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used for the calculations. Instead, it may be because
the calculations of Seeger et al. (Refs. 17 and 18) al-
lowed for the anisotropy of 'the dilatation field around
the interstitials, whereas the calculations of Johnson
assumed an (unrealistic) isotropic displacement field at
large distances.
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The magnetoconductivity is obtained using anisotropic relaxation-time tensors for materials
having Fermi surfaces consisting of a group of ellipsoids. Each ellipsoid is described in terms
of a number of carriers and a saturation field tensor. From crystal symmetry and Onsager
reciprocity, it is proven in some cases and inferred for all other cases that all saturation field
tensors must be symmetric. The anisotropic relaxation-time tensor is thereby restricted, but
need not be symmetric itself. The saturation-field-tensor symmetry also requires the exis-
tence of ellipsoids of constant power density upon application of an electric field and no mag-
netic field. The Jones-Zenerexpansionof the conductivity in terms of magnetic field is simply
derived, including anisotropic relaxation-time tensors. The Jones-Zener series diverges to
infinity if a critical magnetic field H~ is reached. An expression for H~ is obtained and com-
pared with past criteria for convergence.

INTRODUCTION

Magnetoconductlvlty theol"168 ale common lQ the
literature for semiconductors and semimetals whose
constant-energy surfaces are approximated by a
group of ellipsoids. Most of these theories have
assumed isotropic relaxation times, but lately there
has been evidence for anisotropic relaxation times
in copper, ' bismuth, and bismuth telluride. A pre-
vious paper by Mackey and Sybert, hereafter called
Paper I, used anisotropic relaxation times in the
calculation of the conductivity for a group of ellip-
soids. AQlsotloplc 1 elaxatloQ tlIQ68 have also been
used in theories for many-valley semiconductors
by Herring and Vogt, in theories for bismuth by
Hartman and by Samoylovich and Pinchuk, and in
theories for bismuth telluride by Korenblit and by
Hubner. '

The theories for bismuth and bismuth telluride
are applicable to the whole group of solids which
have ellipsoidal Fermi surfaces, and it is unfortu-
nate that exposure has been restricted to research-
ers working with these two materials. Thus, it
seemed worthwhile to make an extension of Paper
I, providing a more comprehensive treatment for
the use of anisotropic relaxation-time tensors. At

the same time the simplicity of the results is
stl essed.

Some confusion seems to exist on whether or not

to assume the principal-axis system of the relaxa-
tion-time tensor coincides with that of the effective-
mass tensor. In either case, the principal-axis
system of the relaxation-time tensor is restricted
by the onsager reciprocity relation and by crystal
symmetry requirements. These restrictions are
developed here, and one finds a rather simple
physical interpretation of the results.

The theory of Paper I is generalized in this paper
by inserting anisotropic scattering into the original
Boltzmann transport equation, and by including for-
mulas applicable to semiconductor calculations as
well. as for the degenerate case. The Jones-Zener
series is then derived in matrix form to arbitrary
order. From this, the Jones-Zener coefficients
which properly include anisotropic relaxation are
readily identified, The regions of convergence and

divergence of the Jones-Zener series are separated
by a "critical" magnetic field strength which is
derived and found to be a function of the magnetic
field direction.

BOLTZMANN TRANSPORT EQUATION WITH
ANISOTROPIC RELAXATION TIME

The Boltzmann transport equation for electrons is

V f v —'7 f el+ —vxH
e - sf

x' P C et

where e = ( e ) is the electron charge and f is the
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fg= (& p-)
8E' (2)

e is the energy and 0 is a function of energy to be
determined. For ellipsoidal energy surfaces the
energy is

2e =p. (m) 'p=p. np,

and the velocity is defined as

distribution function for the electrons. After
Wilson (also see Paper I), let f„the perturbation
of the distribution function from equilibrium defined
as f f0—(e), be of the form

0 -H3 H2

H= H3 0 —H,

-H2 H, 0

Using Eqs. (4) and (10) in Eq. (9), and noting that
Eq. (9) must be satisfied for arbitrary v, one finds

cE —HC+(c/e)(7) 'm0=0. (»)
Equation (12) has the solution

0= —cGK,

where

v =V~e=(m) 'p. (4)

Assuming isothermal conditions, V„f= 0, and keep-
ing only first-order terms, gives

G=(F H)-
F= (c/e) (7 )

' m .

Equations (13) and (2) yield

(14a)

(14b)

(5) f, =c p ~ Gf .1 (15)

For the most general relaxation-time approxima-
tion, the right-hand side of Eq. (5) is written in the
form

(at). rN) ' (6)

where 7 is a function of p. (When r is isotropic,
it is a function of energy only. ) Because only ellip-
soidal energy surfaces are considered, it will be
assumed that the relaxation time can be written as
a tensor whose elements are functions of energy
only. Using Eq. (2), it is then possible to write the
collision term in the following forms:

This is a closed-form solution of the distribution
function for ellipsoidal energy surfaces. To find
the Jones-Zener expansion' of f, (and thus of the
conductivity calculated from f,), one first expands

[F Hj ' in a-matrix series' about the matrix H,
giving

(F —H) = F ' F HF ' F HF 'HF

This expansion in Eq. (15) gives the Jones-Zener
series for f, as

f =c (p ~ F 'K+p ~ F 'HF 'K+ ~ ~ ~ ) . (17)1

(
= 'f e m(;)- (m)-pat, 8e

~
~

sf f0 p ( t)-1~
8t , 8e

(7a)

(7b)

Note that this is a power series in the magnitude of
the magnetic field H, since one can define a unit

vector U in the direction of the magnetic field such
that

The matrices 7
' and (8') ' are not equivalent, in

general, but a solution for one yields the other by
the equation

H=HU

(7 )-' = m (r)-' (m)-' . (6) H=HV . (19)

Equation (7a) is the most convenient form to sub-
stitute into Eq. (5), and yields

v ~ eK- —AxV +p (m) '(7 ) 'mV
86 C

A

where use has been made of the identity A M5
=MA ~ B and the symmetry of the mass tensor. M

A

is the transpose of M. Replacing the vector cross
product by its matrix equivalent gives

(U is an orientation matrix containing the same in-
formation as the vector U. ) If the magnetic field
strength is equal to or greater than a critical value,
the Jones-Zener series diverges and is no longer
equivalent to the closed-form expression of Eq.
(15). However, Eq. (15) is finite and is valid above
the critical field value unless the effective-mass
theorem fails, or the splitting of electron states by
the magnetic field becomes important. " The criti-
cal field of the Jones-Zener series is derived in
Appendix 8 to be

AxV=HV, (10) H, =([F i /U ~ FU) (2o)

where where F is a symmetric matrix(as is shown below)
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and )P ( is the determinant of the matrix P.
For the case of spherical energy surfaces and an

isotropic relaxation time, Eq. (20) reduces to

energy and

n = —", &2'-'(n, a, o, ) ~'eP (26)

The current density is calculated as

J= -2ea SJ'vf, d'-P,

which from Eq. (15) becomes

(22)

Z=-2eh 'c v Gp ' d'P.
Sc (23)

Note that G or G perform operations which differ
according to the direction of p, but their elements
are assumed to be functions of energy only. Con-
sequently, all but the energy integration can be
carried out immediately. To do this, one uses a
deformed coordinate system or w space such that
constant-energy surfaces are expressed as

26 =Qpw 'w (24)

where ep is an arbitrary constant with the dimen-
sions of a. The resulting transformations and in-
tegrations are carried out in Appendix A. From
the expression for current density, one then identi-
fies the conductivity tensor as

eH, 7/mc = 1 .
Hartman indicates a matrix expansion similar to
the above for his electrical conductivity matrix.
His convergence condition is for the magnitude of
each element of (E 'ft) to be less than one, which
always gives a magnetic field strength less than the
critical field. For the spherical isotropic case,
Hartman's criterion reduces to H&H, whereby H,
is given by Eq. (20). However, for electron ellip-
soids in bismuth with the magnetic field along the
threefold axis, Hartman's condition gives H & 0. 096H, .

CONDUCTIVITY

o, =ec Q, n(R„PA, '-II) '. (30)

is the number of electrons per unit crystal volume
in the energy ellipsoid 2e~=p ~ o.p. Equation (2V)
was derived in Paper I, where H' in that payer is

A,

designated as I" here to avoid superscripts. H' or
I" is referred to as the saturation field tensor.

Equation (27) gives all the components of o in a
straightforward manner. However, if only a few
components are to be calculated, and if one wishes
to capitalize on H being antisymmetric, alternate
expressions using Levi-Cevita symbols may be used.
These are given in Appendix B. Equation (16) can
also be combined with Eq. (2V) to yield the Jones-
Zener series for the conductivity. These coeffi-
cients are given in Aypendix C.

To calculate the conductivity for a group of ellip-
soids, one may assume that the conductivity of each
ellipsoid can be calculated separately. The total
conductivity is then given by summing the conduc-
tivities of the individual ellipsoids in a common
reference system. In Eq. (2V), the only quantities
dependent on the individual ellipsoids are the ele-
ments of the saturation field matrix J' and the num-
ber of carriers n. Then in the laboratory reference
system, the total conductivity takes the form

ct ec ~k nk (Fk @ (29)

If 7 and m are given in the ellipsoid principal-axis
system, they must be transformed to the laboratory
reference system by a similarity transformation.
Let R~ be a rotation matrix relating the kth ellip-
soidal principal-axis system with the laboratory
system. If all ellipsoids belong to the same I' and
are identical (except for rotation), then Eq. (29)
can be written as

8o=&&2eh 'wc(a, o.,u, )-v' e'" "' (F" e) 'de . -
er ONSAGER RECIPROCITY

This expression is applicable to either semicon-
ductors or semimetals where Eqs. (3) and (4) hold.
The energy dependence of the relaxation-time ele-
ments must be known to proceed further, except
for the degenerate electron case (such as semi-
metals at low temperatures). Results are then
simplified by the relation

The Onsager reciprocity relation" requires the
conductivity tensor to satisfy

a(A) = o (- H) . (31)

This puts restrictions on the matrix I' and thus on
the relaxation-time matrix y. If one treats each
individual ellipsoidal energy surface as indepen-
dent, then Eq. (31) must be satisfied by Eq. (27)
for the degenerate case, and one obtains

8 p = —5(e. -e~)86' (26) (32)

where c& is the Fermi energy. The conductivity
tensor is then

since

Pa

B = —H. (33)

o=nec(F II) ', -
where the elements of v are evaluated at the Fermi

For the nondegenerate case, Eq. (31) applied to Eq.
(25) gives
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o, (H)=5, (-H) . (35)

In order to consider a simple example and to cor-
rect an error in Paper I, consider three identical
ellipsoids symmetrically placed around the Z axis,
such as the electron ellipsoids for bismuth. For
this example, Appendix D shows that Onsager recip-
rocity requires the F matrix of each ellipsoidal
surface to be symmetric. The F (or H') of Paper
I is not symmetric and, therefore, does not satisfy
Onsager reciprocity. It was originally thought to
satisfy Onsager reciprocity because it was only
checked for the magnetic field in the Z direction.
However, for the magnetic field in the X or F direc-
tions, the example of Paper I no longer satisfies
Onsager reciprocity, in agreement with the results
of Appendix D.

For larger groups of ellipsoids, solutions of Eq.
(35) other than each matrix P being symmetric are
mathematically feasible. For example, in Eq.
(29), one might add to every term ni, ec(F, —8) ',
a term

n, ec(P, —e)-',
where

and

n, =n~.

(36a)

(36b)

(36c)

But finding a physical situation in which ellipsoids
could pair off according to Eq. (36a), when re-
ferred to the same coordinate system, seems ex-
tremely unlikely. Since crystal symmetry seriously
restricts the ellipsoid arrangement, one is inclined,
after working through a few examples, to consider

(34)

for all H. Equation (32) is obviously a solution
again. Other solutions are mathematically feasible,
but the solution must converge to Eq. (32) for the
low-temperature degenerate case, and thus Eq. (32)
seems the most plausible solution at higher tem-
peratures.

The independence assumption above is consistent
with the assumption of no interellipsoidal scattering.
However, Hartman proposes that for bismuth a
predominant scattering is between carriers from
different ellipsoids. Thus one is led to ask what
happens if the conductivity can still be accurately
approximated by adding individual ellipsoid conduc-
tivities according to Eq. (29), perhaps by the use
of an "averaged" interellipsoid scattering contri-
bution to the relaxation-time tensor, but the Onsager
reciprocity can be only applied to the total conduc-
tivity as

Eq. (32) as the only practical solution to Onsager
reciprocity.

Using the symmetry of F and Eq. (14b), one has

(~) 'm=mr ', (3'7)

since m is symmetric from its definition. The T

tensor can be inverted to give

Trn —mT (38)

o =nec(F) ' . (41)

Since F ' is symmetric, the conductivity tensor is
also symmetric and can be diagonalized by a rota-
tion.

Just as a symmetric mass tensor yields ellip-
soidal energy surfaces through Eq. (3), a symmet-
ric conductivity matrix yields ellipsoidal power-
density surfaces from the equation

P=K ~ J=F ~ oE, (42)

where P is the power density resulting from the ap-
plication of an electric field F. Both m and 6]s.o
must satisfy crystal symmetry, which means that
the ellipsoidal energy surfaces and the power-den-
sity surfaces in zero magnetic field also satisfy
crystal symmetry.

So for bismuth telluride, one may have an energy
ellipsoid of tilt angle 8, and a power-density ellip-
soid of tilt angle 8~ from the threefold axis. If T

is symmetric, then 8, equals 8~. However, if 7

is not symmetric, then 8, and 8~ are not equal.
Using the data table of Hubner' for bismuth telluride,
one finds 8~ of about 35 while 8, is unknown.

which in the ellipsoidal principal-axis system gives

7 „=(m, /m, )7.. . (39)

in agreement' with Korenblit' and others. ' r(7')
must be symmetric if it is to have an orthogonal
principal-axis system in velocity space (p space).
With Eq. (38), this gives

(40)

Since for this case 7 and nz commute, they share
the same principal-axis system which is that of the
energy ellipsoid. This is the case considered by
Herring and Vogt' and by Hartman. Equation (40)
also implies that T=7 . Whether T is symmetric
or not is not determined by Onsager reciprocity and
crystal symmetry.

For nonsymmetric 7, it is instructive to consider
bismuth telluride where three ellipsoids are sym-
metrically placed about a threefold axis. The en-
ergy ellipsoids may be tilted an angle 8 from the
threefold axis. (Crystal symmetry specifies the
orientation of the energy ellipsoids about symmetry
axis in P space except for the angle 8.) The con-
ductivity of a single energy ellipsoid with no mag-
netic field is
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CONCLUSIONS

The use of an anisotropic relaxation time in mag-
netoconductivity calculations for a group of ellip-
soids is straightforward. It can be included in the
original Boltzmann equation as a collision term,
which permits extending the calculations to trans-
port coefficients other than the electrical conduc-
tivity. The Jones-Zener series is readily obtained
from a matrix expansion. The proper insertion of
anisotropic relaxation times in each coefficient is
obtained by this approach. The closed-form solu-
tion for the magnetoconductivity of ellipsoidal energy
surfaces is good for all values of magnetic field
for which Eq. (1) is valid. The Jones-Zener ex-
pansion of this solution, on the other hand, is valid
only up to the critical field value given in Eq. (20).
The Onsager reciprocity relation indicates the ex-
istence of ellipsoidal surfaces of constant power
density in zero magnetic field, and thereby puts
restrictions on the relaxation-time matrix 7. .

right-hand side of Eq. (A9) except for E, the elec-
tric field, which is Eq. (25) of the paper.

APPENDIX B: ALTERNATE CONDUCTIVITY EXPRESSIONS
AND CONVERGENCE OF JONES-ZENER SERIES

(al)

Using this symbol, the inverse of a matrix can be
written as

(- r) p 1 5,r, r 5,„;M„M~r,
2

(a2)

The [F—H] ' of Eq. (27) can be expanded by ten-
sor analysis" using the Levi-Civita symbol defined
as

0 if any two indices are equal
1 ifa, b, cisaneven

permutation of 1, 2, 3
~ —1 ifrr, b, cisanodd

permutation of 1, 2, 3.

APPENDIX A: CONDUCTIVITY .IN DEFORMED
COORDINATES

p =nPn ~'w, -

2~ 1/2W

(Al)

(A2)

Using Eq. (24), the quantities in Eq. (2S) trans-
form as

rJ„=nec
l,m)r, s, P

[2~r rb,.rFr, F .
+(5 ~rH;+5r rH~)F ~ +HrHr]/

The determinant ) M) can also be expanded using
Levi-Cevita symbols. Applying this technique to
Eq. (2'7) yields the result

d'P = n P (n, c,n, ) V'd' rc. -

The current density then becomes

J=2eb-'cn'~'(n n n )
2r2

0 w GQ ~W ~ — de.86

(AS)

[IFI+a Fa Z 5.„H,F.,F„].
g)b~c)4

Using the result of Eq. (S2) that F is symmetric,
Eq. (BS) simplifies to give

orr ——nec[l F
I
(F )rr + Hr H~

+ 2 5(„,Hp F n]/[I &
I

+H FH] .

d'rr) =dS(e)de/(n, rr)) .
Writing all matrix products in the form

(AB)rr=p 24;„8r,
and using the relations

f rr), rrr dS(e) = —', rrrc'5 „,
rr)' = (2e/n, )~',

)ra=brr,

(A4)

(Ae)

(AV)

(As)

yields the result

2=(—,&2)et '««(d, d, d, ) «'f «"' Grd«

(A9)

The conductivity matrix is then identified as the

Letting dS (e) be an element of area on the constant-
energy sphere in ze space gives

(B4)

Convergence of Jones-Zener Series

When the conductivity is expressed in the form of

Eq. (B4), the denominator can be expanded as an
infinite series in the magnetic field magnitude B as

[IFI+&»] '=[IFI+H'U FU] '

=[1—tJ' FUH +(U ~ FUH )'- ~ ~ ~ ]/IFI, (B5)

where U is a unit vector in the direction of the mag-
netic field. When this series is multiplied into the
numerator of Eq. (84), the Jones-Zener series for
O,J is obtained. Because this numerator is always
finite, the convergence of the series of Eq. (B5)
coincides with the convergence of the Jones-Zener
series. The denominator of Eq. (B5) is of the form
(a+bH~) ', where a and b are constants independent
of the magnitude of the magnetic field. (Of course,
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ft depends on the direction of the magnetic field. )
The convergence of this series expansion is deter-
mined by the ratio test of adjacent terms of the se-
ries. Convergence requires that

a'& (u/f )'. (B6)

ff', =(i Pi/U PU)', (B7)

An equality sign in Eq. (B6) makes the series di-
verge, and, therefore, gives the "critical" magni-
tude of the magnetic field. Using Eq. (B5) for the
values of the constants a and 5 gives the critical
field value

placed about the Z axis, one calculates the total
conductivity by Eq. (30), where Ab is the rotation
matrix which rotates the ellipsoid (and P) about the
Z axis by 120 increments.

Doing this, and expanding g, in a Jones-Zener
expansion, Eq. (35) requires

(ct)tt lH o==(&t)tt IH=Q s

(ot)ttb (ot4tk &

(Dl)

(D2)

and more equations for the higher-order coefficients.
From Eq. (D2), consider the particular elements
giving

which is Eq. (20) of the paper. One observes that
this value is a function of the direction of the mag-
netic field through the unit vector V.

APPENDIX C: JONES-ZENER COEFFICIENTS
FOR CONDUCTIVITY

Experimental papers ' normally determine coef-
ficients of the Jones-Zener expansion of the conduc-
tivity, which is written as

+if +if ++ijk +k + ~iik]kp +k]+kg+ ~

{0) (1) (8)

(hatt)333 = 0,

(Ct )231+ (Ot)321

(Ot )111

(Ot )112

From Eqs. (30) and (Dl) one has

(P -')» = (P -')»
and

(D3)

(D4)

(D5)

(D6)

(D7)

(N)
N

8JI BII H=O

(C2)

Expanding Eq. (27) in a matrix series as given by
Eq. (16) yields the Jones-Zener coefficients when

Eq. (C2) is applied. [This development can be made
for all equations containing (E —H) '. ] The results
are

o,',"=necP(),,',
&ttb =nec Z (P )' & bb(P )bt

ab

(C3)

(C4)

Pj' f ]~ ~ kN1 2 N, ~ a] ~ ~ ~ ag

b]a ~ ~ bg

+ 6atbtb (F )b1a2 a23232 (F )bH 1aH

x g (g-]i
aNbNkN l&N~ (C5)

where I'k, k„is a permutation operator which
sums all possible permutations of the variables

Since

P '= (e/c)127 =(e/c)(7-')a, (C6)

it is clear how the anisotropic relaxation-timema-
trix, whether it be in the form v or y, fits into the
Jones-Zener expansion. Equation (20) yields the
region for which the expansion converges.

APPENDIX D: GROUP OF THREE ELLIPSOIDS

Taking three identical ellipsoids symmetrically

(C1)

This amounts to a Taylor series with the coefficients
given by

(P -')„(P-'),.—(P-')„(P-')„=o,
and from Eq. (D4)

(P-1)2 (P-1)2 (P-1)2 (P-1)2

Equations (D8) and (D9) have the two nontrivial so-
lutions

(P '),.=(P-')„

(D6)

(D9)

(D10)

and

or
(F ')„=(F')„,
(P ')13 = —(P ')31

(D11)

(D12)

(D13)

Equations (D5) and (D6) establish Eqs. (D10) and

(Dll) as the proper solution for the three ellipsoids.
Equations (D7), (D10), and (Dll) require (Pb)

' and
thus Fk to be a symmetric matrix for all k, which
is identical to the single ellipsoid result.

The example of Paper I assumed a single matrix
z defined in the laboratory reference system. It
should then not be transformed by the rotation ma-
trix R. In this case, the correct way to calculate
the total conductivity is

&t =nec g» [(c/e)(3 ) 'Bbtn(Rb) ' —H] ' . (D14)

ft (r)-'(Ab) '=(r)-' (D15)

Therefore, Eqs. (D14) and (D30) are equivalent for
that example, and one is left with the requirement
that I' be symmetric.

However, the 7. for that example was chosen iso-
tropic in the X-7 plane and the rotation A was about
the Z axis, giving the special result
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An earlier paper described a simple method for computing the weak-field Hall coefficient
through the use of a Fermi surface composed entirely of planar faces. That paper developed
a set of rules which linked the general behavior of the HaQ coefficient to two fundamental prop-
erties of transport models, Fermi-surface shape and scattering anisotropy. The present
paper reformulates those rules by adding a third ingredient to the model description, shape
evolution. Exceptions to the earlier rules are thereby eliminated. The present paper also
extends the simple method to noncubic models. The results for "undulating cylinders" (a
Fermi-surface approximation for some hexagonal metals) and toroidal Fermi surfaces (a pos-
sible model for the wurtzite lattice) are analyzed. Finally, the effect of rounding the sharp
edges at which the planar Fermi-surface faces intersect is investigated. The results resolve
an apparent paradox pointed out by Stern, and provide some insight into the general magnetic
field dependence of the Hall coefficient.

I. INTRODUCTION

In an earlier paper, a new method was described
for computing approximate values of the weak-field
Hall coefficient Rp. ' The essential feature of the
procedure is to replace the actual Fermi surface
by one composed entirely of planar faces. The ad-
vantage of the method is its simplicity; it is possible
to obtain results for a wide variety of models, in-
cluding those in which both Fermi-surface distortion
and anisotropic scattering play an important role,
without becoming involved in complicated mathemat-
ics.

The Hall coefficient ought to be one of the best
understood transport coefficients; after all, it de-
pends essentially on a single electronic parameter,
charge density. But Rp is also influenced, in a
more subtle way, by dimensionless functions of
carrier velocity and scattering time. These func-
tions stem from specific details of the model under
consideration, but their effect on Rp has never been
well understood in a broad sense.

Those few papers which do discuss the general

behavior of Rp generally relate it to two fundamental
properties of a model, the shape of the Fermi sur-
face and the scattering anisotropy. In I, we at-
tempted to develop a set of rules for the behavior
of Rp which were related to these two fundamental
properties, and which would apply to all known
models for which a scattering time was defined.

In Sec. II of the present paper, we reformulate
those rules in terms of three fundamental model
properties, the additional one being shape evolution,
i. e. , the manner in which the Fermi-surface shape
changes as a function of the Fermi energy. As a
consequence, we develop a distinctly different view-
point from which to describe and understand the
links between the essential characteristics of a
model and the general behavior of Rp.

In I, all of the models discussed had over-all
cubic symmetry. Section III of the present paper
treats two noncubic models. Mathematically speak-
ing, the extension is trivial and uninteresting. But
the simple form of the results makes it possible to
present, for the first time, a clear cut and realistic


