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The augmented-plane-wave (APW) band structure of Be03 is analyzed in terms of the Slater-
Koster linear-combination-of-atomic-orbitals (LCAO) interpolation scheme with nonorthogonal
orbitals. This appxoach has several advantages over an earlier treatment involving ortho-
norma1 basis functions. First, it provides insight into the physical origin of the crystal-
field splittings in Re03 and other transition-metal compounds. Second, it leads to more
physically meaningful LCAO parameters. Finally, it provides a direct relationship between
the crystal-field levels of an isolated transition-metal ion or molecular complex and the
band structure of the periodic crystal. In the case of Re03, it is shown that the crystal-
field effects are due to overlap and covalency between the rhenium 5d orbitals and the 2s,
2pa; and 2P7t orbitals of the neighboring oxygen ligands. The splitting between the e~ and

t 2 bands is due to the 2s contribution &s. The difference between the 2s and 2po. contribu-
tions 4~ —+s 18 x'esponslble fox' the 8& bandwidth. This same difference 18 px'oport1onal to
the effective transfer integral 5 in Anderson's theory of superexchange. The t&~ bandwidth

is due to &„ the 2P7t overlap-covalency parameter. This LCAO method is applied to K¹iF3,
using LCAO integxals determined from the Sugano-Shulman molecular-orbital calculation
for the (NiF6) complex. The resulting KNiF3 band structure is qualitatively similar to the
APW results for ReO3, except the bandwidths are narrower by about a factor of 4. In the
limit where the Coulomb energy U is large compared with the e~ and t~~ bandwidths so that
the electrons localize, it is shown that the crystal-field splitting between the localized e~
and t&~ Wannier functions is identical with that obtained by Sugano and Shulman via the mo-
lecular-orbital method.

I. INTRODUCTION

In a previous study of the band structure and
Fermi surface of ReO, by the author' (hereafter
referred to as I), the linear-combination-of-atomic-
orbitals (LCAO) interpolation scheme of Slater and
Koster was applied to interpolate between the re-
sults of augmented-plane-wave (APW) calculations
at symmetry points in the Brillouin zone. The re-
sulting Fermi surface was found to be in quantita-
tive agreement with experiment. The calculated
cross-sectional areas agreed to within 10/g with
the de Haas-van Alphen data of Marcus. The
maximum discrepancy between the calculated and
experimental Fermi-surfaceareas was reduced to
about 5/o when a comparison was made with the
more accurate magnetothermal oscillation data of
Graebner and Greiner.

Despite this excellent agreement between theory
and experiment concerning the dimensions and shape
of the Re03 Fermi surface, it was recognized that
this LCAO parameterization scheme included the
crystal-field splitting between the rhenium tz, (5d
orbitals of xy, yz, and zx symmetry) and e~ (those
of Sz —r and x -y symmetry) states in a rather
artificial way. Namely, this splitting was intro-
duced into the LCAO scheme by shifting the orbital
energy of the e~ states relative to that of the t~~
orbitals by the crystal-field splitting &. As a re-
sult, all the crystal-field effects exhibited by the

APVf results for Re03 were buried in a single one-
center d-type LCAO parameter, namely,
&3,2 „~,q+~2 {000)in the notation of Slater and Koster. 3

The present analysis represents an attempt to
provide a more physical representation of these
crystal-fieM effects in the ReO, and closely related
perovskite band structures. To do this, we intro-
duce one of the complications that Slater and Koster
removed at the outset in their treatment of the
LCAO interpolation scheme. Namely, we form our
Bloch sums from nonorthogonal atomiclike orbitals
rather than the orthogonalized combinations suggested
by Slater and Koster. After the secular equation
for a given wave vector k has been set up in terms
of these nonorthogonal Bloch sums, we then apply
the symmetrical orthogonization method of Lowd1n

to convert to an orthonormal basis. In the non-
orthogonal basis, all the d orbitals have approxi-
mately the same energy and the final crystal-field
splittings between the e~ and t2, levels are the re-
sult of overlap and covalency between the oxygen
2s-2P and the rhenium e~ orbitals.

The details of the generalized LCAO interpola-
tion scheme for ReO3 involving nonorthogonal atomic
orbitals are presented in Sec. II. Section III con-
tains a detailed analysis of the crystal-field split-
tings of some particularly simple states at symmetry
points of the simple cubic Brillouin zone for the
Re03 structure. It is shown that the crystal-field
splitting at I', for example, is due entirely to
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oxygen 2s and rhenium e~ overlap and covalency
effects. The resulting shift in the e~ orbital energy
is denoted by ~, . On the other hand, at the point
8, similar but stronger interactions between the
oxygen 2PO' and rhenium e~ orbitals produce a
larger shift &,. At other symmetry and nonsym-
metry points in the Brillouin zone, the crystal-
field splittings contain a combination of these
effects.

Section IV contains a second-order perturbation-
theory treatment of these effects. To this approxi-
mation, it is shown that the difference 4, —4, has
the same wave-vector dependence as the LCAO
d-d parameter which is responsible for the e~ band-
width. It is also shown that the analogous overlap-
covalency interactions between the oxygen 2pz and
rhenium t2~ orbitals lead to a similar parameter
~„which is largely responsible for the ta band-
width.

In Sec. V we establish a relationship between the
present tight-binding approach and the molecular-
orbital (MO) method used by Sugano and Shulman
(SS) in their treatment of the (NiF~)' complex in
KNiF, . Using their variational method, but im-
posing the translational symmetry of the lattice,
we find detailed expressions for covalency and
crystal-field parameters which are equivalent to
the results of Secs. III and IV. We examine these
results in the limit where the Coulomb interaction
energy U between two d orbitals on the same atom
is large compared to the e~ and t+ bandwidths,
thereby causing the Bloch waves to localize into
Wannier functions whose energy is the average en-
ergy of the corresponding band states. It is shown
that the crystal-field splitting between the localized
e~ and tz, states is given by the simple expression

where E„,and E„, correspond to the energies of
the nonorthogonal e~ and t~~ orbitals. To second
order in perturbation theory, &„,is identical with
the expression for the crystal-field parameter ~
that is obtained by Sugano and Shulman via the MO
method.

The results that are obtained from applying the
LCAO method with nonorthogonal orbitals to Re03
and KNiF3 are contained in Sec. VI. These results
include energy bands, LCAO wave functions, and
an evaluation of the accuracy of second-order per-
turbation theory. Section VII contains a summary
of this approach to crystal-field theory and its
relationship to earlier methods. It includes some
comments concerning the extension of these methods
to other crystal structures and the implications of
these results on Anderson's theory of superexchange. 7

II. LCAO METHOD: NONORTHOGONAL ORBITALS

In the present application of the Slater-Koster

3z&-r 5z r xy

(a) (c)

FIG. 1. (a) Schematic representation of a single 0.

bond involving rhenium y3,&,2 and oxygen cp, orbitals.
(b) Orbitals involved in a single O.-type bond. (c) Or-
bitals which form a ~-type bond.

LCAO method, we form Bloch sums from atomic
orbitals which are not orthogonal to each other.
As Slater and Koster point out, this procedure
yields nonorthogonal Bloch functions. However, we
shall show that this lack of orthogonality does not
represent a serious handicap to the LCAO method
in actual numerical computations. Furthermore,
it is believed that this procedure provides a more
physical representation of both the energy bands
E(k) and the corresponding Bloch-type wave func-
tions b„(k).

The original treatment of Re03 in I with orthog-
onal orbitals g„(r) included the oxygen 2P orbitals
of x, y and z symmetry localized at each of the
three oxygen sites in the unit cell. Five additional
Bloch functions were formed from the rhenium 5d
orbita]s of xy, yz, zx, 3z -z, and x -y symmetry.
In the present treatment, we include these same
basis functions, except they are now formed from
nonorthogonal orbitals y„(r). In addition, we aug-
ment this basis set by including oxygen 2s orbitals
at each of the three oxygen sites. This increases
the dimension of the secular equation from 14 to
17. In principle, we could also include the rhenium
Gs orbitals in this scheme, but the APW results in
I indicate that the bands formed from these states
lie above the rhenium 5d bands, well above the Re03
Fermi energy. We will return to this point in later
sections.

In order to simplify the analysis, we shall in-
clude only the largest overlap effects. These occur
between the rhenium e~ and the oxygen 2s and 2/0
orbitals. This is clear from the schematic rep-
resentation of these orbitals in Fig. 1. The two-
center integral involving y, and y„a „2 of Fig. 1(a)
and the Hamiltonian operator is denoted by (sdc).
The corresponding overlap integral is represented
by S,. Similarly, the corresponding energy and
overlap integrals involving y, and y„& a in Fig.
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TABLE I. Additional nonvanishing LCAO matrix
elements for the Re03 structure which augment Table
III (I) by including overlap and s-d interactions.

Tight-binding basis functions

Oxygen s

No.

15
16
17

Origin

—,'a(1, o, o)
(0, 1,0)

—,'a(0, o, 1)

Function

S1

S2

S3

Oxygen-oxygen (s-s) interactions

Es=Es s (000

H1 5, 15 H16, 16 H17, '17

Oxygen-rhenium (p-d) overlap

$& ——Sz3 3z2 „~2 (002)
S6 4= —iS~sin&(f
S1p 4

= $8&sing g

$14 4= 2iS~sin2$

Oxygen-rhenium (s-d) interactions

$6 ~
= v 3 iS~ sin2 (

$10 5
= —v 3$Sgsln2'g

(sdo) Es 3, 3z2

H1g 4= —(sdo.) cos2$
H16 4

———(sdo.) cos 2g

H17 4 2 (sdo') cos 2 K

„2(oo-,')
H1& 5

——~3 (sdo) cos2$,
H16 5= —~3 (sdo') cos2'g

Oxygen-rhenium (s-d) overlap

S15 4= Sscos21

$16 4
——Ss cos2q1

S17 4= 2Sscos2&

S.=- $.3,3.2-.2 (oo-,')
S15 5

——~3$scos 2$

S16 5
——-v 3Sscosag

1(b) are denoted by (pdo) and S„respectively.
Finally, the energy integral involving the orbitals
p„, and y„ in Fig. 1(c) is represented by (pdp) and
the corresponding overlap integral S, is neglected
in the present simplified analysis. (We shall in-
clude these 7j overlap terms later in the KNiF,
calculation. )

The detailed form of the LCAO matrix that was
applied in the earlier treatment of He03 is con-
tained in Table III of I [hereafter referred to as
Table III (I)]. The additional energy and overlap
integrals which enter the present treatment are
contained in Table I. The notation for the overlap
integrals is derived by analogy with the Slater-
Koster notation for the energy integrals with S re-
placing E.

Once the Hamiltonian and overlap matrices have
been set up for a particular wave vector k, we
can immediately apply the Lowdin symmetric or-
thogonalization scheme' to convert back to an ortho-
normal basis. As Slater and Koster prove, this
transformation preserves the point-group symmetry
of the y„orbitals in the orthonormal basis. If II
is the Hamiltonian matrix in the nonorthogonal basis
with overlap matrix S, then Lowdin's symmetric
orthogonalization scheme introduces an effective
Hamiltonian matrix H' with a unit overlap matrix,

where
t S-1/2 II S-1/2 (2. 1)

and S ' is a symmetric, nonunitary matrix that
satisfies the relation

S-1/2 S S-1/2 = 1 (2. 2)

Lowdin has given a power-series expansion of
S ' . However, when the overlap is large, the
convergence of this power-series expansion is quite
slow and it is necessary to determine S ' more
directly for numerical computations. A method for
determining S ' that is convenient for machine cal-
culations involves the following procedure': The S
matrix is first diagonalized by a unitary transforma-
tion Uto yield the diagonal matrix d,

U S U=d. (2. 3)

Since the eigenvalues of S are all positive, a new
matrix d can be formed from d by replacing each
diagonal element by its inverse square root. Then,
the matrix S ' is given by

S-»2 —Ud-1/2 Ut (2.4)

The matrix S '/ is clearly self-adjoint and is easily
shown to satisfy Eq. (2.2).

E, Agafya))
&(neo) Z,

1 ~S„
(3.1a)

(3.Ib}

III. CRYSTAL-FIELD SPLITTING: I, ,X,N, AND R,

It is instructive to consider insome detaila simple
example of these effects in the ReO, structure and
show how covalency and overlap each contribute to
the crystal-field splitting. By introducing a slight-
ly generalized notation, we can consider several
important examples at once, namely, the states
with I 12-, X2-, M2-, and 8»-type symmetry. ' The
importance of these states is immediately clear
from the results of Table I (I). There, it is shown
that states with I"» and X2 symmetry occur in the
rhenium 5d and oxygen 2s bands but not the oxygen
2p band. On the other hand, M2 and 812 states
occur only in the rhenium 5d and oxygen 2po bands.
These states are simpler than those with X1- or
M1-type symmetry since the former interact either
with oxygen 2s or 2po orbitals but not both. Thus,
we can separate out rather easily the relative con-
tributions to the crystal-field splitting that result
from 2s-5d and 2/0-5d covalency and overlap
effects.

To proceed, we apply the appropriate unitary
transformations to the LCAO Hamiltonian and over-
lap matrices of Table I and Table III (I). The re-
duced matrices for I'», X» M» and A» each have
the form
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where n =s or P; S~ is equivalent to S, of Table I,
and we use the two-center notation to replace the
LCAO parameter Pa of Table III (I) by @do). To
simplify this discussion, we have ignored temporar-
ily the small nearest-neighbor p-p and d-d inter-
action terms that contribute to the diagonal in Eq.
(3.la) and have included only the one-center inte-
grals, which we denote by E„E~, and E~. Addi-
tional subscripts o and g will be added later to
E~ and E„, but they are omitted now to simplify the
notation. In terms of the integrals defined in
Table III (I), E~, =A„ Ea, =B„ E„= D„ Ea, = D, .
The omitted p-p and d-d interactions will be re-
placed later in the detailed application to Reo, that
is described in Sec. VI A.

Using the results of Sec. II, the matrix S is
readily determined. Its matrix elements are given
by

(S "')„=(S"') =-,' [(I+MS„)"'+(1—v8 $~) "']
($- ~a) =($-~~a) =—' [(1 ~$ )-J (1 ~ $ )-~~ ]

(S.2)

Using this result, we can determine the effective
Hamiltonian H of Eq. (2. 1). These matrix elements
are given by

(H')„=[2(1—6$$] '([1+(I—6$ )' ]E„

+[1—(1 —6S )'~ ]E —12$, (ndv)),

(H')„= (H')„=[2(1—6Sa )]
~

(3.3)
& [-WS.(Z„+Z,)+2&(ndo)],

(H ')„=[2(1 —6S, )] [[I—(1 —6$,')"']Z.

(3.3) and combining terms, we are led to a simpli-
fied form for H':

(H')»=E -a[(l-6S )
'~a —1](za —E„)

—6$ V, (1 —6Sa) ',

(H'}a& = (H') ~a =~ V.,(1 —6S,') ',
(H')„=E,+-'. [(1-6S.'}-"'—l](Z, Z)-

—6$~V~a(l —6$~)

(3.7a)

(3.7b)

(3.7c)

Let us consider some of the features of H' that
follow from Eq. (3.7). First, we observe that H'

reduces to H when the overlap integral S goes to
zero since the second and third terms in (H')q& and
(H')aa vanish, and (ndo) is then equal to V„a ac-
cording to Eq. (3.6}. If we apply the diagonal sum
rule to (H')» and (H')aa, we find that the second
terms cancel and we have

(H')„+(H')a, =E +E, —12S V (1 —6S,') '. (3.8)

The first two terms on the right-hand side of Eq.
(S.8) are just the diagonal sum of H according to
Eq. (S. la). Thus, the center of gravity of the
orthogonalized states is raised relative to that of
the nonorthogonal orbitals by the last term on the
right-hand side in Eq. (3.8). We define this term
B~ as

B„=——12$,V a(1 —6S, )
' . (3.9)

If we choose the phase of the wave functions y„(r)
so that the overlap integral S is positive, then it
is clear from Eqs. (3.6) and (3.6) that V,a is
negative and B„ is positive. In any case, S and
V „will always have opposite signs so B„will
always be positive. If we also define

+ [1+(1 —6S„)'~a]za —12$„(ndo)]. A —= —,'[(1 —6S )
~a —1](za E), -(3. 10)

These expressions can be simplified if the two-
center integral (ndo) is separated into two terms.
This integral involves the Hamiltonian operator
H„and the orbitals y and y3,2~&. As is usual in
band theory, H„ is a sum of the kinetic energy 7
and potential terms V and V~, so that

Hm= &+Ve+ Vu

which can be rewritten

H,a
= a (& + V ) + a (T + Va) + a (V + Va).

(3.4)

(S.6)

Here, V and V& are the atomiclike potentials of
the oxygen and rhenium atoms, respectively. Then

(ndo') = f y (r )H„rp „a a (r ——', a%) dv

=a S (E„+Ea)+V a, (3.6)

where V „results from the third term on the right-
hand side in Eq. (3.6). Using this result in Eq.

then by substituting Eqs. (3.9}and (3.10) into Eq.
(3.7), we find

(H')» ——E„-A~ + a B

(H') „=(H')„= —,'B./~ S.,

(H')aa=Z, +A. +-', B..

(S. 1la)

(S.11b)

(3.11c)

Since the oxygen 2s and 2p bands are located below
the rhenium 5d bands, E~ & E, and E~ so that, A„ is
also positive.

The implications of Eq. (3.11) are illustrated
schematically in Fig. 2. To the left we show the
orbital energies E„and E . Moving to the right,
we first add the terms A„and then —', B„, both of
which occur on the diagonal of (H')» and (H')aa in
Eq. (3. 11). The sum of these terms corresponds
to the diagonal energies of the orthogonalized or-
bitals E' and E~, respectively. Finally, the effect
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~„=[-Wo (ada) +M s„E,]'/(z„- z.). (3.19)

Ed

I
Ed

A

I
I

I
Ag

I

I

2 Q
I
I

II gaea/V6sa
I

(Ed —E~)

~a

—,
' s~¹s

By proceeding in a similar manner, we can deter-
mine the analogous contribution to the energy of
the n orbital that is due to the formation of a partial-
ly covalent bond:

z„' -z. = -[-',Wos„(z, -E„)+Wo v„,]'/(E, -z„).
(3.20)

The terms within the brackets of the numerator add
in Eq. (3.18) and cancel in Eq. (3.20). Thus, to
second order, the d-orbital shift b is energetically
greater than the covalent bonding effect in the va-
lence bands.

IV. PERTURBATION-THEORY TREATMENT

FIG. 2. Schematic representation of the relative
magnitudes of the various terms in Eq. (3.11), as de-
scribed in the text.

of the off-diagonal matrix element (H')qa is in-
cluded (to second order in perturbation theory) to
obtain the final states shown to the far right. The
total energy shift of the d orbitals is indicated by
&e.

To determine ~„, we solve the secular equation
that results from H' of Eq. (3.11). To second order
the energies of the bonding and antibonding states
(E, and E') are given by

In contrast to the detailed analysis of the crys-
tal-field effects involving particular states at sym-
metry points in the Brillouin zone, we now present
a more general treatment of these effects using
second-order perturbation theory. For this analy-
sis, a matrix formulation of perturbation theory
due to Lowdin is particularly convenient. For
simplicity, we include explicitly for the moment
only the d orbitals with e~ symmetry in this analy-
sis. The wave equation for the nonorthogonal oxy-
gen 2s, 2P, and rhenium e orbitals q „(r) can be
written in the matrix form

H 0 H~ Cs

0 HPP HPd CP

( H~ H~ H(C, ),

d Q C

(-,' H„/WS. )'
Ed —E~ + 2A~

We define the total energy shift of the d orbital by
the parameter ~, where

( Zl

0

( zs„

0 ES~ C

E1 ES~d

E~Sd E1

(4. 1)

so that

—E (3.14)

(3. iS)

If A„and B„are expanded in powers of v 6 S„and
v6 V d, keeping only second-. order terms, we find

A. = —,'(WS. )'(E, —Z.),
z„= —2 (Ws„)(W v„,).

(3. 16)

(3. iv)

Substituting these results into Eq. (3. 15), dropping
the 2A in the denominator of the third term on the
right-hand side, and simplifying, we find the fol-
lowing expression for 4:

= [2

HAYS„(E~

—E ) —v 6 V ~] /(E~ —E„). (3. 18)

Using Eq. (3.6), an equivalent expression for 4
is given by

where the eigenvector C has been decomposed into
s, p, and d components, as indicated by the sub-
scripts. If Eq. (4. 1) is multiplied out, C, and C~
can be eliminated, and Eq. (4. 1) can be repla. ced
by a single equation involving an effective Hamil-
tonian Hdd and Cd:

HddCd = ECd, (4. 2)

then

I
dd dd —dd dd (4. 6)

where

H~q Hqq + (H~ —E~s
—— ) (El —H~, ) (H~ —ES~)

+ (H~q —ES~) (El —Hpp) (H~q —E~S~) . (4. 3)

If we define

Aqua
= (H~q —ES~~) (El —H~~) (K q

—ES~q), (4. 4)
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At this point, the analysis is still exact. We now

introduce the approximations which reduce this
treatment to that of second-order perturbation
theory. If we retain only the diagonal terms in
the expansion of (El H-) ', set E=E3, and H,
= E 1 in Eq. (4. 4), we then find the following form
for d„'„and ~« in the case of the Re03 structure:

(633)44 =
3 Ap (cos 3 ) + cos 37) + 4 cos 3L),

(b3„)45= (a'3)54 = W3+3a,(- cos'-,'$ + cos' —,'5)), (4. 6)

(6g3)55 = 363(COS 3 ( + Cos 3'g)q

(b f„)«=
3 Ap(sin3 —,

'
$ + sin3 —,'5) + 4 sin —,'f),

(rg3)4, =(h~pg)54= % 3+3hp(- sill p$+sin 35)) i

(Egg)55 = 3 Ap(Sill 3 )+ 8111 3'g)

(4. 7)

Here, the indices 4 and 5 refer to the e~ orbitals
3z —r and x —y, respectively, following the
notation of Table III (I). The parameter b, is given
by Eq. (3. 18) with n equal to s or p.

Equations (4.6) and (4.7) contain the contributions
of the oxygen 2s and 2PO orbitals to the crystal-
field parameter. In Sec. VI, we shall show that

hp is two or three times larger than &,. If we write

since D5 is negative according to the results of
Table V(I) and Dp is positive. Neglecting D3 [which
is small according to the results of Table V(I)], the

e~ bandwidth is —6D,'. The total e~ bandwidth in
Re03 therefore includes a small contribution from
direct d-d interactions; the major contribution is
due to the anisotropic component of the crystal
field D~.

An analogous treatment of the t,~ and 2pm orbitals
is straightforward. The s-d interactions vanish by
symmetry. For these t,~ states, H„'„contains the
additional 2/m interaction terms H«, where

(H35)ll = 3sq —gkq(cos) + cos'g)
~

(EP~5)3, = ,'r, —,'6,(—c—osi)+cosf), (4. 12)

(jPgg)33 36g 4 EI (Cosf + Cos) )

6, —= [-2W2 (pdm)+2v 2S, E„,] /(E3, —Ep~). (4. 13)

The subscripts 1, 2, and 3 refer to the t& states
xy, yz, and zx, respectively, according to the no-
tation of Table III(I). Comparison with the results
of this table suggest the introduction of an effective
parameter D~ such that

6 +6D~ ——hp, (4. 6) Dp- D2 —8 (4. 14)

(H55)«= 3D3 —2D3(4 cos) + g cosi|+cosf),

(H35)45 = (H„"„),4= ——,
'

W3Dp (- cos&+ cosiI), (4. 10)

(FP~~)55 = 3Dp —3D3, (cos) + cos'I/) .

Comparing with the results of Table III (I), it is
clear that H.„„has the same cosine-dependent terms
as

D5=E3,3„„33,3 3(001) .

Therefore, we can introduce an effective parameter
D,' which includes to second order the direct d-d
interaction D5 plus the anisotropic crystal-field
parameter D~,

DS=D5 —D~ . (4. 11)

These two contributions to D5 add rather than cancel

then 6D~ turns out to be a positive quantity that is
largely responsible for the e~ bandwidth. Assuming
for the moment that D 3, is negligible, then Eq. (4.5)
simplifies to

Hqq—-II«+ 6 1, (4. 9)

since the sin —,'x and cos —,'x terms in Eqs. (4. 6) and
(4. 7) add up to one and the off-diagonal contributions
cancel. Thus, according to Eq. (4. 9), the energy
of the e orbitals is increased relative to that of the

t& states by the crystal-field parameter 6,.
We now consider the effect of the 6D~ term in

Eq. (4. A). This adds a wave-vector-dependent
term H"„„ to the right-hand side of Eq. (4. 9), where

Equations (4. 11) and (4. 14) illustrate a potential
danger in attributing too much physical significance
to the parameters which enter the LCAO or tight-
binding interpolation scheme. Parameters which
are intended to represent a d-d interaction can
easily be dominated by p-d or s-d contributions.
These contributions can determine both the sign
and magnitude of the parameter. Evidence for such
effects occurred in the determination of the param-
eter D~ in the ReO~ calculation, as described in I.

V. MO METHOD

The MO method has been applied by SS and
others '" to calculate covalency effects and the
crystal-field parameter 6 for the (NiF3) molecu-
lar complex in the KNiF3 crystal. The relationship
between the Re03 and perovskite structures was
described in I, where it was shown that the Ni and
F atoms occupy the same positions as the Re and 0
atoms in Re03 while the K atoms are located at the
corners of the cubic unit cell. Excellent reviews
of MO theory, including its application to transition-
metal compounds, are contained in the articles by
Anderson and Owen and Thornley. ' These contain
extensive references and trace the historical de-
velopment of this field.

The MO approach differs from that of the LCAO
(or more generally, the band) method in several
important respects. First, the MO method ne-
glects the lattice periodicity and considers only a
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single molecular complex rather than the entire
three-dimensional crystal. As a result, the MO
method utilizes the point symmetry of this com-
plex rather than the full space group of the crystal
in oxder to factor the MO secular equation. In
the case of an octahedral complex such as (NiF8)
the MO method includes only those bonding and
antibonding orbitals which possess the octahedral
point symmetry. For the Re03 and perovskite
structures, these bonding and antibonding MO's
correspond to I CAO Bloeh states at I' and 8 in
the simple cubic Brillouin zone, respectively.

In order to clarify the relationship between the
LCAO and MO methods, we summaxize brieQy the
MO formalism of SS in terms of the LCAO param-
eters of See. III. In the band limit, this approach
is equivalent to that of See. III. In the localized
limit, this analysis reduces to the traditional MO
formali sm.

A. Band Limit

In their analysis, SS reduce the problem of cal-
culating covalency effects and the crystal-field
splitting b. for the (¹iF6) complex to that of solving
a pair of 2-by-2 secular equations involving non-
orthogonal MO's, similar in form to those which
result from the Hamiltonian and overlap matrices
of Eq. (3.1). They apply a variational technique
to solve these secular equations, introducing anti-
bonding and bonding wave functions of the form

Z' =[E„+y W6{odo)]/[1+y ~6S ],
z.' = [E.—~'.z,]/(I —~'.),

(5. 5)

(5. 6)

which correspond to Eqs. (2. 4)-(2. 7) in SS. In
Eqs. (5.3)-(5.6), we have used the Hamiltonian
and overlap matrices of Eq. (3.1).

The variational parameters X~ and y are deter-
mined by equating the right-hand sides of Eqs.
(5.3), (5. 4) and (5. 5), (5. 6). By defining the di-
mensionless quantities

c.=--,'~s. ,

D. =- -Wv. , /(E, -z.),

and using Eq. (3.6), we find that

(5.7)

(5.8)

(5. i2)

Keeping only the lowest-order terms and using
Eqs. (5.7) and (5.8), we find the following approxi-
mate expressions fox' A~ and y~ '.

X„=—'(C —D ) '(I —[1—4(C —D )] $, (5.9)

y. = --,'(C„ +D.)-'(I —[i —4(C.' -D.')]") . (5. 10)

By expanding the square root and rearranging
terms, we obtain the equivalent expressions

= {C„+D )[1+(O', —D')+2(C' D')'+ —~ ~ ~ ],
(5. ii)

y, = ( —C +D„)[1+(O' -D ) + 2(C' D,')'+ ~ ~ -].

O'=N '~'(y -X)|),
~'=&' "'(x+rw),

(5. ia)

(5. Ib)

which are exact eigenfunetions of the one-electron
Hartx'ee- Foek equation

~.=-,'Ws. -vYv. ,/(E, -z. ),

y. = --.'Ws. -I8 v.,/(z, -z.),

(5. iS)

(5. 14)

II„4=E4 . (5. 2) y„=X.-~S. , (5. 15)

E' = [E, —X, v 6 (ndo)]/[I —X W6 S,],
z:= [E, —x',E.]/(I —&'.),

(5. 3)

(5. 4)

Aecox'ding to SS p 18 a nox'Ina11zed atomic d ox'bital
localized at the metal ion, g is the normalized MO
wave function for the neighboring ligands, X and y
are variational coefficients, and the ~'s are nor-
malization constants. In the present treatment,
the only new feature we introduce is that of replac-
ing p and X by Bloch sums rather than using local-
ized atomic and MO wave functions. %Then this is
done, the ligand orbitals numbered 4-6 in Fig. 1
and Eq. (2. 4) of Shulman and Sugano' are related
to those numbered 1-3 by a lattice translation.

To determine the energies of the antibonding and
bonding states, 4" and 4~ are substituted into Eq.
(5. 2). Multiplying on the left-band side by p (and
then )t) and integrating, we obtain

which are equivalent to Eqs. (2. 12)-(2.15) in SS.
We point out that X and y (n =s,P) correspond to
W2y, and v 2X, in SS. The fa,ctor v 2 originates
from the MO nature of their ligand wave function.

From Eqs. (5. 13) and (5.14), we observe that
the SS decomposition of the various contributions
to the crystal-field parameter 4 [Eqs. (2. 10) and
(2. 11) in SS] is ambiguous since the covalency
parameter y also has an overlay component
—,'~S . The term v 6V ~/(E~ —E ) is more proper-
ly identified as the covaleney contribution. Since
V ~ is oyyosite in sign to S, we note that the over-
lay and covalency terms add in A. and cancel in
kg ~

In contrast to SS, we find that in the band ap-
proximation the overlay-covaleney contributions
to the crystal field from the 2s and 2p orbitals
occur separately at different points in the Brillouin
zone. Using Eqs. (3.14) and (5.4), we find that
the shift in the e~ orbital energy due to s or P
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overlap-covalency effects is given by

= A. (E„—E„)/(I —X ) . (5.16)

This result is exact if A. is evaluated using Eq.
(5.9). It is similar in form to the expression for
the crystal-field splitting which has been derived
by Moriya, as described by Anderson [Eq. (6. 15)
of Ref. I] in his review a,rticle on superexchange.
This expression for 4 reduces to that given in
Eq. (3. 18) if A., is neglected in the denominator of
Eq. (5. 16) and the approximate expression for
X„ in Eq. (5. 13) is introduced in the numerator.

B. Localized Limit

«g =E +—'(6 +6 ), (5. 18)

where we again introduce a second subscript a on
E„and replace 4~ by 4,. According to Eq. (4. 12),
the average energy of the ts, -band states (E,) is
given by

where &, is defined by Eq. (4. 13).
In this localized limit, the crystal-field parame-

ter &„, is defined as

(5. 20)

Introducing the results of Eqs. (5. 18) and (5.19),

bq, =Eq -E«+-'(6, +d -6,).
Using the expressions for ~„~„and 4, given by

The SS expressions for 4 contain 2s, 2Po, and
2Pm overlap and covalency contributions. In the
band limit, we find that the 2s contribution 4, pro-
duces the crystal-field splitting of the t„and e,
bands while 6, —~, is responsible for the e~ band-
width. A corresponding contribution from the kg
electrons causes the t~~ bandwidth. In Sec. VI,
we shall find that the e~ and t& bandwidths are
- 1 eV in KNiF, . It is well known that in the limit
where the bandwidth is small compared to the
Coulomb energy U between two d electrons located
on the same atom, the electrons will localize and
form Wannier functions. In this way, the electrons
sacrifice some kinetic energy that might be gained
by delocalizing into Bloch states, but this kinetic-
energy contribution to the total energy is small
compared to the additional Coulomb terms U that
would be introduced.

Anderson~ has shown that the localized Wannier
functions have the average energy of the band. From
our perturbation treatment of the e~ and t2 states
in Sec. IV, we find from Eqs. (4.9) and (4. 10) that
the average energy for the e~ states «,) is given by

(EQ = E«+ 4, +3D~,

or using Eq. (4. 8),

Eqs, (3.19) and (4. 13), it is straightforward to
show that 6„,of Eq. (5.21) is exactly equivalent
to the expression for ~ that is given by SS in Eq.
(2. 10) or (2. 11). Thus, we have shown that the MO
method predicts the same crystal-field parameter
as the LCAO method in the limit where U is large
compared to the bandwidth.

VI. APPLICATION AND RESULTS

To simplify the discussion in this section and in Sec.
VII, we introduce the following terminology. We refer
to the Slater-Koster LCAO interpolation scheme
involving orthogonalized orbitals as the linear -com-
bination-of -"orthogonalized" -atomic-orbitals
(LCOAO) method. The present method involving non-
orthogonal orbitals is designated the LCAO method.

A. Re03

In principle, the application of the LCAO inter-
polation scheme to the ReO, band structure requires
a reevaluation of the 19 LCOAO parameters intro-
duced in I plus a determination of the four additional
parameters that have been added in the present
treatment. To simplify matters, we shall "freeze"
17 of the original 19 LCOAO parameters and modi-
fy only two of these. In particular, we modify D4
= E«and P2 ——Qdo) The'.parameter D4 is modified
by assuming that E~, = E~, =D„which removes all
the crystal-field effects from the LCOAO treat-
ment. The parameter E, has been set equal to the
energy of the top of the oxygen 28 band, as deter-
mined by the APW calculations described in I.

The four remaining parameters (sdo), S„/do'),
and S, have been determined by fitting the APW re-
sults for I'» and H, 2 exactly. In particular, (sdo)
and S, were determined by requiring that the eigen-
values of the secular equation that results from
Eq. (3.3) with o, =s reproduce the APW energies of
the I"» states in the oxygen 2s and rhenium e,
bands. The parameters (pdo) and S, were deter-
mined in the same way by fitting the 2po and e,
states of H» symmetry. In these calculations, the
small d-d and p-p interaction terms that were omit-
ted from the diagonal in Eq. (3. la) were taken into
account. The final values for all 23 LCAO parame-
ters are listed in Table II.

In order to emphasize the difference between the
LCOAO and LCAO schemes, we consider the re-
sults of Fig. 3. In Figs. 3(b) and 3(c), we compare
the energy-band results along the [100] or & direc-
tion obtained by the LCOAO and LCAO methods,
respectively. The corresponding APW results for
ReO, are shown in Fig. 3(a). For orientation pur-
poses, the bands that originate from the I'» and
I'». states are the rhenium e~ and t2 bands, respec-
tively. The nine oxygen 2p bands are located about
0. 2 Ry below the bottom of the t~~ band. The oxygen
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A(
A~

A3

B(
Bg
B3
B4
C)
Cp

C3

C4

—0.2761
0.0258

—0.0034
—0.2294
—0.0191

0.0049
—0.0001

0.0097
0.0142
0.0034

—0.0037

D) =D4
Dp

D3
Dr

D6
(Pdo )
(pox)
(st. )

s~
s~

0.0592
0.0000

—0.0001
—0.0241

0.0006
-0.2562

0.1324
—0.2849

0.0988
0.1105

—l. 3400

~S~ and S~ are dimensionless.

TABLE II. Tight-binding parameters obtained by
fitting the AP%' results for He03 using the LCAO scheme
with nonorthogonal orbitals.

Parameter

2s bands (which are not shown) extend from —l. 34
to —1.43 Ry on this energy scale. The I', -X4. band
near the toy of Fig. 3(a) represents the lower por-
tions of the rhenium 6s-6P conduction band. These
states have been excluded from our tight-binding
analysis and are therefore omitted from Figs. 3(b)
and 3(c).

In Fig. 3(d), we show the results of an APW cal-
culation in which the potential within the oxygen
spheres has been set equal to zero. Roughly
speaking, this is equivalent to a band calculation
for simple cubic rhenium with an enornlous lattice
constant. Several differences are obvious between
the results of Figs. 3(a) and 3(d). First, the crys-
tal-field splitting between I'» and I"». has disap-
peared, and I"» actually lies lower than I'„, in
Fig. 3(d). Second, the 5d bands are quite flat, as
one would expect from the large Re-Re separation.
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for g.eO3 along the & line. (b)
LCOAO results along &. (c)
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Finally, the rhenium 6s-6p bands have dropped
down in energy until 1"& is slightly below the 5d
bands at the zone center I'. This is a familiar
feature of transition-metal band structur es.

The results shown in Figs. 3(e) and 3(f) repre-
sent an attempt to simulate the APW results of
Fig. 3(d) in the LCOAO and LCAO approximations.
In obtaining the results shown in Fig. 3(e), the
3p-5d interaction parameters (pdo) and (pdp) in
the LCOAO calculation have been set equal to
zero. The cox'1 68ponding results showD ln Flg.
3(f) were obtained by setting 8, 8, (SdO'), (pdo'),
and (pdm) equal to zero in the LCAO calculation.
Unlike the LCOAO results of Fig. 3(e), the crys-
tal-field splittings disappeax in the LCAO results
of Fig. 3(f) and the resulting 5d bands resemble
rather closely the APW results in Fig. 3(d). The
small dlffex'ences between the +g and +5 bands ax'6

easily attributed to 68-6p hybridization, which is

automatically included in the APE( calculation but
not in our LCAQ scheme.

Although the rhenium 68-6p bands have not been
treated explicitly in the present LCAO analysis,
it is clear from the results of Fig. 3 that these
states are shifted to higher energies in Fig. 3(a)
by the same overlap-covalency effects which are
responsible for the crystal-field splittings in the
rhenium 5d bands

The over-all features of the LCAO fit to the AP%
results for Re03 are shown 1n Fig. 4. Here, E(k)
curves along symmetry lines of the simple cubic
Brillouin zone represent the LCAQ bands. The
AP% results at symmetry points which have been
used to determine the LCAQ parameters are indi-
cated by the open circles. This LCAO method has
reduced the maximum deviation between the APW
and the previous LCQAO results from about O. 04
Ry to less than 0.02 Ry. This modest improvement
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TABLE III. Comparison between the APW results for He03 and those obtained via the LCAO interpolation scheme
using orthogonal (LCOAO) and nonorthogonal (LCAO} orbitals.

LCOAQ LCAO State AP% LCOAO LCAO

I'25s

I"~5

I'~s
I'g5

I"
gg

Xi
X2
Xg
X3
Xgs
X3~

X)i
X4i
X5
Xg

Xp
Xg

0.351
0.055

—0.193
-0.250
—0.311
—1.428

0.626
0.356
0.230
0.064

—0.20.
—0.260
—0.282
—0.303
—0.353
—0.532
—l.432
—l.444

0.351
0.059

—0.198
—0.243
—0.313

0.646
0.349
0.230
0.059

—0.199
-0.263
-0.283
-0.292
-0.352
-0.539

0.351
0.059

—0.198
—0.243
—0.313
—1.428

0.643
0.349
0.230
0.059

—0.199
—0.263
—0.283
—0.292
-0.352
—0.543
—1.428

1o 372

R25

R~s
Rg

R)5

M2

Mg

Ms
M5

M4
M4r

M5i

M5

M3

Mg

M2

Mg

0.803
0.322

—0.189
—0.421
—0.473
—0.574

0.811
0.487
0.328
0.229

-0.186
—0.218
—0.270
—0.350
—0.474
—0.480
-0.571
—1,437

0.776
0.321

-0.187
-0.428
—0.476
—0.541

0.775
0.506
0.321
0.230

-0.188
—0.211
-0.277
—0.352
—0.477
—0.494
—0.551

0.803
0.321

—0.187
—0.428
—0.476
—0.574

0.798
0.496
0.321
0.230

—0.188
—0.211
—0.277
—0.352
—0.477
—0.489
—0.581
—1.401

= -(O. O667+O. 2162) Ry.

Similarly, for /do) we find

(ado)= ', S,(E, +E,)+V„-
(6. 1)

in accuracy is expected since the present LCAO
method includes four additional fitting parameters.

A detailed comparison between the AP%' results
for ReOS and those obtained by the LCOAO and
LCAO fitting procedures is contained in Table III.
Since we have frozen most of the LCOAO parame-
ters, only those states which interact with or form
the rhenium e~ bands have been modified in the
LCAO calculation.

It is instructive to examine the relative magni-
tudes of some of the parameters listed in Table II.
For example, we note that the 2Po-5d overlap
integral 8, is slightly larger than the 2s-5d overlap
integral 8, . This difference is consistent with the
radial charge distribution of the Herman-Skillmanl4
atomic wave functions for the oxygen 2s and 2p
states. If one plots the radial portion of these func-
tions for neutral oxygen, it is found that the ampli-
tudes of the 2s and 2p orbitals axe nearly equal at
the oxygen sphere radius. However, the lower
energy of the 2s orbital causes it to decrease more
rapidly than the 2p function at larger distances.

We can also understand the relative magnitudes
of (sdo') and (/do) in terms of Eq. (3.6). In the
case of (sdv), the results of Table II and Eq. (3.6)
yield the result that

(sdo) =-,' S,(Z. +E,)+ V„

Thus, the parameters V~ and V~~ scale accurately
with the overlap integrals 8, and S,. The ratios
V~ /S, and V~~/S, are —2. 21 and —2. 25 Ry, respec-
tively. The large negative value for E, in Eq. (6. 1)
is responsible for the fact that i(sdo) i & i ado) i .

Using the results of Table II, we can now deter-
mine the magnitudes of the various terms in Eq.
(3.11) when it is applied to the I'&z and R,2 states.
The results are summarized in Table IV. For
purposes of comparison, we have also included in
this table the analogous results for the I", states
in the oxygen 2s and rhenium 6s bands. For this
case, the parameters are given without subscripts.
[These states lead to a Hamiltonian matrix with
the same form as H' in Eq. (3. 11), except that
W S and WV ~ are replaced by 2~S and 2WV,
respectively]. From the results of Table IV, A,
and A~ are found to be much smaller than the terms
p B~ and 2 Bp. The same ls true for tI1e relative
magnitudes of A and ~ B. Furthermore, we note

. that the magnitude of the off-diagonal matrix ele-
ment —,

' BI/WS~ relative to the energy denominator
(E~-E~) precludes the possibility of treating the
2P-5d interaction in Re03 by second-order perturba-
tion theory. The situation is only slightly more
favorable for the 2s-5d and 2s-6s interactions be-
cause of the larger energy denominators.

From an analysis of the I y states~ we find that
(sso) = —0. 2590 Ry, S=0.0980, and V= —0. 1946 Ry.
The ratio V/S = —1.99 Ry is within 10/0 of the
previously quoted values for V,„/S, and V~/S, .

B. KNiF3

= —(0.0071+0.2491) Ry. (6.2) To apply the LCAO method to KNiF» we deter-
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TABLE IV. Values for the various terms (in rydbergs)
of Eq. (3. 11) when applied to r&2 and R~2, using the pa-
rameters of Table II. The analogous results for r& are
also included. SS LCAO

TABLE V. LCAO parameters for KNiF3 and their re-
lation to the MO integrals of SS.

E„(r„)'
Es
A
12Bs
—,'a, /&6S,

E„(r,)
Es
A
—B1
2
—.'B/2' s

'Ed(r»)
Ed(R~2)
'E,(R„)

—0. 0113
—1.3400

0. 0203
0. 1374
0. 5678

0. 0249
—l. 3400

0. 0431
0.2587
0. 7619

=D, +3(D, +D,).
= D) —3(D5 +D6) .
=A.) —2A. 2

—4A3+ 4C2.

Zd(R„) '
Z,(R„) '
Ap
1
2Bp
2Bp/V 6 Sp

0. 1297
—0. 2573

0, 0075
0. 1783
0. 6584

(@|,2, I I o I @s2,) 0. 273 0

(y, Iho I y, ) 0. 240 4
(x,~@0~ x,) —1.991 8

(XpfI I ko I Xp ) —0. 325 6

(Xpjf I Ao I Xpy)
—0. 167 0

(cp, lhol x, ) —0. 232 0
—0. 197 2

(veal ~ol xp) —0. 088 6

(q, Ix,) 0. 081 43
(y,, I xp.) 0. 110 71
(Vg„l Xp) 0. 075 57

~Integrals containing the Hamiltonian
overlap integrals are dimensionless.

D)
D4

Es
A)
B)
D3 (sa'o-)

&3(pc(0)
—2 (prism)

&3S,
&3S,

Po are in H,y, the

mine the various LCAO parameters from the MO

integrals tabulated in Table VI of SS. The eleven
LCAO parameters that are used in this calculation
for KNiF, are listed in Table V. To maintain a
consistent set of units in the present paper, we
have converted the SS values from a.u. to Ry.
The relationship between the SS integrals and the
LCAO parameters is given explicitly. The factors
W and 2 arise from the MO nature of the X orbitals.
The change in sign for (pdv) and the corresponding
overlap integral S, is introduced in order to main-
tain our choice of phase, as illustrated in Fig. 1(c).

The form of the z overlap matrix is readily ob-
tained from the results of Table III (I) by replacing
H; &

and P, by S, ~ and S„respectively.
Using these parameters, we obtain the LCAO

band structure for KNiF3 that is shown in Fig. 5.
A comparison with the previous results for Re03
in Fig. 4 suggests many similarities. As far as
the Ni 3d bands are concerned, the crystal-field
splitting E(I',2) —E(I'z, .) is smaller than the t~~

bandwidth E(X,) —E(X,), and this produces overlap
of the t2 and e~ bands. In this respect, the KNiF3
3d bands are similar to those obtained by Kahn
and Leyendecker for the conduction bands in

TABLE VI. LCAO wave functions for the bonding and antibonding states that form and interact with the e~ bands in

H,e03 and KNiF3.

(o, o, o)

(o, o, ~/a)

I' s(2

ri2
r,',

xI'
X,d
Xs

2

xp

si
b

42
C-@'s3

—C's3
—C

3

4 2

State s

Zg3

M3

M3

3z —r 2

X2 2

382-r2
x —r2 2

38 —r2 2

382 r2
382 2

X2 2

X2 2

0. 9197
0. 9197

—0. 4652
—0.4652

0. 9681
—0. 1721
—0.2327

0. 9195
—0. 4655

He03

0. 0294
0. 8147

—0. 6227

0.2288
0.2288
1.0049
1.0049

0. 1446
0.4192
0.9363
0.2291
1.0049

C,

0. 9940
0. 9940

—0. 1591
—0. 1591

0. 9980
—0. 0269
—0. 0884

0. 9940
—0. 1591

—0. 0004
0. 9314

—0. 3861

K¹iF3

Cp

0. 0436
0. 0436
1.0058
1.0058

0. 0254
0.2641
0.9751
0. 0436
1.0058

(~/a, ~/a, O)

M)

M2P

M2d

(m./a, ~/a, m/a) R~(2

R
R"

R)2d

S3

S3

4p3
d

C p3
4p3

-4'p2'
-ep2

f

—Cp(

3z —r2 2

38 —r2 2

38 —r2 2

X2 2

X2 2

38 —r2 2

X2 2

3z 2 2

X2 2

0. 9417
—0. 1805
—0.3497

0. 0275
0. 8914

—0.4803
0. 7470

—0. 7218

0.7426
0.7426

—0. 7263
—0.7263

0. 1952
0.3247
0. 9614
0.4926
0.9145

0.4982
0.4982
0. 9115
0. 9115

0. 9960
—0. 0284
—O. 1271

—0. 0004
0.9624

—0.2865
0.9051

—0.4538

0. 9051
0. 9051

—0.4538
—0.4538

0. 0358
0. 1986
0. 9882
0.3065
0. 9650

0. 3065
0.3065
0. 9650
0. 9650

@s2= (2) (s) s2) ~

=(2) '"(s~+s2).
~(2) 1/2( +y )

4p2
——j(2) (x) —y2) .

@p( =i(6) ' (2z3 —xg —y2).
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SrTiQ3.
The fluorine 2P valence bands exhibit severa, l

features @which are quite different from those of
the oxygen 2P ba.nds in ReQS. The most obvious

of these is the fact that the three 2/v bands are
split off from the six 2pg bands by about 0. 16 Ry.
Covalency effects in the kg bands reduce the
actual gap to about 0.13 Ry. The corresponding
bandwidth induced in the 2/0 bands by the stronger
@do') interaction is a,bout O. OV Ry. Since neither
the present AP%' x'esults for ReQS nox preliminary
AP%' results fox' SrTiQ3 exhibit this degree of

splitting bebveen the 2po Rnd kg VRlence bands,
we view this feature of the KNiF3 band structure
with suspicion.

If the LCAO parameters (sdo) and (Pd&) for
KNiF, are decomposed according to Eq. (3.6), the

x'esulting values for V~ and V& again scale with

the overlap integrRls 8, Rnd 8,. In this CRse, the
ratios V~/S, and V~~/S, are —1.9V and —1.V4 Ry,
respectively. If Eq. (3.6) is generalized to
represent the (PA) integral, the corresponding
ratio V~~,/S, = —1.22 Ry. Furthermore, we find

fox KNiF3 that the x elative magnitudes of the various

overlay-covalency terms that are shown schexnat-

ically in Fig. 2 compa, re favorably with the ReQ3

results that are listed in TaMe IV. However, the

magnitude of the pRlRmeter8 +~ 18 reduced becRuse

of the smallex degree of covalency and overlap in

K¹F3.
C. %have Punctions

We examine the detailed nature of the LCAQ wave

functions for ReQ3 and K¹iF3to determine the ex-
tent of covalency in the bonding orbitals and its
consequences on their antibonding partners. These
results allow us to examine cl ltlcally the accuracy
of second-order pex'turbRtion theory ln the cRlculR-

tion of covalency and crystal-fieM effects in these
matex'ials.

The LCAQ wave functions for the 2s, 2', a,nd

e~ states of ReQ3 and KNiP3 at symxnetry points in

the Bxillouin zone are tabulated in Table VI. The
eigenvectox's C„C&, and C& are equivalent to those
obtained by solving Eq. (4.1) exactly. In terms
of Eg. (5.la), the antibonding wave function for
I"»(F,2) indicates that N 'I3= C, and N "'

X = —C,.
For the bonding state I"',2, Eq. (5. Ib) suggests that
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TABLE VII. Comparison between the exact and second
order perturbation theory (PT) results for XN, y~, and
&~ for He03 and K¹iF3.

Re03
Exact PT

K¹iFB
Exact PT

0.249
0.463
0.671
0, 797

0.363
0. 673

0. 281
0.523
l. 441
l. 712

0, 364
l. 134

0. 044
0. 158
0.339
0.470

—0.226
—0.325

0.057
0. 161
0. 052
5530

0. 044
0. 159
0, 403
0, 560

—0.244
—0.351

0.057
0. 177
0.054
6340

+s~ +e and +w are in Hy

N' ' = C and N' ' y= C„. The normalization for
these wave functions is such that C,'+ 2WS C,C~
+ Cq ——j..

A superficial comparison between the results for
ReOS and KNiF3 demonstrates that the eovaleney is
much stronger in the former compound. It is also
clear that the degree of covalency varies through-
out the Brillouin zone and depends critically on the
symmetry of the states involved. These results
also exhibit the approximate relationship between
the covalency y, the overlap WS„, and the varia-
tional parameter X that is given by Eq. (5. 15) for
the states at I' and R, namely, A =y + v 6S,.

A comparison is made in Table VII between the
exact and perturbation-theory values of y, A, , and
4 for ReQ3 and KNiF3. The exact values are ob-
tained from Ec[s. (5.9), (5.10), and (5.16) while
the approximate values result from Eqs. (5.13),
(5. 14), and (5. 16) if X is neglected in the denom-
inator of the last equation. These equations also
are vahd for the v interactions if WS~ and W V ~

are replaced by 2WS, and 2W V~~„respectively.
Second-order perturbation theory is reasonably

accurate in K¹iF3, but breaks down when applied
to the P-d interactions in Re03. Even in KNiF„
the use of perturbation theory introduces a 10/o

error in 6,. According to Eq. (5.21), n,, repre-
sents the principal positive contribution to 4&„
since ~, and ~, nearly cancel and E~, -E« is nega-
tive in the SS calculation. Thus, the exact values
for X yield a value for 4„,which is about 15%
smaller than the SS value of 6340 cm '.

VII. SUMMARY AND DISCUSSION

%'e shall not attempt to review the various
theories on the origin of crystal-field splittings
in transition-metal complexes and compounds since
comprehensive review articles already exist in the
literature. 7' Generally speaking, we ean use
Anderson's classification and characterize these

theories as the ionic and partially covalent theories. '
According to the ionic theory, the crystal-field
splitting is due to the electrostatic field of nega-
tively charged ligands which surround the transi-
tion-metal ion. The covalent theories attribute
these crystal-field effects to wave-function over-
lap and the formation of partially covalent bonds
between the transition-metal d and the ligand 8
and P orbitals. It should be clear from the re-
sults of the previous sections that the present LCAO

approach represents an extension and generaliza-
tion of the MQ method for calculating the overlap-
covalency contributions to the crystal-field param-
eters.

%e have shown that the LCAQ and MQ methods
yield quite different results in the limit where the
one-electron band theory provides a valid descrip-
tion of the d states. In this limit, the selection
rules that are imposed by the additional quantum
number k decompose the MO crystal-field param-
eter 4„, into three distinct parameters 4„4„
and &,. The influence of these parameters on the
d bands is both wave-vector and crystal-structure
dependent. In the case of the ReO, and perovskite
structures, these para. meters not only are respon-
sible for the crystal-field-type splittings that tend
to separate the e~ and t& bands, but they also de-
termine the e~ and t@, bandwidths as well. In a
sense, the LCQAO method attempts to introduce
this crystal-field splitting in a way that is analogous
to that of the MO method. Namely, the crystal-
field effects are included as a rigid shift of the e~
band relative to the t@, states that is independent
of the wave vector k. The covalency effects which
are due to the Qdo) and Qdv) interactions are
treated separately. The LCAQ method treats these
effects in a more uniform manner and determines
the detailed relationship that exists between crys-
tal-field effects, covalency, and overlap.

It is important to emphasize that the addition of
oxygen 2s orbitals to the LCOAO treatment of Re03
in I will not provide a more satisfactory representa-
tion of the crystal-field effects in this compound.
These effects require the asymmetrical splitting
that results from orthogonalization in the LCAQ
method. This is clear from the combined results
of Figs. 2-4. According to Figs. 3(d) and 4, the
rhenium 5d and oxygen 2p bands each have a natural
width of about O. I Ry that is due to d-d and P-p
interactions, respectively. Yet overlap and eova-
lency effects increase the 5d bandwidth until it is
about twice that of the oxygen 2P band. The origin
of this asymmetry is illustrated schematically in
Fig. 2. There, it is shown that the total shift of
the d-state energy is greater than that of the
valence-band state because the latter shift is re-
duced by cancellation effects among the various
overlap-covalency terms. The final valence and
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d-band energies shown to the right are displaced
symmetrically with respect to the diagonal energies
of the orthogonal orbitals E' and E~ but not with
respect to E and E~. This asymmetry can only
be introduced into the LCOAO method by shifting
the center of gravity of the e~ bands relative to
that of the tz bands.

We have noted that it is only in the limit where
the Coulomb interaction energy U is comparable
with the e, and t~, bandwidths that the MO and LCAO
methods yield identical results for the crystal-
field parameter 4. In this limit, it is energetical-
ly favorable for Bloch waves to localize into
Wannier functions in order to minimize the Coulomb
interactions. It is important to emphasize that these
localized Wannier functions are associated with a
finite virtual bandwidth. This virtual bandwidth is
related directly to the effective transfer integral
b which enters Anderson's theory of superexchange. ~

If the energy bands were perfectly flat, then b would
be zero and there would be no antiferromagnetic
exchange coupling between the localized spins on

neighboring transition-metal ions.
According to Anderson's theory, this antifer-

romagnetic coupling between neighboring transi-
tion-metal ions can be represented in terms of a
Heisenberg interaction

(7. 1)Jsgg Sl Sp

where J,« is an effective exchange integral, '~

(7.2)

(7 8)

which is similar to Anderson's Eq. (7. 10) except
that he has the quantities (X, -S,) and (X, -S,) multi-
plying the. energy differences (E~ -E~) and (E~ E,), -
respectively.

Using the exact values of 4, and ~, for K¹iF,
from Table VII, setting U = 8 eV and 8 = 1, we find
that J,« = 80 'K. This is close to the value of 76 'K
that is quoted by Anderson, the result of an un-
published calculation by Moriya, Shulman, Sugano,
and Anderson. Owen and Thornley point out that
Anderson's expression for J,«contains an additional
factor of —,

' which they do not understand. Thus,
these two results actually differ by nearly a factor
of 2. This difference is due to the fact that the
perturbation-theory value for X, used by Moriya
et al. is 20% larger than the exact value, according
to the results of Table VII. This is compensated,
to some extent, by the fact that Moriya et al. use

In Eq. (7.2), s = —,
' and S corresponds to the total

spin of the ion. For the e~ states, b is readily shown
to be equal to ~~ (4, —6,), where 6, is given by Eq.
(5.16). According to Eq. (4.8), b is also equal to
D~. To second order in A. ,

N '
Q and N '

X, rather than g and X, in their
calculation of b. From the experimental values
for the Neel point 1'„and the susceptibility at the
Neel point lt(T„'I, Smart finds an empirical value
of 45'K for K¹iF3.

We comment briefly on the origin of the extra
factors S, and 8, that occur in Anderson's expres-
sion for b. These additional terms arise from the
application of Phillips's cancellation theorem'~ to
the energy difference between the symmetric and
antisymmetric d- orbital combinations. We find
that this difference is zero in the localized Wannier
function limit since both combinations have the
same average band energy. According to Phillips's
theorem, metal-ligand overlap effects accurately
cancel the excess attractive potential that results
when point-ion ligands are replaced by distributed-
charge ligands, thereby justifying the use of the
point-ion approximation in crystal-field calculations.

It is important to note that the same overlap-co-
valency mechanism is capable of explaining the
crystal-field effects in a metallic nonmagnetic sys-
tem such as Re03 as well as a semiconducting anti-
ferromagnetic material such as KNiF3. We conclude
that the methods of the covalency approach can be
applied to a wide variety of compounds. Although
the point-ion model often yields results which are
in fair agreement with experiment, we tend to re-
gard this success as accidental rather than funda-
mental.

The results of this LCAO approach suggest that
APW band calculations could represent a valuable
tool for providing theoretical estimates of 6 for a
variety of compounds. In general, the APW method
is easier to apply than MO theory since it eliminates
the evaluation of complicated two- Bnd three-center
integrals which occur in the MO method. Further-
more, these band calculations can also provide fair-
ly accurate estimates of the bandwidth. A systemat-
ic band-structure study of the various fluoride and
oxide systems could indicate the variation of U in
the 3d, 4d, and 5d transition series. For example,
the optical studies by Knox, Shulman, and Sugano'
on KNiF3 and KMgF3: 0. 10Ni ' clearly imply a lo-
calized model in which b/U&1. On the other hand,
the Fermi surface data for ReO, imply ' that
b/U&l in this compound. In this way, calculated
values for b can be used to set upper and lower
limits on U.

Anderson estimates that U= 9+ 2 eV for the latter
members of the 3d transition series. It is interest-
ing to consider the question of why U should be so
much larger in the transition-metal oxides and
fluorides than it is in the transition metals. The
3d bandwidth in KNiF3 is certainly comparable with
that of fcc nickel, for example. I suggest two pos-
sible explanations. The first involves the fact that
the same overlap-covalency mechanism that is re-
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sponsible for crystal-field effects in the transition-
metal compounds also raises the low-mass s-P
conduction bands to higher energies. Whereas the
lower portions of these bands are filled in the tran-
sition metals, they remain unoccupied in these com-
pounds. As a result, the d-d Coulomb interaction
in the compound cannot be screened by the relative-
ly mobile s-P electrons that are available in the
metal.

A second explanation involves the energy depen-
dence of the d radial functions. Wood' has shown
that in the solid, the d radial functions near the
bottom of the d bands are relatively diffuse com-
pared to atomic d orbitals. However, those near
the top of the d band are slightly more compact than
the atomic functions. In the transition-metal com-
pounds, the crystal-field effects which raise the
e orbital energy tend to compress their d radial
charge distribution even further; this effect would

certainly tend to increase the magnitude of U.
In I, the LCOAO wave functions were used to esti-

mate the charge distribution in Re03. Assuming
that the orthogonalized oxygen 2p and rhenium 5d
orbitals were completely localized about their re-
spective sites, this LCOAO calculation implied a
charge distribution of (Re'4) (0 '~'), . Since the
orthonormal functions t)t„(r) that are included in

this LCOAO calculation actually represent linear
combinations of the nonorthogonal orbitals cp„(r),
this result represents an upper limit to the true
ionicity. The results of the present LCAO analysis
demonstrate that appreciable covalency and overlap
occur between the rhenium and oxygen atoms in

Re03, even in the tightly bound oxygen 2s band. The
APW results of Fig. 3 and their interpretation in
Sec. VIA indicate that the effects of the rhenium
6s and 6p states on the oxygen 2s and 2P bands
cannot be entirely neglected. In view of this situa-
tion, one wonders if these materials are ionic at
all. Perhaps these compounds obey the charge-
neutrality principle of Pauling ': "The electronic
structure of stable molecules Bnd crystals is such
that the electronic charge of each atom is close to
zero. "

Next we consider the decomposition of the metal-
ligand interaction (o.do) that is represented by Eq.
(3. 6) Originally, this relation was introduced for
the primary purpose of simplifying the matrix ele-
ments of H that are given by Eq. (3.3). According
to results of Eq. (3.7), this decomposition possesses
additional merit. Namely, it yields expressions
for the matrix elements of H which are independent
of the zero of energy. This feature extends to
other expressions involving (ado) or V ~, including
Eqs. (3. 18) and (3. 19) for L . As a result, we

consider V „ to be the more fundamental of the
two parameters since the sign and magnitude of

(o.do) depend on the choice of a zero of energy while

V ~ is independent of this choice. In Sec. VIA, it
is more precise to state that V„and S, (V~, and

S,) for ReO, were determined by fitting the APW
results for I',2 (H,a} with the eigenvalues of Eq.
(3.7) with n =s(p) and then (sdo) [(ado)] was deter-
mined using Eq. (3.6). The accuracy with which

V,„and V~„scale with the overlap integrals S, and

S, supports this point of view.
According to the results of Eqs. (6. 1) and (6. 2),

V,~ completely dominates the ,'S, (E„—+E~} contribu-
tion to (o.do). Therefore, we consider Eq. (3. 6)
to be a more accurate representation of this metal-
ligand interaction than the Wolfsberg-Helmholz
formula

H;)=~ES(Hq;+H~;} . (7. 4)

Here, Il is a constant that is usually equal to about

2; H«and H&& are equivalent to 8 and E„ in the
present notation. With I' = 2, the Wolfsberg-Helm-
holz formula requires that

V„,=-,'S„(Z„+E,),
which is in disagreement with our findings.

It should be pointed out that the present LCAO
method can be formulated in terms of pseudopoten-
tials. In such an approach, the d orbitals p„(r) are
orthogonalized explicitly to the neighboring s and p
ligand orbitals p, (r):

g„(r)=y„(r) &&(V-t IV„)V&(r), (7. 5)

where (q&, [y„) is the metal-ligand overlap integral.
Herring~~ has pointed out that a fictitious repulsive
potential around each neighboring ligand atom could
be introduced to represent the energetic effect of
the "nodes and loops" required by orthogonalization
and contribute to the crystal-field splitting. How-

ever, I believe that the present LCAO method is
more direct and convenient since it preserves the
simple form of the LCOAO Hamiltonian matrix in I
by introducing the minor inconvenience of a non-
diagonal overlap matrix.

It is difficult to estimate the accuracy of the
LCAO parameters for ReO, that are listed in Table
II. Some errors could easily be introduced by the
approximation of "freezing" 1'7 of the original 19
LCOAO parameters. The results of Fig. 3 suggest
that these errors are not serious. Our analysis
indicates that the n overlap integral is not entirely
negligible in Re03. If we assume (following the
results of Sec. VI) that V~„,= —2. 2S„ then the value

of (pdv) from Table II suggests that S,= —0. 058 and

V~, = 0. 128 Ry, which are quite reasonable values.
To illustrate the sensitivity of the parameters S„

(sdo), and V,~ tothe values assumed for the remain-

ing parameters in Table II, we consider the results
of Table VIII. Here, we compare selected energy
eigenvalues for Re03 which are obtained via the
methods of Sec. VIA as a function of the parameter
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TABLE VIII. LCAO parameters and selected eigen-
values for Be03 as a function of E~ (in By).

LCAO LCAO

—l. 3400
—0. 2849
—0.2182

0. 0988

—1.3820
—0.2802
—0. 1942

0. 1235

—1.4150
—0.2729
—0. 1639

0. 1528

r„
X(
Xi
X2
Mg

Mg

0. 351
0. 626

—0. 532
0.356
0.487

—0.480

0. 351
0. 643

—0. 543
0.349
0.496

—0.489

0.351
0. 648

—0. 548
0.349
0.501

—0. 494

0.351
0.653

—0. 553
0.348
0. 508

—0. 500

E,. If E, is lowered by 0. 07 Ry, 8, increases by
50%, (ado) is approximately unchanged, while V,~ de-
creases by 30%. Raising E, provides a modest
0. 01-Ry improvement in the accuracy of the energy
eigenvalues. This suggests that it may be neces-
sary to fit APW wave functions as well as energy
eigenvalues in order to obtain a reasonably accurate
representation of the band structure in terms of the
LCAO interpolation scheme.

In concluding this section, we consider the appli-
cation of these ideas to the sodium chloride and
rutile structures. Many antiferromagnetic com-
pounds posse88 these structures Rbove their Neel
points. ' Let us consider the sodium chloridestruc-
ture first.

For our purposes, the band-structure results of
Ern and Switendiek for TiC, TiN, and TiO illus-
trate the necessary features. In all cases, we ob-
861ve thRt the titanium 48-4p bRnds Rre raised
above the ed bands by the same overlap-covaleney
effects which are responsible for the crystal-field
splittings in the Re03 and perovskite structures.
However, we note that the I'»-1"». splitting is rela-
tively small compared to the e and t& bandwidths.
This is due to the fact that both l', 2 and F3~. are
orthogonal to the ligand s and P orbitals in the so-
dium chloride structure. Consequently, the origin
of this splitting in the sodium chloride structure is
identical with that in the cubic transition metals,
namely, nearest-neighbor d-d interactions.

The s, Po, and Pm contributions to the crystal-
field splittings are nonzero at other points in the
Brillouin zone. By applying the I CAO method to
the sodium chloride structure, one can show that the
e~ bandwidth is proportional to 6,+ 6, if the d-d
interactions are negligible, where 6, and 6, are
given by Eol. (3. 19). In the ReOS and perovskite
structures, we have found that this bandwidth is

proportional to 4, —2,. The t,~ bandwidth is pro-
portional to 4, in all three structures, where 4, is
given by Eoi. (4. 13). The fact that the e, band-
width in the NaCl structure is proportional to the
sum + + + should lead to 1Rrge VRlues of 6 1n

Anderson's theory of superexchange. However
this effect is compensated by the fact that the crys-
tal-field and d-d interaction terms tend to cancel
in this structure.

It is interesting to note that the crystal-field
parameter in the localized Wannier limit 4„,which
ls given by Eol. (5. 21) is also valid for the NaCl
structure. Since we have already shown that this
equation is equivalent to the results of MO theory,
its validity depends only on the point symmetry of
the metal-ligand octahedral complex, not on the
manner in which these complexes are stacked to-
gether to form a three-dimensional crystal struc-
ture. Thus, in this localized limit, we have the
interesting result that for a given octahedral metal-
ligand complex, the magnitude of the crystal-field
splitting is independent of the crystal structure,
while the strength of the superexchange interaction
J,«should depend significantly on the details of
the stacking arrangement.

The rutile structure presents a, more challenging
system for applying the LCAO method. As a matter
of fact, the LCAO method was formulated in order
to overcome difficulties which occurred in the a,p-
pllcRt1on of the LCOAQ method to -this structul e.
The lowel site symmetry of the t1"ansltlon-InetRl
atom in the rutile structure removes the double
and triple degeneracies of the octahedrally coor-
dinated e~ and t2~ states. In applying the LCOAO
method to fit preliminary APW results for Bu02,
it was found that this method required unrealistical-
ly large values for the d-d interaction parameters.
We believe that the LCAQ method will include these
crystal-field effects in a more realistic manner and
yield a more accurate and reliable fit to the APW
results for these materials.
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A method fol" determining the lnterpartlcle interaction 6Qergies in R disordeled Rlloy fl'oIQ
the corrected diffuse scattering intensities of x rays is presented. This method, which is
bRsed OIl. the ordering theories, ls applied to the proM8IQ of obtRlning the first seven pair-inter-
action ratios in Cu& Au from the experimental data of Moss. Strong evidence fox the presence
of long-range pair interactions originating from the indirect screening interaction between ions
is obtained for Cua Au, indicating the existence of a reasonaMy sharp Fermi surface in this
alloy, at temperatures of the order of 700'K.

1. INTRODUCTION

One of tile pllnclpal ob]ectlves ln expex'lmentRlly
lnvestlgatlng short-range ox'del ln R blnRx'y Rlloy
is to obtain information on the magnitude, sign,
and range of the interparticle interaction energies
in such a system. The current state of alloy theory
suggests that a realistic comparison bebveen em-
pix"ical and theoretical values for these interactions
ls possible.

Clapp and Moss, in a recent series of papers
(Ref. 3, in particular), obtained indications of the
exlsteDce of Rn osclllRtoly interaction ln the Cu-Au
system by an indirect method requiring diffuse
scattering data from alloys vrith different composi-
tions. We present a method which indicates an
oscillatory interaction through experimental re-
sults from a single alloy system.

The pair-interaction model assumes the en-
ergy of the binary alloy AB, with atom fractions
(m~, ms) to be decomposable into the sum of inter-
actions V";,.", V&&, V;,-, and Va", behveen pairs
of atoms (A, B) at sites i and j and a term indepen-
dent of configuration at constant volume. The
pair-interaction energy parameter is usuaDy de-
fined Rs

i'; =k(~~~) +i'v'-2~0') .
This model for ca,lculating the energy of a bina-

ry alloy should improve in reliability as the size
difference betvreen the A.- and B-type atoms de-
creases, when the contributions of irreducible
n-body (n & 2) strain-energy terms will likewise
diminish.

For zero-size-effect binary alloys of nontransi-


