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The band structure of the spinel-type semiconductor CdIn2S4 has been calcu', ted by the em-
pirical-pseudopotential method. The form factors have been determined to agree with the
values previously chosen by Cohen and Bergstresser for semiconductors with diamond and

zinc-blende structures. Because of the large number of atoms per unit cell, a implified
model of the actual crystal structure has been developed, thus obtaining a feasib e way to get
meaningful results and to make direct comparisons with the band structures of rqany well-
known elementary and binary semiconductors. The band structure obtained with the use of
our model, and the results of the full calculations made for symmetry points, art9 discussed
and compared with the available experimental information.

1. INTRODUCTION

During the last decade pseudopotential theory'
proved to be a very useful basis for the study of the

optical properties of a large class of solids. In fact,
there are now several methods ' to determine the

pseudopotential to be used in actual calculations,
depending on whether one wants to make a kind of

a priori calculation or to obtain, by comparison
with optical data, very accurate band structures.
A notable point is that there are no great differ-
ences '~ between the pseudopotentials computed from

first principles and the ones empirically deter-
mined, so that the gross features of a band struc-
ture can now be predicted with sufficient reliabil-
ity; furthermore, as shown by very recent calcula-
tions based on the empirical-pseudopotential
method (EPM), quite good results can be obtained

by associating a pseudopotential with each ion, inde-
pendent of its chemical state, so that it is now pos-
sible to build good pseudopotentials even for com-
plex structures like, e.g. , ternary compounds.
For these reasons we have chosen to investigate

the band structure of spinel-type semiconductors
by using the EPM. We expect these calculations to
give reliable results, even in absence of detailed
experimental information, of course, apart from
possible "sensitive"' energy levels.

In this paper we report on a theoretical study of
the band structure of the spinel-type, semiconductor
CdInzS4, ' the form i'actors ot' our pseugopotential are
those empirically determined by Coho+ and Berg-
stresser7 (CB) and modified to take into account the
variation of the lattice constant, as explained in
Sec. 2. This choice has been made essentially for
two reasons: There is no other way to get a reliable
approximation to the sulphur form factorr, which
are not given in the tables by Animalu and Heine,
and we regard the use of empirical form factors as
more likely to get good results, because of taking
into account crystalline effects such as charge re-
distribution and of a more realistic screening of the
ionic potentials.

A preliminary analysis of the band structure of
spinel-type semiconductors has been made recently
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2. PSEUDOPOTENTIAL HAMILTON IAN

The pseudopotential Hamiltonian we have used
can be written, as usual,

H = (h'/2m) V'+y(r),

where V can be expressed as a Fourier series

V(r)=Z, [S,(S)F,(S)+S,(In)F, (In)

+Sq(Cd)F, (Cd)]e ~'~.

The structure factors S, can be determined from
the position of the atoms in the unit cell and are
listed in Table I. The parameter u, which enters
the coordinates of sulphur atoms, has been taken
to be exactly 8 . For normalization purpose, in our

TABLE I. Structure factors S~= [ P& expiq' R;]/n
for each element of the compound. See Sec. 2.
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by Rehwald, '3 who classified the electronic states
on the basis of group theory and got first-order val-
ues of the energy levels at I' in the nearly-free-
electron approximation. The main difficulty inmak-
ing a more accurate computation lies, of course, in
the large number (64) of the valence electrons per
unit cell, so that the order of the secular determi-
nants to be solved is very high and requires a great
deal of computer work. Moreover, the usual conver-
gence difficulties are enhanced, so that it was felt
that an approximation to the actual crystal struc-
ture leading to a lower number of valence electrons
per unit cell could be a very effective way to get
useful results without excessive labor. The details
of this approximation and the band structure ob-
tained with this approach are given in Sec. 3, while
in Sec. 4 the results of unsimplified calculations
:made for symmetry points are compared with the
available experimental information and a discus-
sion is given of the validity of our approximation.
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table, ea,ch structure factor is divided by the num-
ber of atoms per unit cell of the element under con-
sideration. Of course, the same number multiplies
the corresponding form factor.

The form factors I', are taken from those of CB
after proper corrections for the variation of the
lattice constant and of the atomic volume, as sug-
gested by Animalu and Heine. ' Parallel corrections
have been made for the variation of the dielectric
function, using the expression and the table in Ref.
6, putting for each element the number of screening
electrons equal to 4, i.e. , to the average number
of electrons per atom, including vacancies. The
values so computed are shown in Table II.

As can be seen from Fig. 1 the necessary inter-
polation procedure for determining the I', ' s for the
crystal parameters of the CdlnP4 leads to fairly
unambiguous results for the cadmium and indium

potentials, while for the sulphur form factors, both
for the absence of Heine-Abarenkov -type calcula-
tions and for the fact that only two values can be
directly taken from CB, there is a large uncertain-
ty for the intermediate q values. For these reasons
the dashed interpolation curve of Fig. 1 can only be
considered as purely indicative. The effect of this
indetermination will be discussed in Sec. 4.

3. SIMPLIFIED ENERGY-BAND CALCULATIONS

As is known the primitive rhombohedral unit
cell of cadmium indium sulphide contains two Cd,
four In, and eight S atoms, i. e. , 64 valence elec-
trons: Therefore to attain the same convergence
degree of the calculations of CB,it would be neces-
sary to use at least 1000 plane waves for the expan-
sion of the wave function. Such an expansion is not
a simple matter, even with modern computers, so
that we studied a way of tackling the problem that
could give reliable results without too much effort.

TABLE II. Pseudopotential form factors, in Rydbergs,
derived from the values of CB, by interpolation and re-

. normalization, as shown in Sec. 2.
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FIG. 1. Interpolation curves for
form factors. The heavy dots are the
values taken from CB after proper
renormalization. (See text. )

TABLE III. Fourier coefficients, in Rydbergs, for
the approximate structure of CdIn284 (see text).

Actual structure
a&=a

Approximate structure
a2

——a/2

q/(2m/a, )

(2, 2, 2)
(4, 0, 0)
(4, 4, 0)
(6, 2, 2)

q/(2m/a2)

(1,1, 1)
(2, 0, 0)
(2, 2, 0)
(3, 1, 1)

Vq

0.207
—0.240

0.047
0.009

Our approximation consists in building a fictitious
unit cell smaller than the actual one; we chose to
take as unit cell that one of the anion sublattice,
which is essentially a fcc lattice with half the lat-
tice constant of the spinel. So we have one S, —,

'
In,

and 4 Cd atoms per unit cell, i.e. , 8 valence elec-
trons instead of 64, and the use of about 100 plane
waves is now enough to get convergent results to
within 0. 1 eV; of course, fractional numbers of
atoms mean nothing: One has to average over the
actual unit cell and the best way to do it is to use
the same Fourier coefficients as in an exact calcu-
lation, only remembering that, because of the halv-
ing of the lattice constant, there is a series of q
values which are no longer allowed.

Table III gives the details of the conversion, to-
gether with the values of the Fourier coefficients
utilized for the calculation. It should be noted that
our approximation is entirely equivalent to repre-
senting the energy bands of CdIn&S4 in a large re-
ciprocal-lattice zone eight times greater than the
true Brillouin zone (BZ) and to retain only the
Fouier coefficients which do not break the conti-
nuity of the E(R) inside the large zone.

The results obtained with the use of the values
in Table III are shown in Fig. 2. These results
were obtained with the technique first devised by

Brust, ' putting E j = 7, E 2
= 11.5, and E~ = 1.8, in

units of ( 2w/a)2, that is by using about 50 plane
waves. No significant variation has been found with
the use of more plane waves, up to 113for K= 0.

As should be expected the general shape of this
approximate band structure resembles very much
that one of the zinc-blende-type semiconductors.
Throughout the large zone there is an energy gap
between the fourth and the fifth band which corre-
sponds to a gap between the 32nd and the 33rd band
in the reduced zone, that is, to a gap between the
filled and the empty bands.

Additional information on the band structure in
the reduced zone can be gainedbypartial reduction;
as is known, ' the X and L points of the large zone
correspond to I" points in the reduced one, so that
we can guess the position of some upper levels at
I" simply by inspection. Then, also in the reduced
zone, the direct gap at I' should be between I'» and
I"& states and of about 3.0 eV; owing to the shape
of the first conduction band one should expect a
marked increase in the density of states for ener-
gies slightly above 3 eV.

4. FINAL RESULTS AND DISCUSSION

Till now the experimental information about the
optical properties of CdIn2S4 above the absorption
edge is rather poor and can be summarized in the
following points ':The lowest energy gap is of 2. 2
eV and is an indirect one; the lowest direct tran-
sition occurs at about 3. 1 eV; three other reflec-
tionpeaks can be seen at about 4. 5, 5. 0, and 5. 5

eV. The band structure computed on the basis of
our model allows for an interpretation of these fea-
tures: In fact, as we already pointed out, the peak
structure at energies between 3 and 6 eV can be
attributed to the folding of the first conduction band
of the large zone into the reduced zone; we recall
that a large zone is equivalent to eight times the



PSEUDOPOTENTIAL CALCULATION OF THE BAND ~ ~ ~

FIG. 2. Large-zone band structure
of CdIn284. (See text. )
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BZ. Moreover the occurrence of an indirect gap can
be easily understood by taking into account the per-
turbation due to the neglected Fourier coefficients:
Including coefficients such as V(1, 1, 1) or V(2, 2, 0)
gives rise to energy splittings, respectively, at the
points (4, —,', —,'}or (&, —,', 0) in the large zone. Thus it
can be seen that the point which is more likely to
become the minimum of the conduction band is the
point I. of the reduced zone, since the related
Fourier coefficient, namely, V(1, 1, 1), is by far
the largest one of the coefficients neglected in our
approximation. Therefore we can suggest that the
indirect absorption edge corresponds to a 1"-I. tran-
sition.

To get more detailed results we made full calcu-
lations of the energy bands of CdIn&84, that is, we
took into account all the Fourier coefficients of the

pseudopotential up to V(6, 2, 2), for several points
in the BZ and using up to 113plane waves at K = 0.
The results for the symmetry points 1", X, and I,
appear convergent to within 0. 5 eV', whereas those
ones for general points are practically useless. In
fact, on increasing the number of plane waves the
shift of the Fermi level is several times greater
for general points than for symmetry points. Thus
the use of only -100 plane waves is not enough to
get satisfying results for all the BZ; nevertheless
we can make a useful comparison with the preced-
ing results.

In Fig. 3 we report an indicative band structure
of CdIn384. The energy levels at I', X, and I., com-
puted with E, = 1,1.5, Z~=21. 5, ands~=9, inunitsof
(2v/a), are joined together by smooth lines, taking
into account the compatibility relations. The agree-

L3
3

2 -L
1

FIG. 3. Reduced-zone
band structure of CdIn2S4.

L,



F. MELONI AND G. MULA

ment between our two band structures is quite grat-
ifying: The direct gap of lowest energy is between
I'~5 and I"& states in both cases and is of comparable
magnitude (2. 5 against 3. 0 eV). Moreover, the
minimum of the conduction band occurs at L, as we
have suggested. We see that this indirect gap is of
about 2. 1 eV, ingoodagreement with the experimen-
tal result of 2. 2 eV; it must be pointed out, how-
ever, that this close agreement should not be re-
garded as particularly meaningful because of the
relatively large arbitrariness of the interpolation
curve for the sulphurpseudopotential. In fact, while
our band structures are practically unchanged by
a different, but reasonable, choice of the interpo-
lation curves for indium and cadmium pseudopoten-
tials, we can see from Fig. 1 that the differences
between reasonable interpolation curves for the
sulphur pseudopotentials may be significant.

We made no attempt to get a best fit by adjusting
the sulphur pseudopotential, but we found that a
substantial lowering of the curve causes a lowering
of the energy gap too. Nevertheless the general
appearance of the band structure is unaltered, so
that we feel that our interpolation curve is a good
one and could be used satisfactorily for other ter-
nary sulphur compounds.

In conclusion we say that our simplified approach

allows a straightforward use of the EPM for such
complex structures and correctly gives the qualita-
tive features and some quantitative results for the
energy bands. Its success clearly shows its close
connection with the physical reality and points out
the usefulness of comparing complex structures
like spinel with the simple structures from which
they can be thought to derive. On this basis the use
in our calculation of form factors taken from binary
compounds can be fully justified. Our complete
calculations for the symmetry points of the real
structure both confirm the validity of our model
and the correctness of our pseudopotentials so that
the extension of our approach to other semiconduc-
tors with the same or similar structure seems
particularly promising. Work is in progress in this
direction.
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