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The following two equations are proposed for the temperature dependence of the elastic
stiffness constants: c~& = c;& —s/(e'~ —1) and c~&=a —bT /(T+c), where c;&, s, t, a, b, and
c are constants. The applicability of these two equations and that of Wachtman's equation is
examined for 57 elastic constants of 22 substances. The first equation has a theoretical justi-
fication and gives thebestover-allresults. Neither of the three equations give the theoret-
ically expected T4 dependence at low temperatures, and therefore they are not expected to give
very accurate results at very low temperatures (~ e&/50). A new melting criterion is also
examined.

I. INTRODUCTION

The theory of the temperature dependence of the
elastic constants was first developed by Born and
co-workers. ' In this theory, the temperature de-
pendence of the elastic constants arises from the
variation of the lattice potential energy due to an-
harmonicity. In the limiting cases, the theory'
shows that the lattice contribution to c,&(T) — &(c0)

should vary as T at very low temperatures and as
T at high temperatures. Here c,z represents an
elastic stiffness constant.

During the last two decades the variation of the
elastic constants with temperature has been mea-
sured for a large number of substances. Qn the
experimental side, in Fig. 1, we show a typical set
of data. The general pattern conforms to theoreti-
cal expectation. However, the T dependence at
low temperatures has not yet been unambiguously
established; the scanty evidence which is available

appears to indicate that its range of validity is
rather small. Further, some metallic substances
have been found to show a T ~ dependence at low
temperatures. Bernstein has shown that such a
dependence can arise from the temperature depen-
dence of the electron energy due to the Fermi-Dirac
distribution of electrons.

We may note here that there are many substances
whose one or more elastic stiffness constants do not
show the type of behavior shown in Fig. I (e. g. ,
see figures in Hearmon ). In the present paper we
shall not consider such elastic constants, but con-
fine ourselves to those that show the regular be-
havior typified in Fig. l.

Attempts have been made to represent the tem-
perature dependence of elastic constants by empiri-
cal equations. We quote here three of these.

Sutton was able to represent the variation of c44
of aluminum over the range 63-773 'K with an ac-
curacy better than —,'% by the following equation:
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FIG. 2. Experimental and calculated @44 for iridium.
The curve shown was obtained from Eq. (4); the experi-
mental points are from MacFarlane et al. (Bef. d,
Table I).

FIG. 1. Experimental and calculated adiabatic elastic
stiffness constants of copper. The curves shown were
obtained from Eq. (4). Smoothed experimental data
points are from Overton and Gaffney (Hef. 9).

c„=A.e ~'~R '

where P is the volume expansion coefficient and R
is the ratio of volume at temperature T to that at
some fixed temperature.

Overton and Gaffney found that a similar relation

c44/C44(0'K) =e /(1+ f,
' ndT)', (2)

where e is the linear expansion coefficient, repre-
sents c«of copper within 0. 2% from 0 to 300 'K.

%achtman et al. ' suggested the following equa-
tion for Young's modulus:

cll=s —hT /(T+c).

Here c&&, s, t, a, 5, and c a,re constants. c,&
and

a represent the values of the elastic constant at O'K
according to the two equations. A theoretical jus-
tification for Eq. (4) is offered in the discussion.

II. RESULTS

In order to examine the applicability of these
equations, adiabatic elastic-constant data of 22 sub-
stances of different types were chosen. To obtain
the parameters, the following procedure was adopted
which we illustrate with Eq. (4). t was given a

E =Z, -BTexp(- To/T). (3)

The equation was shown to give very good results
for A1203, MgO, and Th02 over the temperature
range 77-850 K. Later thxs equation was shown
to hold very well" for Th03 over a temperature
range of 1300'K. Anderson' has attempted to give
a theoretical justification to Wachtman's equation.
In the present paper we would apply Eq. (3) to elas-
tic stiffness constants and in this context Z would

represent an elastic stiffness constant.
Some workers' ' have employed polynomials in

T.
The purpose of the present paper is to suggest

two equations for the variation of elastic stiffness
constants with temperature and to examine their ap-
plicability and that of Wachtman's equation (3) to 22

substances. The proposed equations are

C Iy = C Il —S/{8 —1)0 t/T
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TABLE Il. Values of parameters in Eq. {5'). A

greater number of significant figures has been retained
than is warranted by the accuracy of the data to ensure
that the calculated values from these parameters give
the least average percentage difference fxom the experi-
mental ones ~

Magnesium

Silicon
Tantalum
Thorium
Tungsten
MgAg

Elastic
Constant

Cf2

13

f- 12

&j2

Cgp

f:44

f:j2

O0" dyn/cm )

2, 59368
2, 17012
8.01237

26. 67058
4. 81182

53.325 08
8. 66842
5. 81932

12.524 93
7. 19096
4. 23349
4.47847
1.15831

(10 dyn/em deg )

0.362 614
0.276 100
0, 643 163
6.490 597

—0. 881 567
10.698 119
2, 539 548
2. 083 236
3.248429
1.789 699
1.319261
5.491108
7.974149

series of values at large intervals; for each of these
values, e&J and s were obtained by the method of
least squares. Using these parameters, average
yercentage diffexences between observed and cal-
culated c;&'s were obtained. It was anticipated and

found that the average percentage difference showed
a minimum for a certain value of t. This minimum
was located more accurately by varying f, in smaller
steps. Similar procedures were used for E(ls. (3)
Rnd (5). In E(I. (5), 1t WRS found ln sevel'Rl cRses
that the average percentage differences did not show
a minimum but rather tended to an asymptotic val-
ue. In these cases, the following asymptotic form
of E(I. (5) was adopted:

e]~=a-b T . (5

a and 5 were calculated by the method of least
squares. The parameters thus obtained for Eqs.
(4), (5), and (3) are listed in Table I, and those
for E(I. (5 ) in Table II. The temperature range
for most of the substances listed in TaMe I is 0-300
'K except Mo (V3-QV3'K), Si (V8-300'K), Th
(80-340 'K), MgAg (80-500 'K), MgCu2 (80-500 'K),
and benzene (IVO-QV3 'K). The sources for the
experimental data are given in TaMe I, In some
papers the workers have tabulated the actual ex-
perimental values, while in many others smoothened
data have been recorded. In three cases (Ir, Si,
and Bal'"2), the experimental data were given in

graphs only. In Figs. 1-4 we compare the calcu-
lated values by E(I. (4) with the observed ones for
foul typlcRl cRses.

III. DISCUSSION

A theoretical justification of Etl. (4) can be given
Rs follows. Leibfl ied Rnd Ludwig have shown that
the tempexature dependence of adiabatic elastic

c(1= co (I —De)~

where D is a parametex which depends on the type
of the crystal or model used and 7 is the mean en-
ergy per oscillator. If we assume an Einstein mod-
el for the solid,

Ap
~ @~+ hv/02 (V)

Substitution of (6) and (V) yields E(I. (4). But beyond
this, of course, we depart from theory in that we
leave the pax'ameters free and determine them from
the experimental data.

It may be noted here that E(I. (6) gives only the
lattice contribution to the temperature dependence,
while E(I. (4) represents the total temperature de-
yendence, i. e. , it includes the electronic contribu-
tion. Consequently, a close correspondence be-
tween the parameter t and the Einstein frequency v

is not expected.
At low temperatures, the temperature-dependent

p»«f E(I. (4) behaves like e ""I"rrather than T'.
This, however, is not very important, at least for
px'actical purposes. The range of validity of T law
for specific heats is usually considered to be uy to
-en/50 (Blackman '); it would be reasonable to as-
sume that this would also be the limit for the T law
for the elastic constants. The change in the elastic
constants between 0 and - 6 K is extremely small,
and at least fox' many practical puxposes, the pre-
cise t~~perature d~p~~d~~~~ does not affect the
magnitude of the elastic constant one way or the
other. In Rddltlon, fol' metallic substRnces thex'e
is the T~ dependence of the electronic contribution.
It is not clear which term (lattice or electronic)
would be the dominant one at such low temperatuxes.

4l

'Rl

Temperature (oK)

FIG. 4. Experimental and calculated e&& and c&2 of
lithium bromide. The curves shown were obtained froIn
Eq. (4); the experimental points are from Marshall and
Cleavelin (H,ef. o, Table 0.
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FIG. 5. Tz, the temperature at which c44=0. 55c44
(0'K), plotted versus the melting point T~.

The justification of Eq. (5), at least for metals,
lies in the fact that at low temperatures, the sec-
ond term varies as T, which would be the case
theoretically if the electronic term were dominant,
and at high temperatures it varies as T, which is
in agreement with theory and experiment.

Next we turn our attention to consider the degree
of success achieved by the three equations in rep-
resenting the experimental data. It will be noticed
in Figs. 1-4 that Eq. (4) gives very good agreement
with the experimental values.

The performance of the three equations can be
conveniently discussed in terms of "average per-
centage differences. " It will be convenient to ex-
plain this quantity by an example. For the elastic
constant c» of aluminum, we have 16 data in the
temperature range 0-300 'K. By "average percent-
age difference" we mean the average of the absolute
values of the percentage differences between the
experimental and the calculated values at these 16
temperatures. As a typical case, we give here a
summary of the results obtained from Eq. (4). The
average percentage differences for various cate-
gories are approximately as follows: elements,
-0. 04%%up, intermetallic compounds, -0. 2%%uq, ionic
compounds, -0. 1'%%uo, and benzene, -0 3%%uo. These
may be compared with the absolute accuracy of the
experimental values, which is usually of the order
of 1%%. We may note here that the relative varia-
tions (with the temperature) of the elastic constants

are measured to a greater accuracy than the ab-
solute values, but no estimates of relative accuracy
are available. Among the three equations, Eq.
(4) gives the least percentage differences in 30
cases; Eqs. (5) and (5 ) together, in 13 cases;
and Eq. (3), in 8 cases. However, we may note that
the differences between the results of the three
equations are not too great.

It may be noted here that in many cases the re-
corded experimental values are those obtained by
smoothing the measured values. This smoothing,
in many cases, appears to have been done by a hand-
drawn curve. The results obtained here show that
one of the three equations (the one that gives the
least errors in that particular case) can be con-
veniently employed for smoothing and representing
the experimental data, at least above en j50.

The elastic constant c» for some materials shows
an increase with temperature. If the increase is
regular and linear in T at high temperatures, the
three equations discussed above can be employed.
We have included here one such typical case: c»
of thorium.

These equations can be used for interpolation and
to a certain extent for extrapolation. Some thirty
years ago, Born" derived the general conditions
for the stability of a crystal lattice and suggested
that at the melting point the rigidity modulus should
vanish, @44 = 0. Subsequent investigations have
shown that this is not correct. Here we examine
an alternative possibility; somewhat in the spirit
of the Lindemann melting equation, we assume that
melting takes place when F44 is reduced to a value
given by c« fc«(0 'K), w-here f is a certain fac-
tor which would depend on the crystal structure and
the nature of the binding. In similar substances it
should be the same. In our list we have six fcc
metals; for these we have calculated the tempera-
ture T~ corresponding to f =0. 55, using Eq. (4).
The results are plotted versus the melting point
T in Fig. 5. The fact that the points are close to
the line T~ = T„appears to indicate that the sugges-
tion has some merit.
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Calculation of the Dielectric Function for a Degenerate Electron Gas with Interactions.
I. Static Limit*
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A new procedure for calculating the frequency- and wave-vector-dependent dielectric re-
sponse function is described. It is based on decoupling and solving the equations of motion
for the Green' s functions of the charge-density operators by a moment-conserving method
which is discussed. By use of this method an expression for the dielectric function in
the static limit (~ 0) is obtained; it depends on a function G(k), for which numerical values
are calculated and tabulated. Evidence that the procedure described here leads to reliable
values of G(k) for small, intermediate, and large values of k is presented.

I. INTRODUCTION

It has proved possible to relate many of the im-
portant properties of metals to a model in which
the ions are replaced by a uniform distribution of
positive charge and the conduction electrons are
treated as a Fermi gas (which for metals under
normal conditions is highly degenerate). Much
has been learned by ignoring the Coulomb inter-
actions between the electrons, but in recent years
efforts have been made to include these interactions
in the theory. Many such efforts have been focused
on calculating the frequency- and wave-vector-de-
pendent dielectric response (or screening) function
«(k, ~), because this function is the key to under-
standing many of the properties of metals —in-
cluding those related to transport phenomena.

It is well known that the expression for «(k, &u)

first given by I indhard, ' which can be obtained by
making the random-phase approximation' (RPA),
leads to some unphysical features of the pair dis-
tribution function in the range of metallic densities
(2 ~r,~ 5). In a classic paper~ Hubbard proposed
to replace the I indhard expression

1 —1/«(k, ~) = Qo(k, v)/[I+ Qo(k, e)] (l. 1)

by the more general (and hopefully more accurate)
expression

Qo(k, ~)
«(k, (g) 1+[1—G(k)J Qo(%, (o)

with

q, (k, (o) = 4X'Eo(k, (o)/k',

X'= (ma, k~) '= o.~,/w;

n = (4/9w)'", E,(k, (o)

is the polarizability of the free-electron gas. The
function G(k) appearing in (1.2) takes into account
exchange and correlation effects; Hubbard pro-
posed for it the form

G(k) = —.'[~'/(u'+ n,')],
with y~ the Fermi momentum. Many other forms
of G(k) have since been proposed (for a review see
Geldart and Vosko' and Shawe), but we shall refer
particularly to one suggested by Singwi, Tosi,
Land, and Sjolander' ' (STLS). STLS arrived at
an expression formally equivalent to (l. 2) by an
equation-of-motion method which relates G(k),
S(k) (the static form factor), and «(k, &o) self-con-
sistently.

In a recent paper Shaw has emphasized that cal-
culations of metallic properties depend strongly


