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A method fol" determining the lnterpartlcle interaction 6Qergies in R disordeled Rlloy fl'oIQ
the corrected diffuse scattering intensities of x rays is presented. This method, which is
bRsed OIl. the ordering theories, ls applied to the proM8IQ of obtRlning the first seven pair-inter-
action ratios in Cu& Au from the experimental data of Moss. Strong evidence fox the presence
of long-range pair interactions originating from the indirect screening interaction between ions
is obtained for Cua Au, indicating the existence of a reasonaMy sharp Fermi surface in this
alloy, at temperatures of the order of 700'K.

1. INTRODUCTION

One of tile pllnclpal ob]ectlves ln expex'lmentRlly
lnvestlgatlng short-range ox'del ln R blnRx'y Rlloy
is to obtain information on the magnitude, sign,
and range of the interparticle interaction energies
in such a system. The current state of alloy theory
suggests that a realistic comparison bebveen em-
pix"ical and theoretical values for these interactions
ls possible.

Clapp and Moss, in a recent series of papers
(Ref. 3, in particular), obtained indications of the
exlsteDce of Rn osclllRtoly interaction ln the Cu-Au
system by an indirect method requiring diffuse
scattering data from alloys vrith different composi-
tions. We present a method which indicates an
oscillatory interaction through experimental re-
sults from a single alloy system.

The pair-interaction model assumes the en-
ergy of the binary alloy AB, with atom fractions
(m~, ms) to be decomposable into the sum of inter-
actions V";,.", V&&, V;,-, and Va", behveen pairs
of atoms (A, B) at sites i and j and a term indepen-
dent of configuration at constant volume. The
pair-interaction energy parameter is usuaDy de-
fined Rs

i'; =k(~~~) +i'v'-2~0') .
This model for ca,lculating the energy of a bina-

ry alloy should improve in reliability as the size
difference betvreen the A.- and B-type atoms de-
creases, when the contributions of irreducible
n-body (n & 2) strain-energy terms will likewise
diminish.

For zero-size-effect binary alloys of nontransi-
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~V V4 Vs Ve ~V Va (1.3)

are determined for CusAu, from the values of the
Fourier coefficients of n(fc);

g„=f n(k)e'"'0& dk,

obtained by Moss' above the critical temperature.
The alloy Cu3Au has been chosen for initial in-

vestigation because the values of n, obtained by
Moss are believed to be the most accurate avail-
able and the requirements for the pair-interaction
model appear to be well satisfied in this case.

II. ORDERING THEORIES

The common ordering theories for predicting the
diffuse scattering intensity from an alloy, which
are approximate solutions to the Ising model, for
example, the spherical model' ' ' and mean-field
theory, ' ' may be represented by the general
form

G,(T)
I+G,(r) V(k) ' (2. I)

where G& and Ga are essentially temperature-de-
pendent factors and G2 is chosen such that
fo(k)dk=1. This form is found to be a very ac-
curate solution for the special case of the nearest-
neighbor equiatomic Ising model. For. the many-
neighbor Ising model, Brout" has shown that the
inclusion of all terms of O(1/z) in the cluster ex-
pansion for n,-, also leads to a result of the form

tion metals in which the difference in the potentials
of the two species is small, the expansion of the
total energy to second order in perturbation theory
is a good approximation. This expansion can
readily be shown to be expressible in the form of
the pair-interaction model.

The method for obtaining information about the
interaction energies depends on the representation
of the ordering problem in the alloy, by the many-
neighbor Ising model. Mathematical approxima-
tions to this model"' " (see also Sec. II) relate
the corrected diffuse x-ray scattering o.'(k) to
V(k), the Fourier transform of the pair interaction.
For V(k) the expression

V(k) =Z( Vo(e " "« (1.2)

can be written, where r, &
is the lattice vector con-

I

necting site i to the origin, k is 2m times the true
reciprocal-space vector, and the sum is over all
sites in the lattice (with V„-=O).

The values of the pair-interaction ratios are
determined more accurately than the absolute val-
ues (see Ref. 2 and also Sec. II). In this paper,
the first seven pair-interaction ratios (single sub-
scripts refer to shell numbers)

(2. I) (in fact, the same result as for the spherical
model), where z is a measure of the range of the
interaction V;&. Thus the form (2. 1) should also
be quite accurate for long-range interactions.

Following Clapp and Moss, ' a critical tempera-
ture may be defined as the temperature at which

the denominator in (2. 1) first goes to zero from
above for k at a point k„ for which V(k ) is a glo-
bal minimum in reciprocal space. Then T, is
determined by

—1 = Gq(T, ) V(k„),

and substituting this in (2. 1) to obtain

G.(I)
(I —[G (~)/G (&)][V(k)/V(k )]}

(2. 2)

G,(T)
(~ —[I/X(T)](1"./T) [V%)/V%.)]} '

where

G (T,)/G (1")= (T/&.)X(T) . (2. 4)

X, V, /V„V, /V„ (2. 5)

In order to determine the V; values absolutely,
the relation (2. 2) must be used with G,(T) evaluated
in a particular approximation. This would introduce
additional inaccuracies and thus has not been at-
tempted here.

III. EXPERIMENTAL DATA

The reduced values of o.'(k) and also of the Fou-
rier inverse of these, the a; obtained by Moss' for
Cu~Au at 405 and 450'C (presented in Table I),

The term in the second square brackets in (2. 3)
depends only on the ratios of the V„and X(T)
depends only on the particular approximation cho-
sen, the temperature, and possibly the composition.
In the mean-field approximation, X(T) = 1 for T ~ T,. —

If the T dependence of X(T) is now considered,
comparison of the mean-field or similar approxi-
mations with the Fisher and Burford result and
the Tahir-Kheli result suggest that if X(T) is
taken in one of these approximations it will be in
significant error. This may be expected to lead to
considerable errors in the interaction ratios de-
termined from o!(k), especially in the high-order
terms which are anticipated to be fairly small
[O(r ') ]. An alternative approach, which would elim-
inate much of the wrong temperature dependence
in the approximate theories, is to determine X(T)
from the set of experimental results at the temper-
ature T That is, in .fitting (2. 1) to experimental
results at a given temperature, the adjustable pa-
rameters now are
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TABLE I. Values of the Fourier coefficients && of the
corrected diffuse scattering intensities obtained by Cowley
and Moss for Cu3Au at the characteristic temperatures
T/T = 1.023 and T/T =1.091.

Shell
number

Lattice
indices

Perfect
order

T/Tc i ~ 023 T/T, =1.091

(A ')
p Cowley Moss Cowley Moss

1
2

3
4
5
6
7
8
9

10
11

110
200
211
220
310
222
321
400
330
411
420

1
3
1
1
3
1
1
3
1
1
3
1
1
3
1
3
1

0. 152
0. 186
0, 009
0, 095
0. 053
0. 025
0. 016
0. 048
0. 026
0. 011
0. 026

—0. 218
0. 286

—0. 012
0. 122

—0. 073
0. 069

—0. 023
0. 067

—0. 028
0. 004
0. 047

—0. 148
0, 172
0. 019
0. 068

—0.049
0. 007

—0. 008
0.042

—0. 022
0. 020
0.025

—0. 195
0, 215
0, 003
0, 077

—0. 052
0. 028

—0. 010
0. 036

—0. 015
0. 007
0. 015

probably represent an improvement over the earlier
but classical values of Cowley, 1 in that allowance
was made for size-effect and a temperature factor.
Also, the intensities were calculated on an absolute
basis to lessen the effect of parasitic scattering
processes on the calculation.

A complete plot of o.'(k) in reciprocal space can-
not be obtained because of the large thermal diffuse
and Huang scattering in the region close to the fun-
damental reflection. However, by extrapolating
his data to include this region, Moss found he
could obtain reasonably constant values for the a,
for several different forms of the extrapolation
curve; the largest variation being shown by n, and

In his calculation, Moss performed the Fou-
rier inversion by using a summation over 1000
points of a symmetry cube in reciprocal space. The
accuracy of the n, values (i=1, . . . , 11) thus ob-
tained is limited by the size of the grid used for
summation. Conversely, if it is desired to repro-
duce the diffuse intensity all the n; terms are
really necessary, especially as T approaches T,.

In applying (2. 1) to the experimental data, two
factors must be considered. First, it is the values
of o. (k) in the region of the diffuse peak which are
known most accurately. Second, if (2. 1) is used
directly to obtain V(k) then a small error in

n, „„(k)away from the diffuse peak, where ,o„„(k)
is small, will be propagated by (2. 1) as a large
error in V(k).

In fitting the experimental results to theory, it
is desirable, in view of the previous discussion,
to choose a criterion of best fit which takes into
account the accuracy of the experimental deter-
mination. One possible choice is to minimize

C = J ~(k)[n(k) —n, „„(k)1'dk (S. 1)

with respect to parameters (2. 5), where su(k) is a
weighting factor which is related to the accuracy

of the determination as a function of k and the in-
tegration is over the volume of reciprocal space
for which the dataweretaken. However, the choice
for w(k) is not obvious.

IV. REAL SPACE FORMALISM

~ ~ no; V;g/ Voy = 0, i c 0 (4. 1)

where the sum is over all sites in the lattice and

f(o.„)= (1/m„ms) n. ; (4. 2)

in the mean-field approximation.
A reasonable choice for the criterion of best

fit is
11

4 „=P w;[n;(e ptx) —n, (theory) ] (4. 3)

where u; is a weighting factor which is related to
the estimated error in o(e xpt). Clapp and Moss'
chose sv; =1 for i =1, . . . , 11. This choice is suit-
able if the o. ;(expt) have approximately the same
absolute error. However, it can be seen from
(1.4) that a given proportional error in n, „„(k)
causes the same proportional error in all the &;;
this is in keeping with the finding of Moss (see Sec.
III) that varying the form of extrapolation for n(k)
caused the values of a, and az, which are relatively
large in magnitude, to vary the most. This suggests
that a more appropriate choice for the zv; is that
they be inversely proportional to the squares of the
absolute errors in the corresponding n;.

Clapp and Moss effectively fitted the theory to
n& and az. This would have some justification if
it could be shown that most of the information about
parameters (2. 5) was contained in the values of
these two terms. However, Paskin has shown
that the only significant differences in the theoret-
ical values of the n; produced by a long-range os-
cillatory interaction on the one hand and only a
nearest-neighbor interaction on the other are in
the higher-order a;. This is fairly obvious from
(4. 1) or (2. 1), where it can readily be seen that
n; and V, are highly correlated (see, also, Ref.
3). Thus there is no justification for the assump-
tion that most of the information about the high-
order V; is contained in the low-order n „rather
the converse is true.

An alternative approach is now outlined which
should be computationally faster since it does not
require the calculation of triple integrals, and
also leads to a simpler choice for the weighting
factor. In the discussion of Sec. II, a parallel
development in terms of n; and V; has been possible.
The real space expression corresponding to (2. 1),
which is obtained by Fourier inversion of (2. 1), is

[V(k.)/V. ,]~(T)(TIT.)f (~.,)
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1nvestlgatlons~ so Rs to Rvold using Rn excessive
amount of computation time.

In this section we briefly describe the numerical
solution scheme, which was chosen to solve the
problem formulated in the previous section, of
minimizing C with respect to the m parameters
(2. 5). For a given set of values of the rn parameter.
(4. 1) can be solved by linear or quasilinear tech-
niques according to the particular approximation
being considered. This yields

o, ;(X, V2/V„V, /V„. . . ), where i=1, . . ., n,

which is combined with a powerful least-squares
technique, based on the algorithm of Fletcher and
Powell' to minimize 4 in the parameters (2. 5).
Providing care is taken to avoid convergence prob-
lems, the method is quite efficient.

VII. INITIAI. ASSUMPTIONS
0.01

0 '7 f"
hkl

FIG. I. Comparison of the first fourteen G.'; (as func-
tions of distance in the lattice) obtained in the mean-fieId
approxlQlatlon vQth s = 14 and s = 32 varla41es ln the solu-
tion. The results are for hvo interactions with V~/V~
= —0.25 at T/Tc= 1.072. The straight line indicates the
average variation of 0.; vrith distance.

The two important assumptions which have been
made in the following determinations of the first
m parameters (2. 5) are that X(T) may be deter-
mined empirically and that m& is related to the
accuracy of the measured values of the order
parameters.

Following the discussion of Secs. III and IV, the
test values which have been chosen for the z; are

The numerical problem of refining the n; data
to obtain information about the pair-interaction
ratios involves minimizing (4. 3), subject to the
constraints (4. 1) in the first m parameters (2. 5).
A computer program has been written which takes
the first n variables a

&
and obtains solutions with

arbitrary values of the m parameters. The mode
of truncation chosen to obtain the n by n set of
equations was, for j &n,

Q ( I) fol g even

= &n(odd)

where n (even) is the largest even shell not ex
ceeding n, and n (odd) is the largest odd shell not
exceeding s.

Varying e, the number of n; variables in the
solution, for R given set of interactions, has been
found to cause a slight shift in the solutions for
the n;, but not to alter their general trend (see
Fig. 1). The n; values shift slightly toward the
values for perfect order with increase in n. This
resembles a temperature effect and indicates that
some compensation for the finite value of e may
be included in the empirical determination of X(T).

These considerations make it seem reasonable,
as a first step, to choose n = 14 for the subsequent

%3) ~ » ~ y Kyg —1.

That is, the experimental values of n& and 0.2 are
ignored. This set of values is of additional interest
because it can be used to demonstrate the consis-
tency of the experimental data and solution, since
the determination of the parameters (2. 5) via (4. 1)
implies values for e& and n2 which may be com-
pared (see Sec. IX) with the values contained in
Table III.

For the sake of completeness, the effect of
varying m; on the predicted values of the param-
eters is investigated in Sec. X.

Unless otherwise indicated, it is to be assumed
that the relations (4. 1) and (4. 2) have been used
with X(T) determined empirically, taking m = 8
and n = 14 to fit the experimental data of Moss con-
tained in Table I at the appropriate characteristic
temperature.

The two major contributions to error in the re-
duced values of the diffuse intensities obtained by
Moss are probably due to an additive constant back-
ground and to the factor used in the conversion
to absolute intensities. ' In his refinement of the
measured intensities, Moss found that e, 41. He
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'fABLE II. Values of X(T)and the first seven pair-interaction ratios V~/V~, where i= 2, ...,8, obtained from the z&
data of Moss, the n; data of Moss shifted by 10%, and n; values obtained at random from the previous sets of data.

Data
X

i Emn

Moss
1.001

T/T, =1.023

+10% —10%
0.994 1.011

Band 1
0.987

Band 2
1.008

Moss
0.986

T/T, =1.091

+ 10 lo —10'
0.976 0.997

Band 1 Rand 2
0.984 0.991

2 200
3 211
4 220
5 310
6 222
7 321
8 400

4
&

(x105)

—0, 175
0.061
0.099
0.005

-0.056
—0.001

0.042

0.51

-0.187
0.034
0.090

—0.017
—0.079
—0.009

0.041

0.76

—0.204
0.054
0. 079
0.009

—0.042
0.002
0.043

—0.173
0.115
0.231
0.092

—0.125
—0.001

0.050

—0.151
0.035
0. 090

-0.013
—0.120
—0.016

6.6

—0.208
0.027
0. 073

—0.055
—0.062
—0.013

0.022

0. 206
0.021
0. 080

—0.073
—0.077
—0.016

0.020

0.16

—0. 214
0.032
0.062

—0.035
—0.050
—0.010

0.024

0.07

—0.270
0.039
0.109

—0.010
—0.074
—0.007

0.023

—0. 243
—0.004

0.049
—0.102
—0.066
—0.020

0.020

0.85

Ji
V(th) ~)

o.i-

O
0 X

3.0

o
O

-o.1"

-0.2-

-0.3.

X w ITl =2

Ah=3

le =g

+ K:5
x tYl =6

c)
O lT}=8

FIG. 2. Variation of the pair-interaction ratios with

m, the number of interactions included in the determina-
tion. The results were obtained from the 0.

&
data of Moss

at T/Tc= 1.091.

corrected this by subtracting a fixed amount from
each of the measured intensities. However, this
is unnecessary because a, constant background in-
tensity will not alter the calculated o., (it 0) terms.
If part of the error in the a, value were caused by
a proportional error in the conversion to absolute
intensities then th1s would lead to a proportional
error in the o., (all i). The discussion in Sec. III
and Ref. 11 makes an estimate of a 10/o proportional
error in the n; seem reasonable. To investigate
the effect such an error has on the determination
of the pair-interaction ratios, me have chosen the
folloming sets of n& data at each temperature; the
Moss values, the Moss values shifted toward and
away from the values at perfect order by 10% of

their magnitude, and tmo sets of data with each a,
value chosen at random from the previous three
sets of data. In Table II, the values of the pair-
lllteractlon ratios& V(f'gg~)/V('Ygyo)& where 'Y~~

= (k + k'+ I ) ~, together with the corresponding
values of X(T) and 4 „, are presented for the var-
louS SetS Of H~ data.

It can readily be seen that for the cases where
all the n, are shifted together, the main effect, as
mould be expected, is a temperature renormaliza-
tion, whereas for the random cases, large changes
in the interaction ratios can occur mhen compared
mith the values obtained from the Moss data. That
is, the relative values of the V; are well determined
by the relative values of the a,-, and thus the re-
sults obtained by the present method should be quite
accurate.

IX. EFFECT OF INCLUDING MORE

INTERACTION TERMS

It is desirable to investigate the effect of includ-
ing more and more interaction terms, not exceed-
ing the number of constraints in (4. 3). If the values
of the m interactions calculated vary radically with

increase in m, then little confidence could be as-
signed to any result. Alternatively, if there is a
value of m up to mhich the solution is stable but

beyond which it varies radically, then this would

have to be considered as being the limit to the
number of meaningful parameters in the determi-
nation.

In Fig. 2, the effect of varying m on the solution
for the pair-intel act1.on rRt1os 1s 1llustratede It
can be seen that the general oscillatory trend in
the values of the pair-interaction ratios persists
with increase in m up to m = 8. For m = 3, the val-
ues are seen to agree closely with the results
(V2/V& = —0. 200 and V~/ V& = —0.015) obtained by
Clapp and Moss for the same data but with differ-
ent gg).

In Table III, the values of the a, for each value
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TABLE III. Values of the first fourteen a& terms for m = 2, ... , 8 interaction terms included in the determination of the

pair-interaction ratios. The results were obtained from the data of Moss at T/T~=1. 091.

Shell
number

1
2
3

5
6
7
8
9

10
11
12
13
14

m=2

—0. 155
0.192
0.003
0.070

—0.048
0.022

-0.010
0.044

-0.018
0.004
0.023

—0.005
0.012

—0.003

—0.158
0.189
0.004
0.071

—0.048
0.023

—0.010
0.043

—0.018
0.004
0.023

—0.005
0.013

—0.003

-0.164
0.200
0.002
0.071

—0.048
0.023

—0.009
0.044

—0.018
0.003
0.022

—0.005
0.012

—0.003

—0.186
0.233
0.004
0.077

—0.049
0.022

—0.011
0.039

—0.012
0.002
0.022

-0.004
0.014

—0.004

-0.189
0.238
0.004
0.076

—0.049
0.023

—0.011
0.040

—0.011
0.001
0.021

—0.005
0.015

—0.005

—0.197
0.250
0.006
0.077

—0.050
0.024

—0.010
0.039

—0.012
0. 0
0.020

—0.006
0.016

—0.005

—0.186
0.239
0.003
0.077

—0.052
0. 028

—0.009
0.036

-0.015
0.007
0.016

-0.006
0.010

—0.002

Moss expt

—0.195
0.215
0.003
0.077

—0.052
0.028

—0.010
0.036

—0.015
0.007
0.015

0.24x10 0.22x10 0.21 x10-' 0.14x10-' 0.13x10 ' 0.126x10 3 0.1x10 '

of m are presented. The inclusion of higher-order
interaction terms can be seen to lead to a signifi-
cant improvement in the fit of the higher-order n;
terms (tt„n, a, n, t) to experiment, whereas o.,
and n4 remain reasonably constant. This supports
the hypothesis of Sec. IV.

It should be remembered at this point that m& and
ze& = 0, so that the agreement between the calculated
and experimental values of n& and n& indicates that
the determination is consistent with the complete

- data.
X. VARIATION OF WEIGHTING FACTORS

The solution should be relatively insensitive to
the precise values of the weighting factors go& since
the choice for these is to a large extent arbitrary.

In Table IV, the pair-interaction ratios obtained
with several different sets of weighting factors are

TABLE IV. Values of the first seven pair-interaction
ratios for various choices of the weighting factors ur&,

obtained from the data of Moss at T/T, = l.091.

presented. For a, b, and c the results are seen
to be stable, whereas for d (corresponding to the
choice made by Clapp and Moss) the values of the
pair-interaction ratios with m = 8 are seen to be
significantly different. It has been demonstrated
by the approach of Sec. IX, that the values of
V,/ Vt (i = 2, . .. , m) obtained with d are unstable for
m) 3 and so must be rejected. However, theyagrec
very closely with the other values (a, b, c) for
m (3. It should be noted that a reasonable estimat(
of the se; is that they are inversely proportional to
the square of the absolute errors in the respective
a, , so that the difference between a, b, and c is
larger than might appear.

XI. COMPARISON OF PAIR-INTERACTION RATIOS
AT DIFFERENT TEMPERATURES

The close agreement between the two sets of
values of the interaction ratios for the Moss data
in Table II has been taken as confirmation of the
consistency of the data. No special temperature
effects such as damping' are indicated, consider-
ing the accuracy of the determination.

Code
ZUi ~ F2

W3, ~ ~ ~ j Rii
Interaction

ratios

V,/V,
V,/V,
V4/Vi
V5/ Vi

V6/Vi
V,/V,
V,/V,

0.0
1.0

—0.208
0.027
0.073

—0.055
—0.062
-0.013

0.022

0.01
1.0

—0.211
0.032
0.072

—0.046
-0.055
—0.010

0.024

C

0.05
1.0

—0.198
0.021
0.051

—0.044
-0.056
—0.013

0.024

d
1.0
1.0

—0.157
0.003
0.016

—0.076
—0.038
—0.010

0.013

XII. COMPARISON WITH THE SCREENING
INTERACTION IN THE FREE-ELECTRON MODEL

The determination of the pair-interaction ratios
thus far has been independent of anyassumedmodel
for their prediction, so that an unprejudiced test
of different models for the origin of the high-order
interactions is possible.

An obvious model for trial is the free-electron
screening model for pair interactions between
ions. At large distances the form is given as' '
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= l.4
= l2

l.i
LO

electron-per-atom behavior of Cu and Au. However,
the value of &f&,„„differs significantly from the value
( a 0. 0906, the sign was undetermined) obtained by
Kohn and Vosko. This phase difference is of the
same sign and magnitude as the phase shift of the
asymptotic form (12. 1) relative to the exact result
for small eke (see Ref. 19), at which distance the
empirical values contained in Table II dominate the
least-squares fit in the present calculation.

The good agreement of the results with (12.2)
indicates that the long-range pair interactions in
Cu3Au are fairly well predicted by the free-electron
screening model. Indirectly, this provides strong
evidence for the presence of a reasonably sharp
cutoff in the occupation probability of the conduction-
electron states in k space, in a concentrated dis-
ordered alloy (Cu3Au), at temperatures = 700'K;
that is, a mell-defined Fermi surface.

-2, 0

FIG. 3. Contours for the least-squares residual
(relative values only) obtained by fitting the form V(x@,&)/

V(-A cos(4, 911.p& w~~+p)/(x+, &)3, where & = (e/at. )', to
the pair-interaction ratios obtained from the five sets of
data at T/T, =1.091 (see Table II). The results are for
A=1.9.

V(r»„)/V, =A cos(2k~aor~, + p)/(r», )~, (12.1)

where k~ is the Fermi momentum, 2ao is the unit
cell spacing. A is here assumed to be a constant
(independent of k~), and p is a phase factor.
The quantity 2k~ao may be related to the electron-
per-atom ratio (e/at. ) in the usual way. Hence, it
it is possible to write

XIII. ADDITIONAL CONSIDERATIONS

Similar predictions for V,/V, values calculated
from experiment are found to obtain with f(n, ) in
the Cowley theory.

The Cowley data in Table I for T/T, = 1.091 has
been found to lead to the following values of the inter-
action ratios:

Vg/ Vg = —0. 195, Vs/ Vg = —0. 030,

v,/v, =-o. o3o, v,/v, = -o.oo5.

0 ~ 1

V(x~, )/V& Acos(4. 9-110& r„»+ p)/(r„»)s, (12.2) 2.0 3.0( 4.p rhkl

where e = (e/at. )'~~. This functional form has been
fitted by least squares to the results contained in
Table II. Various trial values of A differing
by 0. 1 were used to plot contours of the least-
squares residual as a function of e and P. The
contour plot for the value A = 1.9, which yielded
the minimum value for the results at T/T, = 1.091,
is presented in Fig. 3. In Fig. 4, the pair-inter-
action curve which yielded the minimum value of
the least-squares residual is plotted together with
the empirical values.

The results for Cu, Au averaged over the two tem-
peratures indicate

q,„,= 0. 97 + 0. 04

and

(f),z„=0. 6 e 0. 4

The value of &,„„is in keeping with the normal one-

-P.l

-02-

-Q 3.i

Data used:
o Moss
+ MOSS +1 0%

Moss -10%
~ Random 1

x Random 2

FIG. 4. Least-squares fit of the form V(r@,&)/V~
-Acos(4, 911p& KAI, ~+&)/(x+, &), where & = (e/at. ), to
the five sets of pair-interaction ratios obtained from the
different sets of a; data at T/T, =1.091 (see Table II).
The theoretical prediction for the interaction ratios is
drawn as a continuous curve although it is only the values
at the lattice sites x@,&

which have significance here.
The curve is for A. =1.9, a=0. 98, and P= —0.7.
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Thus the improved accuracy of the Moss determin-
ation of the n; is found to contain the information
about the long-x'ange oscillatory interactions.

The pair interaction (12.1) is based on the as-
sumption of a sphex'ical Fermi surface. If the
Fermi surface has eylindrieal or Qat regions, then
the interaction is of longer range in the directions
perpendicular to these regions, ' ' but with period-
icity still proportional to k„. Thus the determina-
tion of the values of the pair-interaction ratios pro-
vides a means of calipering the Fermi surface in
all directions in reciprocal space, if a sufficient
number of interaction terms is obtained (see also
Ref. 25).

The Fermi surface for Cu(Ref. 26) has flat re-
gions in the [100] and equivalent directions, this
would account for the relatively large magnitude
of V/V& in the present determination, if a similar
Fermi surface is assumed for Cu,Au.
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