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The theory of the singular readjustment of a conduction band to a hole formed in an x-ray
absorption event is extended to the case where the hole has finite mass, as in the d band of
Cu. Although the resulting recoil removes the singularity, the effect may still be quite large,
and results in an electron-induced Debye-Wailer-factor reduction of the intensity of direct (k-
conserving) optical or photoemission events. This reduction depends on the mass of the d-
band hole, and is accompanied by inelastic contributions in which the photon energy is shared
between an interband transition and a number of low-energy electron-hole pairs.

I. INTRODUCTION: HOLE PROPAGATOR

When an x ray is absorbed by a core electron in
a metal, the consequent readjustment of the Fermi-
gas conduction electrons to the hole potential has
the singular character of an infrared divergence.
This singularity was discovered by Mahan' and
further investigated by Nozieres and co-workers. '

In the present paper we suggest that a similar
effect, though not singular as in the x-ray case,
will occur when electrons in a narrow band (such
as a d band) lying below the Fermi level are excited
by some sort of radiation.

In the core-state case, Doniach and Sunjic showed
that the infrared singularity (suitably smeared by
lifetime effects) would show up directly in the form
of the low-energy tail in the line shape of emitted
photoelectrons from the metal. In the present nar-
row-band case, too, we show that the relaxation of
the Fermi sea of electrons around the narrow-band
hole will lead to enhancement of weakly inelastic
(1-2 eV)events during a uv photoemission process.
The magnitude of this effect depends on the strength
of the effective screened potential for conduction-
electron-hole scattering, which is not known at the
present time, but the effect possesses certain
characteristic qualitative features which should
allow it to be distinguished from other inelastic
photoproduction mechanisms in the metal.

In the core-state case the infrared divergence
is found theoretically from a study of the hole cor-
relation function, or propagator (whose Fourier
transform is directly related to the spectrum of

photoelectrons in a photoemission experiment):

g(t) = t(b(t)b'(0)),

where b' is a creation operator for the core-state
hole. The divergence shows up as a power-law be-
havior g(t) - t for long times, which may be thought
of as resulting from the fact that the production of
zero-energy electron-hole pairs at the Fermi sur-
face becomes infinitely probable; i. e. , the lower
the energy of the pairs, the more that will be pro-
duced. In the case of hole states in a narrow band,
the hole creation operators are now labeled by a
momentum suffix b~~. The change in the physics is
that the hole undergoes recoil during the emission
and reabsorption of low-energy pairs, and the re-
sulting recoil energy removes the zero-energy de-
nominators, which lead to the divergence in the in-
finite-mass ease. However, we suggest that the
many low-energy pair scatterings will still be en-
hanced in the case of large hole mass (narrow hole
band) relative to the perturbation-theory result
(for a single electron-hole pair), leading to a pro-
pagator with spectral density of the form [Fourier
transform of (1)]

Imgr((o) =Ahab((o —Er) + yr((u), (2)

where hole-lifetime effects due to recombination
and scattering have been neglected.

The above result is based on a "pseudoharmonic"
treatment of the perturbation of the electron-gas
density by the hole potential. The reduction of the
5 function part by the factor A~ is a kind of electron-
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gas "Debye-Wailer" effect. In the photoemission
case it leads to a reduction of the dir'ect or k-con-
serving transition probability. We show below that
in a weak-coupling approximation

A»= (m/M„, q, ) as m/M„, ),-0,
where n =[N(0)v]3 and v is an electron-hole scatter-
ing potential parameter. [Following Nozieres and
de Dominicis, ' it seems likely that N(0)v will be
replaced by 5/v, where 5 is the electron-hole scat-
tering phase shift in the strong-coupling case. ]
Thus we reach the important conclusion that the
probability of the direct k-conserving process in the
photoemission experiment will depend on the mass
of the hole state involved.

yr(v) in Eq. (2) is an inelastic part leading in the
photoemission experiment to a spectrum of inelastic
electrons associated with a given transition. We
show below that for high hole mass, yr(&u) may be
quite strongly enhanced in the relatively low-energy-
loss range, thus providing possible additional in-
elastic structure in the photoemission electron
energy distribution curves. This possibility should
be kept in mind when examining photoelectron data
for metals with narrow bands below the Fermi level.

II. INELASTIC PROCESS IN PHOTOEMISSION

direct-transition edges should come in sharply,
broadened only by lifetime effects, but not broadened
by the above inelastic effects. This will apply both to
electron-induced (a) and hole-induced (b) processes.
However, for photoelectrons away from K=O, or
for a case where the band structure precludes a
direct transition at K= 0 (see Fig. 1), the kine-
matics of the situation show that in the hole-induced
mechanism there will also be inelastic transitions
with photon energies beloved the direct-transition
energy in addition to those above. This is because,
whatever the momentum transfer K - K' involved, it
is always possible to excite an electron across the
Fermi surface with momentum transfer K-K' and
zero energy transfer. So in general the direct-
transition 5 function will come in the middle of the
inelastic "mush" rather than on the low-energy
threshold. This type of inelastic precursor could
not occur in case (a), where the direct transition
takes place first and the photoelectron scatters in-
elastically at a later time.

(2) Mass dePendence of the direct (k conser-virg)
transition Probability. This was discussed in Sec. I
(and will be discussed in more detail in Sec. III).

As a result of the mass dependence of As [Eq.
(20)], we may expect that the characteristic peaks

The above mechanism is only one out of a number
of possible processes for nondirect (k-nonconserv-
ing) photoemission events in metals. In this sec-
tion we proceed to consider other possible processes
in a qualitative way and point out special distinguish-
ing features of the mechanism of Sec. I.

Excluding surface effects, we can classify non-
direct photoemission events as follows:

(a) Electron induced; energy loss from the
emitted photoelectron by excitation of electron-hole
pair states. This is the usual mean-free-path mech-
anism, and has been carefully discussed by Berglund
and Spicer

(b) Hole-induced excitation of electron-hole pair
states; the mechanism of Sec,. I.

(c) Electron- and hole-induced collective excita-
tions of the many-electron system (plasmons) or of
the electron-ion system (phonons).

(d) Quantum interference effects between hole-
induced and electron-induced transitions.

The distinguishing features of the hole-induced
mechanism (b) are the following:

(I) I'hreshold behavior. From consideration of
the kinematics of the process it may be seen that
for photons at a direct-interband-transition thresh-
old, when there is a k-conserving transition be-
tween the maximum in a d band and a minimum in a
higher band (i. e. , at K= 0), then the only inelastic
events which can occur are those costing more
photon energy than needed for the direct transition.
Therefore, as the photon energy is increased, such
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FIG. 1. Schematic diagram of inelastic contribution
to the photoelectron production cross section resulting
in the case where nondirect-transition photon energy is
less than direct-transition photon energy, for fixed out-
going photoelectron state. The reader should note that
this type of distribution curve refers to the inelastic
spectrum (as a function of photon energy) associated with
a given photoelectron final state. The latter has then to
be integrated over all momentum at fixed photon energy,
to give an observed photoelectron distribution curve (KDC).
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expected in the A, -conserving part of the photoelec-
tron distribution curves (see, for instance, Smith ),
which result from flat regions of the d band, will
be just those parts of the spectrum most affected
by mechanism (b). Again, this effect could not re-
sult from mechanism (a), where the energy loss is
via the photoelectron scattering, and thus will not
depend on the hole state. It would also not result
in plasmon emission [via (a) or (b)], as here the
energy denominators are large, and hole recoil
would only lead to very small corrections.

(3) Enhancement of low energy -loss in-elastic
process. We now argue that in the 0-2-eV energy-
loss region the hole-induced loss mechanism (b)
is much more effective than electron-induced mech-
anism (a). The reason is the low-energy multipair
enhancement effect mentioned in Sec. Ianddiscussed
in detail in Sec. V. What we show is that this en-
hancement becomes increasingly effective as the
hole mass increases. Thus, for the electron-pro-
duced final-state pairs of mechanism (a), the re-
coil of the fast electron during the scattering event
will shift the system far off the infrared-type di-
vergence discussed above, and the enhancement
effect will not occur. Under these conditions the
perturbation-theory approach of Berglund and
Spicer is correct and shows a relatively low prob-
ability for low-energy-loss events. For energy-
loss events in the intermediate-energy range, how-
ever (4-6eV for Cu), the Berglund-Spicer mech-
anism appears to account rather well for the ob-
served characteristic low-energy tail of photoelec-
trons. '

Phonon emission events will also contribute to
low-energy-loss events: Multi-phonon effects seem
likely to be small in metals, where the electron-
phonon interaction is strongly screened. Single-
phonon events will in general only involve very
small energy transfers (-.0. 1 eV) and may be re-
sponsible (cf. Nesbet and Grant ) for some k-non-
conservation, but one would expect these effects
to be fairly temperature dependent, which does not
appear to be the case in transition-metal photo-
emission experiments.

Events of type (d) constitute an interesting gen-
eralization. Physically one might describe them
as events where the mean-free-path picture in
which scattering of the escaping photoelectron is
treated independently of its birth process has broken
down. Hopfield's decay of a virtual plasmon is an
example of this type of event. Their importance for
low-energy-loss processes is not clear to the author
at the present time.

Finally, the effects discussed above will apply
equally to the usual optical absorption spectra of
metals for transitions in which the final-state elec-
tron (which need not escape from the metal) is not
too close to the Fermi surface. Thus we may ex-

The electromagnetic field will interact with the
metal via a current operator j (x). For simplicity
we will neglect the detailed momentum dependence
of the matrix elements of this operator, although
this will be important in real energy bands. The
electromagnetic absorption cross section may then
be found by examining the current-current correla-
tion function

& j(f)j(0)&. (4)

In terms of the hole creation operator b~ and elec-
tron creation operator c~~, this may be written

Zj„j .(c„(t)bt (f)k .(0)c,(0)),

where the Heisenberg time dependence is dictated
by the full Hamiltonian. In order to discuss the
hole-induced loss mechanism, a number of simpli-
fying assumptions are now introduced. The elec-
tron-electron interaction which is important for dis-
cussing both electron-induced loss events and plasmon
loss events will be assumed to be screened out in the
usual way and the electron-hole interaction will be
replaced by a self-consistently screened short-
range interaction of strength v. If one were dis-
cussing large energy transfers via the hole, then
the energy dependence of the screening would be
important. However, as emphasized above, the
present mechanism involving many pairs is essen-
tially a low-energy process and this energy depen-
dence will be ignored. The model Hamiltonian then
becomes

Kff=ge, c,'c,+Z Z, + ktk

+—~ c~ cpbp. ~bp. .t
PP'e

(6)

pect interband transition peaks in the optical spectra
of metals such as Cu to be shifted and changed in
shape by the nondirect contributions accompanying
inelastic absorption events. Correlation of data with
direct-transition joint density of states calculations
should be examined with this possibility in mind.

For optical transitions to states very close to
the Fermi surface, additional nearly singular scat-
tering of the final-state electron with the hole will
occur as in the x-ray case. This is not considered
in the present paper. In a recent paper Gavoret
et al. ' extended their treatment of the x-ray prob-
lem (different from the one adopted here) to the case
of finite hole mass and applied it to a discussion of
exciton states in degenerate semiconductors. Pre-
sumably many of their conclusions will also apply
to metals. However, they did not discuss the pres-
ent case of transitions in which the final-state elec-
tron is far from the Fermi surface.

r
III. OPTICAL ABSORPTION AND PHOTOEMISSION

CROSS SECTIONS
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Here M is the hole mass, assumed to be large, and

v is the screened potential for scattering of the con-
duction electrons from the hole. In the last term,
band suffixes for the scattered electrons c~~ have
been omitted for simplicity. For electrons involved
in transitions near the Fermi surface, in a material
such as Cu, only one band will be involved. For
higher-energy transitions, interband events will
also be important, but we neglect them in the pres-
ent simplified discussion. We now make the "single-
hole approximation, "which is the same basic ap-
proximation as that made in the x-ray problem,
namely, that the hole-conduction-band-gap energy
E is relatively large compared to other energies
in the problem, so that only the hole produced by
the photon excitation energy need be considered,
and all virtual excitations of the hole may be neglec-
ted. This restriction, which is a shortcoming of
the present theory, will become increasingly worse
as the d band being considered comes close to the
Fermi surface. The problem of at what value (re-
lative to ez) of the hole excitation energy and cou-
pling parameter v the present treatment of the hole
propagator breaks down and the usual perturbation
expansion of the mass operator takes over (in the
weak-coupling limit) is a fundamental one which is
not resolved in this paper. Within this approxima-
tion scheme (6) may be rewritten a,s

~~li r I'(e'""cKbKe bKcr),

where

(t) (eiHPtbt e iHib ) (9)

In terms of g~, the optical absorption probability in
regime (B) may be represented by

»(~) =~ —' «I~.l'""'g.(t) .
K 2'

The photoemission cross section for ingoing photon

energy + and outgoing photoelectrons in state K
with energy eg [which is bound to be in regime (B),
since it is at least a work function away from»r]
comes out as

der . a1
o:ljul —

I dte' " '& 'Regr(t) .
dlgd40 z Jo

The measured photoelectron intensity will then in-
volve a sum over directions of K, together with a
work-function reduction of energy in the direction
normal to the surface:

N(», p&) = Z5(» -»r(P))
g df gctd

(12)

where Cr(it ) contains the appropriate work-function
reduction effect.

factorily treated by perturbation theory. Since in
the present paper we are mainly concerned with the
strong-interaction effects of many low-energy pairs
on the absorption process, we will therefore leave
aside the question of the electron interaction, and,
provided we are away from regime (A) (the thresh-
old regime), we will just focus attention on the hole
correlation function:

Hp =Q~ »pcptcp+ Zz(E,~ +KP/2M) bz~ br . (6) IV. PSEUDOHARMONIC APPROXIMATION

Now consider the evaluation of the correlation
function (7). If we restrict ourselves to hole-in-
duced loss events, as discussed in Sec. 0, the c~
operators in (9) can be taken out, with their ap-
propriate energy dependence e"&'. For lower-
energy photoelectrons and for optical transitions,
we have two regimes to consider: (A) near thresh-
old, where the excited electron c~~is very close to
the Fermi level of the conduction band, and (B)
away from threshold.

In regime (A), we know from the x-ray problem
that scattering of the excited electron from the hole
is very singular in character and cannotbe neglected.
In regime (B), on the other hand, although inter-
actions with high-energy excitations in the electron
gas (plasmons, etc. ) will be of general importance,
the singular scattering of the electron with the ac-
companying heavy hole will have died away. Further-
more, as will appear from the discussion to follow,
the scattering of the escaping electron from the
loco-energy excitations of the electron gas, which
would be singular if the electron had high mass,
will be considerably weakened by the large recoi'1

(i. e. , low mass) of the electron, so it can be satis-

The approach of this paper to the calculation of

g [Eq. (9)] is to try and estimate the effects of hole
recoil on the singular perturbation of the Fermi sea
which occurs in the x-ray case. Schotte and Schotte"
have emphasized the analogy between the latter sit-
uation and that of a set of 1-dimensional Tomonaga
electron-density oscillators coupled to the hole
potential. Rather than work in terms of the Tomonaga
coordinates, we stay in the fermion representation.
But our central assumption is that it is reasonable
to make the analogous approximation for the finite-
hole-mass case to that in the Schotte paper in our
evaluation of the hole correlation function.

What we do is observe that the Schotte-Schotte
approximation is the first term in a cumulant ex-
pansion, in powers of v, of the hole Green's func-
tion. We term this a "pseudoharmonic" approxima-
tion, in the sense that if the electron-density oper-
ator combinations occurring in Eq. (6) obeyed Bose
commutation rules, then the cumulant expansion of
(9) would terminate at the first term and the re
suiting formula would be exact. In the infinite-
mass-hole case the Schotte-Schotte approximation
is exact (i. e. , agrees with the formula of Nozieres
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and de Dominicis) in the weak-coupling limit
vN(0) «1. What the work of Nozieres and de
Dominicis shows is that the cumulant treatment
would still work if the Born-approximation scat-
tering length vN(0) is replaced by the phase shift
5/)(.

In the present case we expand gr{t) to order
[vN(0)]' to give

&r(t) =&her(t)&ox(0)) v'—f,
' «) f,"«o

x&5,' (t)If,(t,)ff,(t,)b,„(0)), (13)

where bor(t) is the interaction representation form.
Writing

(Ex(--or (t )

and reabsorption of a pair:

(23)

Thus, on integrating over t, in (23), and setting
go(t) equal to a unit step function (normalizing to
the hole energy), we see that (16) reproduces the
usual perturbation-theory result in this limit.

V. EFFECT OF RECOIL ON LINE SHAPE

We now study the effect of recoil on the time de-
pendence of the hole propagator for finite hole mass,
in terms of our pseudoharmonic approximation (16).
For the case of hole momentum K equal to zero,
the asymptotic time dependence of integrals is re-
latively easy to estimate. We have (renormalizing
the energy-shift term)

Er = Eo~ +K /2M,

we therefore havevo;t e(~r(pp )(

~.(~t") [~.(pt')]'

xfp(I -fp ~fz. p -p

t) (pt)') = [Ep —ep+ Er,p. p
—8 f. .

(15)

(16)

2
(1 y )s((sp& spo)ts(-p(p) po) /ohf-

P kg (24)
For long times the main time dependence comes

from the &~&3 factor and we can replace P, and P2
by pz to give

—= ()( l de dg e'")-'o"e"' (25)
sinPt

J

where we have put the Fermi level in the middle of
the conduction band, of width 2E. For large t the
dominant contribution comes from the region of the
Fermi surfac~, so that {see Appendix A)

„.-=(I/t')[»(0)]'.

Integrating over t, we obtain the large-t behavior

C(t) =- [vlf{0)]'In(tt) .
Hence for M~-~ the present approximation gives
the result of Schotte and Sehotte and of Nozieres
and de Dominicis,

g(t)™(I/tt)". (21)

Conversely in the law-mass limit, the singular
character of (16) disappears, and we can expand g
directly in powers of v to give

g(K, t) =go(t) +f„P«g (to—t, )((,(t, ), (22)

where )(,(t) is the hole self-energy due to emission

The first term in (16) represents a renormalization
of the hole energy (zero if one assumes electron-
hole symmetry), while the second term contains
the infrared divergence in the limit that EK- const
(infinite-mass limit).

To check the equivalence with Schotte and Schotte
we first evaluate (16) in this limit. Then one has

daC fQ
da, jl de, e'(') o)P vt)((e, )vN(e, ), (18)

8 =(2m/M)e, .
Again for large times, the small a, &z terms

dominate. But it may now be seen that the sinPt/Pt
fa.ctor has the effect of damPirg out the lnt diver-
gence of Eq. (20). Thus limC(t), as t-~, is now

finite, and the Fourier transform of g(t), which
determines the line shape for q, given direct tran-
sitiontofinal electron state &K.o, still contains the
direct-transition 5 function. However, its weight
is reduced by a factor

C (K=O, taboo)~K=O= ~ (26)

analogous to the Debye-%aller factor. Since we
have the general sum rule [from Eq. (9)]

fd(og(o)) =Iimg(t) =1 as t-O, (27)

lim C(K=0, t) =- nln[y(m/M)],
f ~ oo

(26)

where, for large M/m, y(m/M) ~ m/M. Thus at
the band edge, %=0, direct-transition weight is
given by Eq. (2):

~, , = (y(m/M)j =(m/M)" asM- .
To calculate the line shape we write

we may conclude AK determines the relative weight
of the direct transitions to the total yield of state
c„(integrated over photon energy). In Appendix A
we show that, for K=O, and M/m)) 1, Eq. (25) may
be integrated to give
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g(~) =~x&(~)+ox(~),

where

(30)

y„((u) = R—ef"dt e '"'[e "' —e '"'] (31)

Evaluation of (31) using the integral of Eq. (25) needs
more numerical work, and to avoid this (at the
present time) we try and get some idea of the line
shape by making an ansatz for C(f). We choose

C .,(t) =-,'c. in[(y't' —1)/t'] . (32)

This has the virtue of possessing the right value in
both the limits: (a) P 0, where it gives the re-
sult (21), and (b) f-~, where it gives the result
(28). Neither this form nor the long-time approxi-
mation (21) of Nozieres and de Dominicis is good
in the small-f (& 1/c~) region, so the resulting ap-
proximate line shapes do not satisfy the sum rule
(27) and are not to be trusted for &u & az. Using
the simulation formula (29), we have

PP 1 n4
g(K=O, ~) =— dte '"'Re, —y"

2w . t'
(33}

where the branch of the root must be chosen so that
the integral converges at the t-~ limit. %e show

in Appendix B that (33) may be rewritten as

g(u)) =0 (for (u &0)
e l

E(e/y) (for m & 0),
'lT(0

(34)

g(f) slsd(~qqgts c(~-j+ sfz(g~qcgt[s c-o& s c(co)] (29)

so that, if we set the zero of photon energy & at the
direct-transition energy, the Fourier transform of
the real part of (29) is given by

at lower energies, so Fig. 2 may give an under-
estimate of the inelastic strength at ~ «„. More
numerical work needs to be done on Eq. (24) to
improve this approximate form.

For finite K, which is physically the more im-
portant case, the integration leading to (24) cannot
be done easily, and one needs to study (16) numer-
ically to get a quantitative picture of the resulting
line shape. One can, however, get some idea of
it from the kinematic constraints on the energy
txansfer to a pair, as discussed in Sec. II.

VI. CONCLUDING REMARKS

From the discussion of Sec. V it may be seen
that the situation here is somewhat analogous to
what happens in the Mossbauer effect or in diffuse
x-ray scattering. The direct transitions persist
in the finite-hole-mass case but with reduced in-
tensity. However, there is an important difference
in the form of the inelastic transitions from that in
the phonon problem. Owing to the infrared catas-
trophe for low-energy pair production, it is no
longer a reasonable approximation to expand this
part in powers of the coupling a, i.e. , the contri-
butions to the large inelastic peaks in Fig. 2 come
from rapid variation of e "', which represents
many-Pair final states. The one-pair approxima, -
tion would correspond to e c"' =1 —nC(t). What
our CRlculRtlons hRve s1M%n ls thRt this would be R

bad approximation, even for small (but finite) o.,
when the ratio of hole mass to conduction-band mass
becomes large compared to 1.

The detailed application of the above theory to
analysis of the photoemission data for metals such

1 g E2 2 e/2
E(E)= — dx sinx

0
x'

The resulting line shapes are plotted in Fig. 2 for
n = 0. 25. ' For Cu, the hole effective mass may
be of ordex' 10 in some regions of the d band, so
that Fig. 2 suggests there will be quite a large low-

energy inelastic contribution associated with such
hole states. Unfortunately the crude nature of the
simulation formula (29) leads to rather unphysical
wiggles in the resulting Fourier transform. How-

ever, it does point up the importance of the hole
mass in accentuating the low-energy inelastic con-
tributions. Because of the poor nature of the form
(29) in the small-f (high-energy) region, Fig. 2

almost certainly overestimates the high-energy in-
elastic scattering strength. Inelastic events with

energy more than 2&~ above the direct-txansition
energy will tend to be cut down kinematically (they
would need too much momentum transfer). The
sum rule will then tend to heap up the absorption

O
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EXCESS PHOTON ENERGY ABOVE DIRECT TRANSITION (eV)

FIG. 2. Photoelectron production cross section given
by the simulation line-shape formula (33) for n =0.25,
as a function of photon energy a for a given photoelectron
state of energy &f e Half of the dllect-tlansltlon ~-func-
tion weight, reduced by the inelasticity factor of (4), is
shown in the hatched box. The vertical scale is normal-
ized so that the full sum-rule weight would be exhausted
by a box of height 3..0 and width &~ (—= 5 eV for Cu).
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as Cu must await numerical work on the k depen-
dence of the line shape for real band structures.
However, empirical evidence for nondirect (k-non-
conserving) transitions in photoemission processes
in d-band metals in terms of the lack of strong de-
pendence of the peaks in electron distribution curves
on photon energy has been emphasized in a series
of papers by Spicer and co-workers '~ .In view of
the specific enhancement due to the effect described
in this paper in narrow-band situations, it there-
fore seems plausible that some of the observed re-
duction of the EDC peaks in transition and noble
metals may result from the hole-induced energy-
loss mechanism described here.
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APPENDIX A: ASYMPTOTIC VALUE OF HOLE
GREEN'S FUNCTION

First we show the logarithmic dependence of
C(t) in the infinite-mass case [Eq. (20)]; then we
establish the t-~ limit of C(k =0, t) in the finite-
ma. ss case [Eq. (28)].

Starting from Eq. (18), we use the fact that only
the small-t dependence of d2C/dt' is important to
replace N(&) by its value at the Fermi level:

so that

C(t) - n In(tt)

from which

%Ye now want to study how this is modif ied by the factor
e+'(sinPt)/Pt in Eq. (25). Using the same limits
as in (Al), we have

d2C(k =0, t) z, sinPt (e'e' —1)2
(A6)

+ 2sinEt+ sin2Pt]. (A7)

So we need to evaluate integrals of the type

'

dt dt's (As)

where z &0 and will approach 0 after summing over
the terms in (A7). Now we integrate (AS) by parts
and use

dt ~
- —Aln(Aa)+O(l) as e-0f sinAt

t3 (A9)

dt = —1nA&+O(1).
cosAt

t (A10)

[There is also a term f" dt sin(At) which converges
and does not contribute to the divergence as P-0. ]
So from (A7) we have

The real part of this is

d'C n
Re =—

~ sinPt [cos(2E+P)t —2 cos(E+ P)t+ cosPt]
d Pt

, [sin(2E+ 2P) t —sin(2Et) —2sin(E + 2P) t
Q

2Pt'

dC
dt2

n(eeet 1 )2/t 2 (Al) C(~) =lim —p p, ln(A, e),
Q

6 0
(A11)

Integrating once by parts, and noting that the diver-
gence cancels at t=0, we have

dc 2e'~' —1 —e"~'
= —Q

dt t

fEt 2&B t
2tE I dt'

t

(A2)

C(t)- n(lnt+mv)+0(1/t) as t-~, (A5)

At large t we use the asymptotic forms

t o t
J

dx= Z7T xx' t x' t
0

(A3)

to rewrite Eq. (A2) as

dC 1 . .~sinEt sin2Et 1
Q —+2$ +0 p ast

dt t t 2t
(A4)

Hence, using the fact that dC/dt-0 as t-O, we can
integrate for large t to give

where p, and A, are the appropriate coefficients in
IA7). In the limit p«1 (high mass) this reduces to

C(~) nln(P/8) = —nln[(M/m)B/2ez] as P - 0,
(A12)

where 8 is a constant. To determine 8 reliably,
the above asymptotic evaluation is not good enough
and we have integrated (A7) numerically using

dCReC(K=0 t=~) = —Re dt dt, 2 . (A13)
0 g dt

The results are given in Table I, where we have set

limC(K = 0, t) =ln[y(m/M)] as t- ~. (A14)
APPENDIX B: EVALUATION OF LINE-SHAPE

FORMULA (33)
To perform the integral (33),

( y2t2 I n/2
g(&o) = —Re dte'"'

~
2

—y, (Bl)
m 0 J
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TABLE I. Values of limC(t) as t ~as function of
hole mass. (as)

I/m
in/
7

2.5

—0.578
0.561

—0.955
0.385

10

—1.442
0.236 fg

i
(g2 a g /3

h(E)=i i dxe'" e "' 'i —1 . (B7)
Jo

Hence for cu &0

where y = y(m/M) is defined in (A14), we write

x= i(deaf fol' (d &0, (d(0,

so that

x'-E'
g(&)= . I dx —Ree'", —1 for ~&0

I~ I Jo m x'
(B2)

yiM ~ 1 g Em a/2
dx —Ree '" —1 for cy &0.

I~ I, m x'
(a3)

Here E = I&o I/O. Note that the branch of the —,'o.
power is fixed by the requirement that the integral
converges as x- .

Now consider

g(E) = (1/w) Re[- ih(E)] = 0, (aa)

Rein-', ee . . e,"—e )"i
dx sinxr 3

using (B5).
Using the fact that

since I1 is real from (B4) [ we have set g(E) = ( I ~ I/
y')g(&o)], while for ~ &0

g(E) = —Re dx e'"1 g
7T 0

ii'/3
x e" " —i +f'"(e)I

ii(z) fde e =(, )
—i (B4)

"sing
g(E) =- E dx as E-~,

0

and deform the line of integration either up to

y =+ i or y = -i~ to give

where

(B5)

h(E) = —i dxe '" e" /'i —1 —if(E),

we can rewrite

$@fM

g(~) = E(E)
I co I

2sjnzg~ 1
dx sinx, (B10)x'

as used in Eq. (34).
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