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Lattice-Dynamical Theory of the Diffusion Process.
I. Isotope Effect in Cubic Metals~
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A lattice-dynamical theory of diffusion based on the fluctuations in a certain reaction co-
ordinate first used by Flynn is presented. The theory of vibrations of isotopic impurities in
a crystal is applied to evaluate the parameter AK that describes the isotope effect in diffusion.
Numerical results for Cu, Ag, Au, Al, Ni, Co, Pb, Na, and e-Fe are presented. The effect
of both relaxation near the vacancy and temperature on &K are also studied.

I. INTRODUCTION

Recently, there has been renewed interest in the
study of diffusion phenomena in metals, and the
state of the art has been described by Peterson. '
The degree of accuracy and sophistication that has
been achieved experimentally, with the advent of
tracer techniques, is paralleled by some significant
theoretical developments. Glyde, while examining
the theories of rate processes in solids, showed
that the dynamical approach used by Rice, and Rice
and Frisch3 is equivalent in formal content to the
equilibrium statistical-mechanical approach used
by Vineyard. Franklin' formulated an anharmonic
theory of atomic migration that resembles the
equilibrium statistical-mechanical approach.
Flynn presented a dynamical theory of diffusion in
the elastic continuum limit. His theory, based on
fluctuations in a specific reaction coordinate, has
met with considerable success in accounting for
the diverse features of atomic migration. Impres-

sive as these efforts are, quantitative calculation
of specific parameters that appear in the theory
of diffusion have been largely unsatisfactory. One
example is ~K, which, together with a correlation
factor f, is a measure of the isotope effect in dif-
fusion. Although accurate experimental measure-
ments of the dependence of tracer diffusion rate on
isotopic mass have been available for quite some
time, ' theoretical calculations of 4K with a com-
parable degree of sophistication have not been
available. In a recent paper, Glyde' rederived the
expression for the classical jump rate I' for tracer
diffusion to demonstrate clearly its mass depen-
dence; however, no numerical application to real
systems was made. Huntington et al. ' have attemp-
ted to calculate several fundamental parameters
involved in the diffusion phenomena by computer
simulation of atomic migration. They evaluated
the parameter 4K on the basis of the reaction rate
theory, where 4K is equal to the ratio of the
kinetic energy of the moving atom, in the dissolu-
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tion normal mode at the saddle point, to the total
kinetic energy. The dissolution mode has an ima-
ginary frequency, in terms of the normal mode
analysis, and, therefore, could be distinguished
in the computer program. The values of hK
obtained in this study were very close to unity
(I &K- 11 & 0. 05 in all cases). This is in conflict
with the experimental values of 4K for fcc metals'
(- 0.8-0.9) and for bcc metals' (- 0. 5). Huntington
et al. suggested that the discrepancy might be due
to the inadequacy of the reaction rate formalism.

The object of the present investigation is to de-
velop a lattice-dynamical theory of atomic migra-
tion that can yield trustworthy values of hK.
Flynn's reaction coordinate was utilized in this
study, and the fluctuations of the coordinate are ex-
pressed in terms of the phonon spectrum of the
perfect crystal. It is assumed that the mechanism
of diffusion is the vacancy, and that the atomic
jump occurs when the fluctuation in the reaction
coordinate exceeds a certain critical value. The
atomic jump frequency is obtained by using Kac's
solution for "up-zero" frequencies of fluctuations
that exceed the critical value. The lattice-dynami-
cal theory of impurity modes due to isotopic defects
is applied to evaluate &E. The harmonic approxi-
mation is assumed throughout. Numerical re-
sults are presented for Cu, Ag, Au, Al, Ni, Co,
and Pb among the fcc metals and Na and n-Fe
among the bcc metals. The effect of relaxation
around the vacancy on 4K in Cu and the effect of
temperature on 4K in Al and Ag are also studied.

II. REACTION COORDINATE

Our attention will be restricted to diffusion by
the vacancy mechanism in a cubic metal. An atom
moves through the crystal by means of a series of
jumps, each jump involves the atom and an adjacent
vacancy. The jump would occur as a result of the
fluctuations in the energy and momentum of the
atom due to thermal vibrations. The jump would
be completed only if the amplitude of the fluctuation
is sufficiently large, and only if the neighboring
atoms, which form a barrier to the migrating atom,
move away from the jumping atom. Both conditions
can be met simultaneously by considering fluctua-
tions of a reaction coordinate. The instantaneous
relative displacement of the jumping atom and the
nearest neighbors along the jump direction was
used as the reaction coordinate. If N neighbors
obstruct the jumping atom, the reaction coordinate
can be expressed as

X= U —— U' 'X.

Here U is the displacement of the diffusing atom,
U' is the displacement of the ith atom in the ring
of N neighbors from their equilibrium positions,

respectively, and X is a unit vector along the jump
direction. This reaction coordinate implies that
the motion of only certain atoms is important in
determining the atomic jump The lateral motion
of atoms in a direction perpendicular to X is not
considered. It is expected, however, that lateral
motion will be involved in the determination of the
critical amplitude, which is a measure of the mo-
tion energy. In the harmonic approximation, this
parameter cannot be determined from theoretical
considerations but can be adjusted to fit experi-
mental values. Perhaps, if anharmonic effects
were included in an extension of the theory, a
theoretical calculation of the critical amplitude
could be made. Section III describes how the atom-
ic jump rate can be obtained by expressing the
displacements U' and U' from Eq. (1) in terms
of the phonon spectrum of the metal.

III. ATOMIC JUMP RATE

For a lattice-dynamical description of the fluc-
tuations in the reaction coordinate, we specify the
equilibrium position of an atom by

R(l) = l~a~+ l2a2+ i~as,

where a„a2, and a3 are the primitive translation
vectors. Thermal vibrations cause a displacement
of the atom from its equilibrium position. If cyclic
boundary conditions and the harmonic approximation
are assumed, the displacement of the atom can be
expressed as'

U(i)=( )„, Pe(q, z)Q(q, z)e"" ',
q, X

where e(q, A) is the polarization vector and Q(q, p.)
is the normal coordinate corresponding to the mode
of frequency ~, wave vector q, and branch X given
by

1/2

Q(q, X) = t'a (-q, X)+a(q, X)] (4)
2v q, X

in terms of the phonon creation and destruction
operators. The phonon occupation number is given
by

n(q, X) = (a'(q, X)a(q, X)) = (e'""'"r' I)-'. (-5)

By substituting the quantities U' and U' in Eq. (2),
the reaction coordinate can be written as

X= QX(q, ~), (5)

where X(q, X) is the contribution to the fluctuation
in the reaction coordinate due to the (q, X) mode.
The particular form of X(q, A.) will depend on the
lattice geometry of the material and the number of
neighbors that obstruct the jumping atom.

The atomic jump occurs when the fluctuation in
X exceeds a certain critical value X,. The rate at
which X, occurs, when X is the sum of X(q, X)
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terms, is given by the frequency of "up-zeros, "
1 e, )

gx(q, ~) -x,=0.

Following the solution of Kac, "the frequency of
"up-zeros" is given by

I'= [p u)'(q, x) I x(q, x)
i
'/Q

i x(q, x) I'] 'i'
$,A,

xexp[ —x,/P Ix(q, x) i ] ~

Equation (7) yields the atomic jump frequency when

the frequency of fluctuations is much greater than
the frequency of a jump.

Equation (7) is the basic equation in the present
theory. It was first applied to atomic jump proces-
ses by Hlce, and subsequently by others. 6

The velocity of the jumping atom need not be con-
sidered in the expression for the jump frequency.
Equation (I) resembles the familar equation

I —I 0

that was used in the reaction rate theory. The pre-
exponential factor is an average of the frequency
values over the entire spectrum of fluctuations.

IV. ISOTOPE EFFECT

The isotope effect in cubic metals is a measure
of the dependence of the tracer diffusion rate on the
isotopic mass. The parameter ~ that describes
this effect is defined" by

F /1'() —1

M M -1
where I' and I'& are the jump frequencies of the
isotopic masses M, and M~, respectively. The
atomic jump rate I"„for the isotope of mass M
can be calculated in a straightforward manner by
using the appropriate expression for U' in Eq. (1).
This result is well known in the theory of vibrations
of isotopic impurities in crystal lattices. '6 Accord-
ingly, the square of the amplitude of the isotopic
lmpurlty M 111 the (q X) IIlocle Is glveII by

IU "(q,x) i'

= (&M) '([I —e(u (q, x) Go((o')]'

+II'e'(u'(q, X) G()((o )] ' [0&(d'(q, Z) &(d' „] (10)

is the Hilbert transform of G,((d'). Equation (10)
yields the square of the relative amplitude when

tile fI'eqlleIlcy (d(q, k) lies w1thln tile allowecl band of
frequencies, and Eq. (11) yields the same factor
when a localized mode occurs beyond the maximum
allowed frequency of the perfect cyrstal. If M
=M, «= 0, the square of the amplitude reduces to

I U'(q, A. ) I
= (iVM)

' L.ocalized modes are known

to occur only when there is a light impurity with

«„=0.24. ' In most of the work concerned with

the isotope effect ln seU-dlffuslony the mass dlf
ferenee factor «seldom reaches the critical value
that will give rise to localized modes. Only Eq.
(10) is needed to compute I'„. Although the normal
mode frequencies in a crystal with an isotopic im-
purity are slightly different from those of the per-
fect crystal& R fll st approximation thRt the elgen
vectors are essentially the same can be made. If
this assumption is used, l", the atomic jump rate
for the isotope M, can be calculated by using Eqs.
(7) and (10). A similar computation of I'(I for the
isotope Mz leads to a straightforward calculation
of ~ through the use of Eq. (9). The numerical
application to fcc and bcc metals will be discussed.

V. NUMERICAL APPLICATION

The numerical application to self-diffusion in
Cu, Ag, Au, Al, Ni, Co, and Pb among the fcc
metals, and Na and n-Fe among the bcc metals
will be discussed.

The geometry of the atomic jump in an fcc metal
is shown in Fig. 1. The jumping atom (shaded
circle) is located at the center of a face and is a
nearest neighbor to the vacancy (square). The
atoms at the corners of the rectangle form a bar-
rier to the jumping atom.

The primitive translation vectors a,„a2, and as
are given by

a1=-,'a(j +k),

a, = —,'a(i +k), (12)

a, = —,'a(i +I ),
where i, j, and k are the unit vectors along the
cube edges. The corresponding reciprocal lattice

2

=(rM) '(a '( x)
** '(~ )~~

))0 ((7 —()7 )

[~' & (u'(q, X)] . (11)

In Eqs. (10) and (11), M is the mass, N is the
number of atoms in the crystal, &=1-M /M is
the mass difference factor, Go(~ ) is the distribution
function for the squared frequencies, and Go((d')

DIFFUStNG ATOM

Q VACANCY

FIG. 1. Geometry
of the atomic jump in
a fcc crystal by the
vacancy mechanism.
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xcos(-,'q, a)(e"'& '+e'"& ')],
where the wave vector q is given by

q = q,b&+qzb~+qsbs,

where

q, = 2vn, /N „~,= 0, 1, . . . N, —1, . . .

(14)

and

N = NjN2Ns.

The expression for U (q, &) is given in Eq. (10).
A Born-Karman force-constant model is used

to describe the phonon spectrum of the metal. In

Cu and Ni, phonon dispersion curves have been
obtained from neutron-scattering data, ' ' and

have been analyzed in terms of Born-Karman
models. When interactions up to the sixth-nearest
neighbors in Cu and up to the fourth-nearest neigh-
bors in Ni are included, the theoretical calculations
are in good agreement with the experimental pho-
non dispersion curves. A model of this type en-
ables one to compute both the eigenfrequencies
and the eigenvectors of the normal modes of vi-
bration that are required to evaluate the sums

P X(q, X).

If the eigenfrequencies can be obtained experimen-
tally for some of the modes, then the model helps
to extrapolate to other values of the wave vector,
and a larger sampling is available for the summa-
tions. A Born-Karman model is simple to use and
reproduces the experimentally measured dispersion
relations fairly well when the model parameters
are fitted to the dispersion curves. A simpler
Born-Karman model, with general nearest-neigh-
bor interactions only, can be used when neutron-
scattering data or model parameter analyses are
not available. The three parameters involved in
this simpler model can be fitted to the three elastic
constants. Two models have been used to compare
the nK ca.lculations for Cu: (a) a sixth-neighbor

has the following base vectors:

Sg=s ( I+i +k),

b2 = a '(i- j+k),
b, =a (i+j —k).

If the origin is at the diffusing atom and the vacancy
is at —,'a(110), the four atoms barring the diffusing
atom are at the corners ~a(101), 2a(011), m~(011),
and —,'a(101). The components of unit vector along
the jump direction are (1/&2, 1/v 2, 0).

The contribution to the fluctuation in the reaction
coordinate due to the (q, &) mode is given by

X(q, ~) = (e(q, ~) X)Q(q, ~) f& (q, ~) —l fJ '(q, ~)

[Z(u'(q, x) Ix(q, x) I'/Z Ix(q, lI) I']"'
was also calculated. Theoretical estimates of the
motion energy are presented by assuming that the
critical amplitude is a definite fraction of the
atomic radius of the crystal (0. 275). The results
are presented in Table IV. The values of ~K
calculated for Cu, Ag, Ni, Al, and Co (8%Fe) are
listed in Table V. The isotope effect for Cu, cal-
culated on the basis of the simpler nearest-neigh-

TABLE I. Force-constant matrices between the atom
at (0, 0, 0) and the atom at Rn in fcc metals.

Rn 4 (0, Rn;ig)

2a (110)

—,'a (200)

—,'a (2].].)

2 a (220)

—'a (3&0)

2a (222)

(::)
~s Ps '6
~s &s Ps

p4 o.4 0
0 0 P4

(;;":,)
&6 &6 &6

P6 P6 &6

force-constant model, derived from experimental
phonon dispersion data, and (b) a nearest-neighbor
general force-constant model, fitted to the elastic
constants.

The form of the force-constant matrices is
listed in Table I. The values of the force-constant
parameters for Cu and Ni are listed in Table II.
Table III lists the elastic constants of Al, Ag, Au,

Pb, and Co (8% Fe) and the values of the three gen-
eral force constants. The phonon spectrum was
obtained by solving the secular equation for normal
modes at 22931 points in the irreducible section
of the first Brillouin zone. The Hilbert transform
of the squared frequency distribution was then cal-
culated at 100 points between zero and the maximum
squared frequency. The quantities

x(q, x)I and ~~'(q, x)IX(q, ~)I
ij, )t

were evaluated by solving the secular equation at
261 points in the irreducible part of the first Bril-
louin zone, and by summing over all the modes.
The ratio of the Debye frequency of the crystal to
the factor
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TABLE II. Atomic force constants between nth-near-
est neighbors in copper and nickel (dyn cm ~).

Metal o.„P„ &n

Copper
(Ref. 16)

¹ickel
(Ref. 18)

1
2
3
4
5
6

13478
18

507
267
110

—
.157

17 178
880
626
270

—1215
48

237
32

203
58

26
519
320
160

18

bor model by using the elastic constants data only,
is also listed in Table V.

The neighboring atoms of a vacancy may under-
go relaxation displacements from their "ideal"
lattice positions. Calculations of such relaxation
displacements in Cu have been available. The
effect of such relaxations on ~K was studied by
allowing all the atoms involved in the expression
for the reaction coordinate X to undergo the re-
spective displacements. There was no appreciable
change in the value of &E (& 0. 5%).

The &K effect may depend on temperature. This
may arise because the phonon spectrum exhibits a
temperature dependence. Unfortunately, no experi-
mental phonon dispersion data are available for the
temperatures involved in diffusion experiments'.
Even the high-temperature elastic constants data
are scarce; however, one set of measurements of
the elastic constants of Al 0

up to its melting point
has been made. The ~ effect at 900 K was cal-
culated by using the elastic constants at that tern-

,
perature, assuming a quasiharmonic approxima-
tion. A similar calculation was made for Ag by
extrapolating the room-temperature elastic con-
stant data ' to 1000'K. These results are shown
in Table VI.

B. bcc Metals

The geometry of the diffusion jump in a bcc metal
is shown in Fig. 2. The diffusing atom is shown as
a black circle and the vacancy by a square. %hen
the atom jumps into the vacancy, it passes through
one triad of atoms at one-third the jump distance
and through a second triad of atoms at two-thirds
the jump distance. If the diffusing atom is able to
pass through the first triad of atoms, the jump will
probably be completed, and the first triad is used
to evaluate the fluctuations in the reaction coordin-
ate.

The primitive translation vectors for the bcc
lattice are given by

a,,= —,'a{-i+j+k),
a, = —,'a(i —j+k), (16)

a, = —,'a(i+) -k),
with respect to i, j, k, an orthonormal set of vec-
tors along the cube axes.

The base vectors of the reciprocal lattice are
given by

b, =a '(j+k),
b, = a-'(i +k),

b, =a '(i+j ).
Neutron-scattering data are available for both

Na and e-Fe, and the phonon dispersion data have
been analyzed in terms of Born-Karman models.
In the case of Na, the model includes interactions
uy to the fifth-nearest neighbors, and, in the case
of Fe, only uy to the third-nearest neighbors. The
form of the force-constant matrices and the values
of the force-constant parameters are listed in
Tables VII and VIII, respectively.

If the diffusing atom is assumed to be at the
origin and the vacancy at —,'a(111), the first triad
of atoms that obstructs the diffusing atom has the
coordinates —,'a{ill), —,'a(111), and —,'a(111). The

TABLE III. Lattice constants, elastic constants, and atomic force constants for fcc metals. Lattice constants
(10 cm) are taken from Pearson's handbook and the elastic constants (10' dyn cm 2) from Huntington. "

Metal

Cu
Ag
Au
Al

Lattice
constant

3.61
4.08
4.07
4.04

l.684
1.240
1.86
l.082

Elastic constants

l.214
0.934
l.57
0.613

0.754
0.461
0.42
0.285

Atomic force constants (dyn cm ~)

A( Pj Yj

15 902 -1137 18 654
12648 -3 244 14 229
18 926 —10 379 20 248
10 928 —5171 9069

l. 251C

0.144
Co(8' Fe) 3.56 2. 343 c l. 613 20 852 1 415 25 489

Pb 4.94 0.466 0.392 5 755 —2 198 6 620

~W. B. Pearson, & Handbook of I attice Spac&ggs and Stggctgwes of Metags and AEEoys (Pergamon, New York, 1958).
H. B. Huntington, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1958), Vol.

VII, p. 213.
'T. C. Fritz and K. Brugger (private communication to E. 8. Fisher).
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TABLE IV. Lattice theory applied to diffusion in fcc
metals. Atomic radii (10 cm) are taken from Ziman,
Debye temperature data from Gschneidner, " and experi-
mental values of motion energy from Peterson.

Metal

CU

Ag
Au
Al
Ni

Co (8% Fe)
Pb

Atomic
radius

1.41
1.59
1.59
1.58
1.38
1.38
0.93

Debye
temp.

342
228
165
423
427
452
102

I 0/Mg)

0.65
0.65
0.70
0.63
P. 67
0.64
0.64

E (ev)
(Theo r)

1.04
0.99
0.88
0.80
1.47
1.52
0.64

E (eV)
(Expt)

1.08
0.83
O. 82
0.62
1.50
1.6
0.56

J. M. Ziman, Elects'ons and Phonons (Clarendon,
Oxford, England, 1960).

K. A. Gschneidner, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic, New York,
1964), Vol. XVI, p. 276.

'Reference 1.

+ exp(~2'a(- q, +q, +q,))]} . (is)

The appropriate expression for U"(q, &) is used in
calculating the various quantities

P ~x(q, x) ~', P ~'(q, x) ~x(q, ~)
~

',

and &K. The frequency spectrum was obtained
by solving the secular equation for normal modes
at 44 251 points in the irreducible part of the first
Brillouin zone, and the Hilbert transform of the

components of the unit vector along the jump di-
rection are X= (1/W3, 1/v 3, 1/W3). The contri-
bution to the fluctuation in the reaction coordinate
due to the (q, &) mode is given by

X(q, ~) =e (q, ~) X(q, ~)Q(q, &) (U'(0, &) —3U'(q, &)

x [exp(—,'ia(qq+qg —qs))+ exp(wa(qq —qa+qs))

TABLE VI.

Temp.
Metal (K)

Al 300
9OO'

Ag 300
1300"

Effect of temperature on the isotope
effect.

Elastic constants (10~ dyn cm )

Cii C&2 C44

1.082
0.808
1.240
0.942

0.613
O. 539
0.934
O. 784

0.285
0.186
0.461
0.272

0.88
0.87
0.80
0.84

~High-temperature data from Ref. 19.
"Extrapolation to 1300 'K from the data at 300 'K from

Ref. 20.

squared frequency distribution was evaluated at
100 points between zero and the maximum squared
frequency. The fluctuation quantities were evalua-
ted by solving the secular equation for normal
modes at 451 points in the irreducible part of the
first Brillouin zone for eigenfrequencies and

eigenvectors and by summing over all the modes.
The results for ~ in Na and n-Fe are presented
in Table V.

V. DISCUSSION

Our theoretical calculations of &K indicate that
its theoretical value is of the correct order of
magnitude and is in good agreement with experi-
ment. The value of ~ is always less than unity
for self-diffusion in cubic metals by the vacancy
mechanism. The ~ values for the fcc metals
range from 0. 88 in Al to 0. 68 in Co, and for the
bcc metals the values range from 0. 51 in a-Fe to
0. 54 in Na. This is contrasted with previous
theoretical calculations of ~K, where the value was
always close to unity. The relaxation near the
vacancy has very little effect on bK in Cu. This
is perhaps true for all the fcc metals. In the bcc

TABLE V. Isotope effect calculations.
TABLE VII. Force-constant matrices between the
atom at (0, 0, 0) and the atom at Rn in bcc metals.

Metal

Cu

Ag
Al
Ni
Co

Na
e-Fe

Isotopes

Cu", Cu"

105 Ag1i 1

A126 A128

Ni ~, Ni
55 C 60

Na22 Na'4
Fe52 Fe"

~ (Theor) ~ (Expt)

0.82
0 79"
0.80
0.88
0.76
0.68

0.54
0.51

0.87 +0.02

0.86 + 0.05 ~

0.50+0.05~
0.46 +0.01 '
(in ~-Fe)

S. J. Rothman and N. L. Peterson, Phys. Status
Solidi 35, 309 (1969).

"Calculated from elastic data only. See text for
explanation.

cReference 1
J. N. Mundy, L. W. Barr, and F. A. Smith, Phil.

Mag. 14, 785 (1966).

-' a(200)

—,
' a (22P)

2a (311)

2 a(222)

e (O, Rn; i))

0 0 P,

~4 P4 &4

~4 &4 P4

&5 &5 &5

p5 e5 p5

~5 ~5 &5
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TABLE VIII. Atomic force constants between nth-
nearest neighbors in sodium and e-iron (dyn cm ~) .

1 180
470

38
9.9

20

1 15 200
e-Fe " 2 15 000

3 — 1 100

Reference 22.
Reference 23.

1 320
130
27
4. 1

25

18 600
2 300

275

1

65
3.0 9.0

metals, however, relaxation does change the value
of hK. A detailed investigation of this effect in
Na and also of the role played by the second triad
of atoms in determining the isotope effect is under
way. Temperature appears to have little effect on
the value of ~when the calculations are made in
a quasihaxmonic approximation, using the high-
temperature elastic data, to obtain the frequency
spectrum. The small change in the value of 4K,
apparent in Ag, is probably due to poor extra-
polation of the elastic-constants data.

It is not possible to associate a simple physical
significance to ~K, on the basis of the present
theory. ~ is a many-mode effect that is deter-
mined by the phonon spectrum and by the geometry
of the diffusion jump. . The diffusion mechanism
determines the geometry of the jump, which, in
turn, determines the appropriate reaction coordi-
nate. The fluctuations of the reaction coordinate
are determined by the phonon spectrum. Since 4K
depends on the frequency spectrum and its Hilbert
transform, a study of the effect of resonance and
localized modes on ~K would be of interest. Ex-
perimentally thi. s could be accomplished by an in-
vestigation of ~ effect for diffusion of heavy and
light impurities. Finally, the present theory does
not set any limits to the value of ~K, since it does
not associate any specific ratio of kinetic energies
with &K.

The preexponential factor

(P ~a [~ [
2/g

(
x

(
3)1/8

bears a practically constant ratio of 0. 65 to the
Debye frequency, and a single adjustable param-
eter for the critical amplitude gives estimates of
motion energy that axe in good agreement with
experimental values. The single adjustable param-
eter for fcc crystals is 0. 275 of the atomic radius.
The preexponential factor is an average frequency
and the weighting factors are determined by the
geometry of the diffusion jump. Therefore, its
value lies betmeen the minimum and the maximum
frequencies of the spectrum. Although the critical

amplitude required for the jump is not ealeulated
by the theory, when it is a specific fraction of the
atomic radius good estimates of motion energy can
be obtained. Although the present theory is more
general than Flynn's theory, both are in agreement.
His value of (-', ) =0. V7 for the yreexponential
factor is due to his continuum approximation. Flynn
also uses a single adjustable parameter ~ to esti-
mate motion energy, 5 is given by q,/s, where q,
is the critical amplitude, but s is difficult to de-
fine exactly. However, the actual significance of
s is not important in his theory, since it appears
only as an adjustable parameter.

The present theory uses the harmonic approxi-
mation or, at best, quasiharmonic approximation.
The vacancy mechanism is assumed to be the
diffusion mechanism. Except for determining the
geometry of the jump, the vacancy plays a rather
passive role in the theory. The changes introduced
by the vacancy on the phonon spectrum are com-
pletely neglected, but the changes may not be im-
portant, as shown by Land and Goodman. The
effect of the isotopic impurity is treated in a rather
sophisticated way in calculating ~K. The fact that
the critical amplitude required for the atomic jump
is such a small fraction of the atomic radius is
perhaps a justification and an explanation at the
same time for the use of harmonic approximation.
The theory works quite well in spite of all these
approximations.

Futuxe work should certainly consider the effects
introduced by the vacancy on the phonon spectrum
and also the effects of anharmonicity. The latter
could perhaps allow a calculation a priori of the
critical amplitude for atomic jump and thus enable
a theoretical calculation of the motion energy.

VI. CONCLUSION

A lattice-dynamical theory of diffusion in the
harmonic approximation has been developed, under
the assumption that the jump probability can be
calculated from the phonon spectrum of the lattice.
Fluctuations in a reaction coordinate based on
simple geometrical considerations have been used.
The isotope effect &K and other features of the
diffusion process are successfully accounted for by

FIG. 2. Geome-
try of diffusloIl in
bcc metals.
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the theory. Future refinements should include
anharmonicity to enable a theoretical estimation
of the motion energy.

Note added in Proof; Calculations of dK have also
been made using the same reaction coordinate de-
fined in Eq. (1) and also the procedure of Sec. IV,
but Eqs. (16)-(19)of the paper by Rice have been
used to calculate the atomic jump rate ~. The nor-
mal coordinates are now expressed as cosine terms,
and the summations are carried through the entire
first Brillouin zone, rather than only through the
irreducible part. The value of ~ obtained by this
modified procedure are 0. 78, 0. 78, 0. 75, 0. 77,
0. 80, 0. 85, and 0. 'l5 for Cu, Ag, Al, Ni, Co, Na,

and z-Fe, respectively. Although this modification
involves a more rigorous treatment of the atomic
jump rate by including integration over all values of
energy, the procedure yields values of ~ that have
poor agreement with experiment, especially the bcc
metals.
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