2 ANISOTROPIC RELAXATION TIMES AND- - .

1The Feymi Surface, edited by W. A, Harrison and M.
R. Webb (Wiley, New York, 1961).

R, Hartman, Phys. Rev. 181, 1070 (1969).

%U. Hilbner, Z. Naturforsch. 22, 2086 (1967).

*H. J. Mackey and J. R. Sybert, Phys. Rev. 180,
678 (1969).

5C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

A. G. samoylovich and I. I. Pinchuk, Phys. Metals
Metallog. (USSR) (English transl.) 20, 23 (1965).

1. Ya. Korenblit, Fiz. Tverd. Tela 2, 3083 (1960)
[Soviet Phys. Solid State 2, 2738 (1961)].

SA. H. Wilson, The Theory of Metals, (Cambridge
U. P., Cambridge, England, 1958), p. 208ff.

PHYSICAL REVIEW B VOLUME 2,

NUMBER 10

3869

9H. Jones and C. Zener, Proc. Royal Soc. (London)
A145, 268 (1934).

%Various ways of expanding [A-B]™! are given in the
Appendix of P. O. Lowdin, J. Math. Phys. 3, 969 (1962).

Y, . Smith, J. F. Janak, and R. B. Adler, Elec-
tvonic Conduction in Solids (McGraw-Hill, New York,
(1967).

12The 7 of this paper is the transpose of the 7 of Ref.
7 and Paper I, because in those papers the collision
term is approximated as (afo/as)"f‘lr'h(-f- 7;1'15.

134, 3. McConnell, Applications of Tensov Analysis
(Dover, New York, 1957).

15 NOVEMBER 1970

New Method for Computing the Weak-Field Hall Coefficient.
I1. Some Extensions and Modifications™
R. S. Allgaier

U. S. Naval Ovdnance Laboratory, White Oak, Silver Spring, Mavyland 20910
(Received 27 January 1970)

An earlier paper described a simple method for computing the weak-field Hall coefficient
through the use of a Fermi surface composed entirely of planar faces. That paper developed
a set of rules which linked the general behavior of the Hall coefficient to two fundamental prop-
erties of transport models, Fermi-surface shape and scattering anisotropy. The present
paper reformulates those rules by adding a third ingredient to the model description, shape

evolution.

extends the simple method to noncubic models.

Exceptions to the earlier rules are thereby eliminated. The present paper also
The results for “undulating cylinders” (a

Fermi-surface approximation for some hexagonal metals) and toroidal Fermi surfaces (a pos-
sible model for the wurtzite lattice) are analyzed. Finally, the effect of rounding the sharp
edges at which the planar Fermi-surface faces intersect is investigated. The results resolve
an apparent paradox pointed out by Stern, and provide some insight into the general magnetic

field dependence of the Hall coefficient.

I. INTRODUCTION

In an earlier paper, a new method was described
for computing approximate values of the weak-field
Hall coefficient Ro.! The essential feature of the
procedure is to replace the actual Fermi surface
by one composed entirely of planar faces. The ad-
vantage of the method is its simplicity; it is possible
to obtain results for a wide variety of models, in-
cluding those in which both Fermi-surface distortion
and anisotropic scattering play an important role,
without becoming involved in complicated mathemat-
ics.

The Hall coefficient ought to be one of the best
understood transport coefficients; after all, it de-
pends essentially on a single electronic parameter,
charge density. But R, is also influenced, in a
more subtle way, by dimensionless functions of
carrier velocity and scattering time. These func-
tions stem from specific details of the model under
consideration, but their effect on Ry has never been
well understood in a broad sense.

Those few papers which do discuss the general

behavior of R, generally relate it to two fundamental
properties of a model, the shape of the Fermi sur-
face and the scattering anisotropy. InI, we at-
tempted to develop a set of rules for the behavior

of Ry, which were related to these two fundamental
properties, and which would apply to all known
models for which a scattering time was defined.

In Sec. II of the present paper, we reformulate
those rules in terms of three fundamental model
properties, the additional one being shape evolution,
i.e., the manner in which the Fermi-surface shape
changes as a function of the Fermi energy. Asa
consequence, we develop a distinctly different view-
point from which to describe and understand the
links between the essential characteristics of a
model and the general behavior of R,.

In I, all of the models discussed had over-all
cubic symmetry. Section III of the present paper
treats two noncubic models. Mathematically speak-
ing, the extension is trivial and uninteresting. But
the simple form of the results makes it possible to
present, for the first time, a clear cut and realistic
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explanation for the behavior of the two different

Hall coefficients which occur in such noncubic sys-
tems.

Stern has pointed out that slightly rounding the
edges between the planar faces of the Fermi surface
can change the value of R, substantially. 2 This
paradoxical result is explained in Sec. IV. The
study of the rounded-edge model also leads to other
useful information,

The weak-field Hall coefficient may be written as

Ry=7/ne , (1)

where #n is the carrier density, e is the charge on
each carrier, and 7 is a dimensionless mixing fac-
tor. As discussed in I, it can be misleading to
describe 7 as an anisotropy factor.

The viewpoint in the present paper focuses at-
tention on the magnitude and sign of » which, it is
to be emphasized, do not depend on the sign of the
carriers. The normal sign of 7 is positive, cor-
responding to the situation in which the sign of the
Hall coefficient and the sign of the carriers are the
same.

In the present work, the models considered are
treated in the metallic approximation. As shown
in I, the method is easily extended to the case of
classical statistics. Results for metals are par-
ticularly straightforward to calculate, however,
since only simple algebra is required (there are no
integrals to be evaluated).

II. GENERAL BEHAVIOR OF R,

The analysis in I led to the formulation of general
rules which related the behavior of R, to anisotro-
pies of the Fermi surface and of the scattering
time. For convenience, we reiterate those rules
below. The Fermi surface was assumed to be
entirely convex, and a scattering time 7 was as-
sumed to exist.

(a) If 7 alone is anisotropic, »>1 for all models
thus far investigated.

(b) I the Fermi surface alone is anisotropic,
<1 in most cases.

(c) If both types of anisotropy are present, » de-
creases or increases according to whether the 7
anisotropy emphasizes the flatter or sharper por-
tions of the anisotropic Fermi surface. But as the
T anisotropy becomes more and more extreme, 7
rises again, no matter which part of the surface is
being emphasized. (In effect, some of the carriers
disappear, so thatthe Hall coefficient grows larger.)

These rules were satisfying in their generality,
but at that time we did not understand the circum-
stances which led to two exceptional cases, viz.,
those for which »>1 from shape anisotropy alone.

One exception is the -Davis-Cooper-Raimes mod-
el®* which will be discussed below in detail. In
this case, 7 can become slightly greater than unity
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[(#= 1) < 1] from a slightly distorted Fermi surface
and isotropic 7. A second exception is the cubically
symmetric multivalley version of the Cohen model. 5
In this case, the energy-momentum relation in

each valley is nonparabolic and nonellipsoidal, but
7 is isotropic, For certain ranges of the model
parameters, » becomes as large as 1.2, and the
behavior of » as a function of the model parameters
suggests that still higher values are possible.

Trying to understand the behavior of # for these
exceptional cases has led us to recognize that the
traditional description of a transport model in
terms of shape and 7 anisotropies is incomplete.

A third fundamental characteristic must be added,
shape evolution, i.e., the manner in which the
shape of the Fermi surface changes as a function
of energy. The revised description then goes as
follows:

First of all, » should be regarded as a conse-
quence of the Fermi-surface shape when no shape
evolution and no 7 anisotropy are present, This
basic value of » will then be altered by two weighting
factors, shape evolution and 7 anisotropy.

The above description constitutes a distinctly dif-
ferent point of view from that found in I and in
earlier discussions. Davis, 3 for example, talked
about the “one-way equivalence” of Fermi-surface
distortion and T anisotropy, i.e., any given value
of 7 due to 7 anisotropy alone can be reproduced
by an equivalent Fermi-surface distortion, but not
vice versa. Our present approach places the Fermi-
surface shape on a pedestal by itself; the equivalence
principle is only applied between shape evolution and
scattering anisotropy.

As will be shown below, the revised model de-
scription eliminates the exceptional cases. But it
was not chosen simply because it has this useful
consequence. It follows rather from an examination
of the nature of the integrals which constitute the
conventional Jones-Zener solution to the Boltzmann
equation, ®

For the metallic case, there are Fermi-surface
curvature terms which ultimately determine the
enclosed volume, i.e., the carrier density. Mixed
up with these are dimensionless functions of the
Fermi velocity v and of 7, i.e., functions of the
relative values of each parameter on different parts
of the Fermi surface.

But if there is no shape evolution, then the rel-
ative values of vy are fixed by the Fermi-surface
shape. And if there is no 7 anisotropy, 7 cancels
from the integrals, and 7 is determined by the
Fermi-surface shape alone.

In terms of this new description, the rules for
the general behavior of » become:

(a) For all distorted Fermi surfaces, |7l <1, pro-
vided that the shape does not change with energy
and that 7 is isotropic. (Introducing the absolute
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value sign allows the above to include surfaces which
are convex, concave, or a combination of both types
of curvature.)

(b) For a spherical convex or concave Fermi
surface, |7|>1 whenever either or both of the two
weighting factors, shape evolution or scattering,
introduce anisotropies.

(¢) For a distorted Fermi surface which is either
entirely convex or entirely concave, |#| decreases
or increases according to whether the weighting
factors, acting singly or in combination, emphasize
the flatter or sharper portions of the Fermi surface.
But when the weighting becomes too anisotropic,
|7| rises again, For a surface which has both con-
vex and concave portions, there is the additional
possibility that » will change sign before its mag-
nitude begins to increase again.

It is to be emphasized that the above rules do not
have mathematical proofs to back them up. But so
far as we know they are consistent with every Hall-
coefficient calculation that has ever been carried
out for a single-band model (including multivalley
models) which assumes the existence of a scattering
time.

We may now reinterpret the behavior of » found
in the Davis-Cooper-Raimes model. ** Their in-
vestigations were important because they led to a
simple expression for » which allowed the effects
of shape and 7 anisotropies to be assessed sepa -
rately or in combination. The result is

1/7=1+%[94%+ 18A(B - C) - (B - C)?], (2)

where the parameters A, B, and C are restricted
to values much smaller than unity.

As we mentioned earlier, Davis observed that
when the Fermi surface is spherical (A =B=0) and
7T is anisotropic (C#0), »>1, always. But when
T is isotropic (C =0) but the Fermi surface is not
(A, B#0), » may be greater than or less than unity.
The implication has been that » will increase or
decrease according to the type of Fermi-surface
distortion present; e.g., will the surface bulge or
be depressed in the (111) directions of momentum
space ?

A closer look at the significance of the parameters
of Eq. (2) reveals that A specifies the shape and
B the shape evolution of the Fermi surface. When
B =A the shape (distorted or not) does not change
with energy. Under these conditions, 1/7 =1+ A®
when C=0; i.e., when 7 is isotropic, a distorted
Fermi surface of unchanging shape always makes
r<1.

It is also clear from Eq. (2) that the effects of
shape evolution and 7 anisotropy are equivalent;
the condition is C=~ B. Furthermore, for a spher-
ical Fermi surface which is not spherical at other
energies (A=0, B#0), 1/r=1- 4£(B-C)% so
that anisotropic scattering, or an evolving shape,
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or both, always make > 1. (In this simple model,
the two effects can exactly cancel each other when
C=B.)

Thus the Davis-Cooper-Raimes model conforms
to the revised rules in all respects.

The other exception under the old rules was the
cubically symmetric version of the Cohen model.
In that study, an anisotropic 7 was not considered,
and the Fermi-surface shape always changed with
energy. To show that » does not exceed unity when
the shape does not evolve would require an entirely
new and very tedious calculation.

One circumstance: under which #>1 in the Cohen
model is obviously consistent with the revised rules.
It is the case when u =0 (u is the interband mass
ratio in the model). Then the Fermi surface re-
mains ellipsoidal at all energies, but it becomes
less prolate and ultimately oblate as the energy
increases. At the energy for which the surface is
spherical, 7> 1, in accord with revised rule (b).

The other circumstance under which »>1 in the
cubically symmetric Cohen model occurs when the
Fermi surface acquires a very highly distorted
dumbbell shape which is changing very rapidly with
energy. It seems obvious that shape evolution plays
a dominant role in this case, but at present we can-
not say anything more specific about this very ex-
treme situation,

III. EXTENSION TO NONCUBIC MODELS

Most of the models investigated in I were highly
anisotropic, but they all had over-all cubic sym-
metry. Consequently, there was only one Hall
coefficient, For a noncubic model, the expression
analogous to Eq. (2) of I is

Ry=E(=i,,)/id,H . (3

The currents ¢, and 7, are those which result when
the electric field E is applied in the positive x and
y directions, with the magnetic field H=0. The
Hall current i,, results when E and H are in the
positive x and z directions, respectively, (InT,
i,, was simply called i,, since E was always ap-
plied in the x direction only.) It is important to
note that the Hall current is due entirely to those
carriers which drift across an edge of the Fermi
surface, i.e,, pass from one planar face to an
adjacent one,

There are two Hall coefficients for crystals with
hexagonal symmetry. In such materials, the ex-
perimental value of the Hall coefficients with H paral-
lel to the symmetry axis R, (I)) is usually “well
behaved, ”i.e., v~+1. When H is perpendicular
to the symmetry axis, however, the Hall coefficient
Ry (1) is often much smaller, may be negative or
positive, and may depend strongly on temperature.’

It is possible to describe the temperature depen-
dence of Ry(L) with a simple, isotropic, two-band
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model having electrons in one band and holes in

the other, by assigning the proper temperature
dependence to the carrier mobilities. Such a mod-
el will of course allow either sign for ». This kind
of model was used by Lee and Legvold to discuss
the behavior of Ry(1) in lutetium and yttrium.® But
the model is isotropic, and cannot at the same time
describe the behavior of the much larger and nearly
temperature independent Ry(l[). Hence it does not
provide any information about the essential features
of the real band model.

A more realistic basis for analyzing the Hall-
coefficient behavior in hexagonal metals is provided
by the planar-faced model shown in Fig, 1. This
model has tetragonal symmetry, but as far as the
Hall-coefficient behavior is concerned, there is
no distinction betweenhexagonal and tetragonal sym-
metry. The latter was used because it is particu-
larly straightforward to calculate » when the planar
faces are orthogonal to one another.

The Fermi surface in Fig. 1 may be regarded as
an approximation to a right-circular “cylinder” with
an undulating cross section. The surface is, of
course, endless; the dotted lines in the figure indi-
cate its intersection with the ends of the Brillouin
zone. With H parallel to the symmetry axis, all
carriers move on the Fermi surface in planes per-
pendicular to the axis; this corresponds to the well-

H4 -y

> yl(ll)
x(L)

x (1)
z(L)

-,
-

T
l

FIG. 1. A tetragonal planar-faced approximation to
the Fermi surface of some hexagonal metals. The sym-
bols Il and L following x», y, and z identify the axes for
computing the Hall-coefficient components when the mag-
netic field is parallel to and perpendicular tothe symmetry
axis, respectively. The symobls p and v identify various
dimensions of the Fermi surface (in momentum space) and
Fermi velocities on the nonequivalent faces, respectively.
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behaved component Ry(||). When H is perpendicular
to the symmetry axis, the carriers drift along the
Fermi surface, parallel to its axis, and hence some
of them turn to the right and some to the left.

As shown in Fig. 1, the size and shape of the
Fermi surface are specified p, and p,, and by p/,
and p;, for the thicker and thinner portions of the
Fermi surface. Three Fermi velocities are also
identified, v, and v, for the thicker, and v, for the
thinner part of the surface. We wish to consider
the simplest possible model which can account qual-
itatively for the experimental data, and therefore
it will be assumed that the scattering time 7 is
constant over the entire Fermi surface.

We compute i,, i,, and iy, for the two configura-
tions, using the axes specified in Fig. 1. For H
parallel to the symmetry axis,

iy=iy=(4/h%) [(4p,p,) (eET) (ev,)

+ (4p'tp,') (eET) (evt')] , (4)

iye=(4/1)[(2P;) (eET) (ev HT) (ev,)

+(2p{) (eET) (evHT) (ev;)] , (5)

and
n=(2/n°) (8p%p,+8p;%;). (6)

Substituting these three equations into Eq. (3) reveals
that the result may be expressed in a more compact
form by defining the following dimensionless ratios:
K=pi/bes L=pi/pt, f=bi/besand 1/f" =v//v,.

The result becomes

R =L LK E D)
O Tone  (FK+f°L)?

Clearly, the above may be writtenas a function of
the ratio K/L only. Thus the answer depends only
on the relative volumes of the thicker and thinner
portions of the Fermi surface (determined by fand
K/L), on the relative shapes of the two parts (K/L),
and by the relative values of the transverse Fermi
velocities (f'). The same remarks hold for the
other component of R,, which is

1 (F=-PE+7L)
2ne (1-7f2)(fK+f2L)

The definitions for f' and f were chosen such that
f'=f(.e., vipi=v:p;) corresponds to the condition
that the shape of the Fermi surface does not change
with energy. Equation (8) shows that Ry(1)=0 under
this condition, and has opposite signs for f > f and
fi<f.

According to this model, the relatively small size
and temperature sensitivity of Ry(l) seen experi-
mentally imply that the effects of the concave and
convex portions of the Fermi surface nearly cancel
each other. A wide range of parameters correspond
to this near cancellation while at the same time pre-

7

(8)

Ro (-L) =
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dicting a normal magnitude for Ry(|)).

For example, let K=1, L=3, and f =%; then the
thicker part of the Fermi surface is a cube, and the
thinner part has the same length as the thicker part,
but only 3 the width, Furthermore, let f = %; this
means that the neck is filling in as the Fermi sur-
face grows. Consequently, the Fermi velocity on
the neck is decreased and the importance of the
convex portion of the Fermi surface is enhanced.
Thus, R,(Ll) should have the normal sign, which it
does.

The results for the above case are Ry(||) = 1/ne
and Ry(l) =3/ne. This may be described as typical
of the kind of experimental Hall data found in hex~
agonal metals. In accordance with the discussion
in Sec. II, the same results could have been ob-
tained for the above model if no shape evolution
were allowed, but instead the scattering times on
the transverse faces of the thicker and thinner
parts of the Fermi surface were assumed to differ
from each other.

A planar-faced Fermi surface is also useful for
discussing the behavior of R, for the case of toroidal
energy surfaces. Such a surface is possible in
crystals having the wurtzite lattice.® Again, a mod-
el with tetragonal symmetry is equivalent to the
symmetry of the actual Fermi surface, as far as
the behavior of R, is concerned.

The model and the pertinent parameters are
shown in Fig. 2(a). The scattering time is assumed
to be the same on all faces. In this case, the “nor-
mal” component occurs when H is perpendicular to
the axis of the “torus.” The result is

Ry(1) =% /ne (9)

(the same as for a simple cube), regardless of the
values of the six parameters of the model.

If we define the ratios f,=p,/p, and f,=v,;/v,, the
result for the “anomalous” component is

2 2
1 (a-AQ0-52 . (10)
2ne  (1+f,f,)
At first glance, this seems to be a strange and per-
haps nonsensical result. It predicts, for instance,
that when v; =v,, then Ry(|l) =0, no matter how small
the hole in the torus becomes.

But Fig. 2(b) suggests a more realistic velocity
profile for use with Eq. (9). It indicates that v;
< vy (f,~0) when the hole is small (f,~0). Hence a
small hole brings about only a slight deviation (to-
wards smaller values) from the holeless result
(3/ne). As the hole grows, neR(ll) steadily de-
creases, corresponding to the growth of the op-
posing contribution from countercirculating elec-
trons on the inner surface. For the velocity profile
shown in Fig. 2(b), however, v; is always less than
vy, so that neR,(|l) approaches zero as p; ~p, with-
out changing sign.

Ro(”) =
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IV. ROUNDING THE EDGES OF A PLANAR-FACED FERMI
SURFACE

When the scattering time 7 is assumed to be iso-
tropic, the mixing factor » becomes identical with
a quantity ® which can be obtained from Faraday-
effect measurements. 1° Stern has shown that ® can
be written in terms of an integral over the Fermi
surface containing the reciprocals of the two prin-
cipal radii of curvature of the Fermi surface at
each point. !!

The factor & is easily evaluated for the case of
a cube. To avoid infinities in the integral mentioned
above, it is necessary to “slightly round” the edges
of the cube, i.e., give them a small but finite ra-
dius of curvature. The result is?

®=%7=0.785. (11)

This is about 50% larger than the value =3 [Eq.
(6) of 1] which was obtained for the cube.

The two models used appear to be very nearly the
same, so that the large difference between the re-
sults is very puzzling, It turns out that the assump-
tions regarding the magnitude of H were such that
the models do become quite different.

Because of the sharp edges of the planar-faced
Fermi surface used to calculate », all carriers
either do or do not go around an edge of the surface;
none go “part way around an edge.” In determining
®, on the other hand, carriers on the slightly curved
edges of the Fermi surface were assumed to turn
through avery small angle during thetime 7. Thus &
was calculated under magnetic field conditions such
that the Hall angles for all carriers are small.

This condition is unattainable for the Fermi sur-
face with sharp edges; for a small enough H, the

(b)

ptransverse

FIG. 2. (a) A planar-faced approximation to a toroidal
Fermi surface. The symbols p and v identify Fermi-
surface dimensions and Fermi velocities, respectively.
(b) An energy momentum curve from which reasonable
values of v; and vy can be estimated for the model in (a).
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average value of the Hall angle will become small,
but it can never be small for those carriers which
go around a corner.

Nevertheless, it remains appropriate to regard
a sharp-edged Fermi surface as an approximation
to one which has finite radii of curvature every-
where. However, the values of 7 calculated with
this point of view in mind more properly correspond
to a “mixed-field” situation for the real model, i.e.,
the magnitude of H is such that it lies in the weak-
field range for some carriers, but in the strong-
field range for others.

If the ultimate, weak-field-for-all-carriers limit
of 7 is desired, it is obtainable with very little ad-
ditional calculation. This is shown in the Appendix
for the case of the slightly rounded cube. It gives
¥=1%7, as it should.

If a Fermisurface can bedivided into well-defined
areas which arerelatively sharp and relatively flat,?
then over some intermediate range of H a “mixed-
field” value of » should occur which differs from
both the weak-field and strong-field limits. If such
an intermediate- field plateau were found experimen-
tally, it could be used to determine 7 on the sharp
portions of the Fermi surface if the shape of the
Fermi surface were well known, or vice versa.

V. CONCLUDING REMARKS

With the aid of computers, numerical values of
the weak-field Hall coefficient may be accurately
determined for very complicated models. And it
has become clear that almost all realistic band mod-
els for crystals do have complicated shapes when
the Fermi level is not very close to a band edge.
However, calculating precise results for a partic-
ular model does not add much to the understanding
of the Hall coefficient unless it illuminates the con-
nection between what went into the calculation and
what came out.

The first attempt (in I) to discuss the connections
between the general behavior of  and the basic in-
gredients of the models used for the calculation
was defective in that it did not recognize the im-
portance of the shape-evolution factor. We believe
that Sec. II of the present paper does contain a com-
plete discussion of those connections.

We also wanted to demonstrate some useful ap-
plications of the mathematically trivial extension of
the method to noncubic models. And finally, we
wanted to make it clear why a slight rounding of the
edges between the planar faces of the Fermi surface
can have such a significant effect on the magnitude
of 7.

In conclusion, we again note, as we had in I, that
a Fermi surface with planar faces and sharp edges
cannot be used to calculate a true weak-field mag-
netoresistance. But the calculation does become
possible if the edges are slightly rounded. The
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mathematics is a little more involved than in the
case of the Hall coefficient, but not nearly as com-
plicated as other magnetoresistance calculations
involving anisotropic nonellipsoidal Fermi surfaces.
This extension to weak-field magnetoresistance will
be presented in a separate paper.
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APPENDIX: CALCULATION OF 7 FOR A SLIGHTLY
ROUNDED CUBE

The calculation follows the procedure described
in Sec. III. “Slightly rounded” implies that the
curved portions of the Fermi surface constitute a
very small fraction of the total surface area and
introduce a negligible change in the total carrier
density enclosed by the Fermi surface. Hence, the
results for i,, i,, and z are the same as for the
sharp-edged cube [Eqs. (3) and (5) of I],

i, =1i,=(4/h*)(8p%ET)(ev) ,

where the separation of opposite flat faces of the
surface is 2p, v is the Fermi velocity on the flat
portions of the Fermi surface, and

n=(2/n*)(2p)%.

The Hall current 7,, may be computed with the aid
of Fig. 3. We assume that the Fermi velocity on
the rounded edges of the surface is the same as on
the flat faces. It is also assumed that H is so small

(A1)

(A2)

E(x)

FIG. 3. Pictorial description of the calculation of the
Hall current for a slightly rounded cube-shaped Fermi
surface. The coordinate axes identify the directions of
the applied fields E and A and the resulting Hall current
iy. In momentum space, the forces displace the carriers
by the distances eET and p,cos0Af in the p, and p, direc-
tions, respectively, where p, is the radius of curvature
of the rounded edge of the Fermi surface and A9 is the
angle through which the Fermi velocity turns in the time 7.
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that carriers on these curved surfaces turn through
a small angle A6 in the time 7; consequently, con-
tributions from carriers which cross the boundaries
between the flat and curved regions Fermi surface
may be neglected. The contributions from the
rounded corners may also be neglected. The only
contribution to the Hall current which needs to be
considered is

/2
iyx=<%s> ", {[(2p)(eEN(p,cos 0d6)]
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Xe[vsin(6 + 20) —vsing]} | (A3)

where p, is the radius of the curved cylindrical sur-
face and A6 =evHT/p,. The three momentum fac-
tors in the first square bracket determine the dif-
ferential volume element of contributing carriers
and the second bracket gives the change in their
transverse velocity.

The numerical coefficient of Eq. (A3), after in-
tegration, is 47 instead of the 8 which was obtained
for the sharp-edged cubic [see Eq. (4) of I|. Hence,
7 =% 7 rather than 3.
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The de Haas—van Alphen (dHvA) effect in single crystals of high-purity thallium has been

investigated in magnetic fields up to 55 kOe.

These measurements extend previous work by

providing accurate dHvA frequencies for field directions in the three principal crystallographic
planes. dHvA frequencies larger than 107 G are assigned to orbits on the third-zone hole sur-
face centered at A and the fourth-zone hexagonal network of Soven’s relativistic orthogonalized-

plane-wave model.
model are also made.

Comparisons with the single-orthogonalized-plane-wave Fermi-surface
Magnetic breakdown of some of the orbits is observed. Lower dHvA

frequencies are assigned to a small dumbbell-shaped surface with symmetry 6m2. The cyclo-
tron masses of orbits on this surface are also presented and compared with recent cyclotron

resonance results.

I. INTRODUCTION

There have been recent investigations of the
Fermi surface of thallium using magnetoresis-
tance, !~° the magnetoacoustic effect, ®~® cyclotron
resonance, ! and the de Haas—van Alphen (dHvA)
effect. =1 The dHvA frequency is proportional
to the extremal cross-sectional area of the Fermi
surface normal to the magnetic field direction. It
is therefore important to have complete accurate
dHvA measurements as a function of magnetic field
direction. They are useful for determining features

of the Fermi surface and for deriving the band
structure and Fermi surface by the pseudopotential
method.

Some high dHvA frequencies were measured by
Priestley using pulsed magnetic fields'? and will
be compared with the present results wherever
possible. Low dHvA frequencies were observed
by the present authors,' Anderson, Schirber, and
Stone, and Saito.!? These low-frequency results
were extended by Capocci et al.'® and interpreted
in terms of a small dumbbell-shaped Fermi surface



