y = 4 suggests that at
least for small k it takes account of exchange ef-
fects as well as do other treatments devoted ex-
plicitly to their evaluation.

0.55

0.30

0.25

0 20
j(2

0. I5

0. I 0

0.05

0

k (in units of Q)

I

6 7

FIG. 2. G(k)/k versus k/kz. Curve 1 is the results
of the present paper; curve 2 the STLS results. Note
the different behavior for k & 2.
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which can be used in a calculation of the pair cor-
relation function g(r).

The good features of G(k, 0) presented in this
paper raise the hope that calculations of G{K,~)
and of g(r) based on the same principles will elim-
inate the unphysical features of previous calcula-
tions, as discussed in the Introduction.

H= H0+ H1

ag, (t )af..N, (t)a;, (t)ag „-„,1., {t)

-a,' -„., (t)af.,-. (t)a, , (t)a, ,„-, (t) =a(t), (Al)
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APPENDIX A: DETERMINATION OF A~,

In E(l. (3.2) we write

as -...(o)a;,. (0) = 6«(0).

After having carried out all the commutations in-
volved, and using the usual approximations of the
type

(a«asasas) (a«=a4) (asas) —(a«as) (asa4)

and the equivalent for the average of a product of
six operators, one finds

Z vs([[&(t), &s], d«(0)]) =& (ns-, . -na, .)k&v;~As k)(na, :.-'", -nC, .,)5-.,',5.,;w 0 2e2~N1k 2s~2

+ vga(q„k)(ng, ,s,, -ns„,)+~,g,(o(j„k)(ng, „-ng,.-„,,)5...$
and

lim Q vs, ([[e(t),e,]d«(0)]) =2+ (nf~ ng )f-Z vs&. (ns..m-ng)'
t~0 $2«y2 s gk

(A4)

+g vf. v, [(ns,.„- -„, I-n;, ;)n;,,„- „-.+n;,,g(n;, ,f S n;, ,„"-«)
t,R"

- ne, .s~ «(I -n;,:.-«) - ng,:-«(I -n;, -«)1]5;,',
-g (v;'~ [n;& ~ (1 —n;) + n;(1 —n;~ & )]]+ 2Q vt vs ~ [nq „".(1 —ns .„-.) + nq, -„~ (I —n~ .-„-,.)

1 2 1 2 2 1 Ps 1 2 2 2'" 2'

+ nS (ng +j )«I n«+gr) + n)«+f(n) +)«t nq +f ss)]1 2 1 1 2 1

+P vsivg g .„"((ns —n~,.„"„.)n~,-„. —n;,"„;„.(ng "„.—n~,.„)-nt (1 —n; s.) —ng, "„(1— ;n, , f)]t1 2 1 1 2 2 1 1 1 1 1 1

+pl.„.g;;((; —n; „-.-n;,„..+n; „.)( -n; „.. —n;.;;.)]).1 1 1 1 2 2
(A5)

Similarly for E(l. (3.3)

lim Q ([[ "« .,{ )as "„,, (t), &], a" ",„,(0)a;, „(0)])= —Q ~(q s, k)(n;,.s...-n;s, s) ~

t 0 e1&~i&~2, fy2 q2, tJ2

In arriving at the result (3.4) we have discarded the entire term (A5) involving H«. This amounts to ne-
glecting the Coulomb interaction in higher order; however, it is included in some order in E&", .s, (k, (d).1t 1 ~ 2s

APPENDIX 8:
CALCULATION OF 11~G(a)/k' as u-0

E(luations (4. 15), (4. 10), and (4. 9) lead to

G()) «( ( s- ds- ((si+s.) )I', ((si-%a) ) I')
~2 =8 Z ~r d q1 d Q2 2 +

q, + q2l lq1-q2a
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&,(q, —$)e,(q, —f)e,(q, f)e,(, g) 71 1, 4

(q, k)(qa. k)
(B1)

in the limit k-0 the denominator goes to 4, so that using (4. 10) we may write
1 2 2G(k) 3 1 (N»+ qaxa) (qp'i —qaxa) Rqa

ka 3 p q1 qa x1 xa [R+ ( )]1/a [R- ( )]1/a
Qg(f2 1 2 qyqp 1 2

where the limit of integration for q, and q, are specified by the second relation of (4. 12)

——,'kx+ [1+~k (x —1)]' & q & akx+ [1+—,'ka(xa-1)]'/a .
As k 0 we may neglect the second-order terms in k in the limits of integration and write

1 ——,'kx& 9&1+-,'kx.
Using now the mean value theorem and the fact that we are taking the limit we may write

(»)

(83)

1+y
lim f(q)dq=kxf(1) as k 0; (84)

when applied in (») we obtain

G(k) 3 1
lim k, -Sx2 dx& "xa(l«+xal+ Ix& x I))pk 8 2 0 0

as [R, ,(x„x,)]'"= 2[(x, ~ x,)']'" .

A straightforward integration of (B5) leads directly to

limG(k)//k = 4 .
n-0
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