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Electrical-resistivity measurements have been performed on five single crystals of pure tin
in the temperature interval 8-300'K. From these measurements, the temperature-dependent
anisotropy (a= p~,/p~) of the electrical resistivity has been determined. A striking maximum in
the a-versus-T curve is noted at T= 20'K. The features of this curve at high, intermediate,
and low temperatures are interpreted in terms of a simplified model for an anisotropic metal.
The model predicts that the a-versus-T curve for all electrically anisotropic metals with anis-
otropy a „as T — will exhibit a maximum +m~ =+~ at intermediate or low temperatures.

INTRODUCTION

This paper reports the results of an experimental
investigation of the temperature-dependent elec-
trical-resistivity anisotropy of pure tin. Five ori-
ented pure-tin single crystals (less than 3-ppm
impurity) were measured between 8 and 300'K.
The anisotropy was determined to be a strongly
varying function of temperature for tin. A greatly
simplified model for an anisotropic metal is em-

ployed to explain the gross features of the a-versus-
T data.

The orientation dependence of the resistivity of a
tetragonal crystal such as tin may be written in the
form

p(6) = p, [1+(a- l) cos'e],
where 8 is the angle between the tetrad axis and the
current direction, p, is p(90 ), and a, which we



3844 S. K. CASE AND J. E. GUETHS

call the anisotropy, is the ratio p(0')/p(90 ) or
alternately p„/p, . References to the anisotropic
resistivity of noncubic metals are frequently found
in the literature, ' usually as asides to research
directed at other physical properties. The depen-
dence of the anisotropy of the residual resistivity
on impurity type was first explored by Burckbuchler
and Reynolds, but the temperature dependence of
the anisotropy of the ideal resistivity has not yet
been the subject of an experimental investigation.
Our objectives in this work were to (i) measure
a(T) for an anisotropic metal over an extended tem-
perature range, (ii) attempt an explanation of the
features of the anisotropy data and identify the ele-
ments of the theory particularly important to con-
siderations of the anisotropy, and (iii) extend, if
possible, our model toward generalizing the tem-
perature dependence of a(T) for all anisotropic
metals.

EXPERIMENTAL DETAILS

xh%%1 v/ L Hj,p
LLZ

Top VIVE+

The techniques of sample preparation and ori-
entation are nearly identical to those described by
Gueths et al. ' and will not be repeated here. The
angles between the tin symmetry axis and the crys-
tal axes for the five crystals studied in this work
were 69. 6, 62. 2', 52. 0', 41.7, and 4. 4 . Each
sample was a single crystal cylinder with a diame-
ter of approximately 3 mm and a length of approxi-
mately 10 cm. Current leads were attached to the
ends of the sample by soldering (at one end) and a
mechanical contact (at the other). Steel knife-edge
contacts separated by a distance of approximately
6 cm served as potential contacts.

The five crystals studied in this work were
mounted symmetrically on a sample holder shown
schematically in Fig. 1. The holder was positioned
at the bottom of a 2-liter nested helium Dewar, and
low temperatures were attained by boiling liquid
helium (or nitrogen) and transferring the cold He

(N2) gas through a nitrogen-jacketed helium trans-
fer line. The arrangement of Dewars, transfer
lines, and controlling electronics was similar to
that described by Fleury and Loudon. '

Temperature control was achieved by sending a
constant current through a calibrated germanium
resistance thermometer and monitoring the voltage
drop across the resistor with a Leeds and Northrup
K-4 potentiometer. The potentiometer was set at
the voltage corresponding to the desired tempera-
ture, and the off-balance signal (after amplifica-
tion) was fed into a differential amplifier controlling
the heater at the end of the transfer line shown in
Fig. 1. At higher temperatures (T&25 K) the pro-
cedure was identical except that a calibrated plat-
inum resistance thermometer (shown in Fig. 1) was
employed.

Voltage drops across the crystals were measured

FIG. 1. Specimen holder. Germanium resistance
thermometer (A) or platinum resistance thermometer (8)
used for temperature control. Cold He gas passes through
stainless-steel transfer line (C) past heater and into
Dewar. Five cylindrical crystals (D) are anchored
thermally and electrically to copper specimen holder by
specimen mounts (E). Spring steel voltage probes are
secured by upper specimen mounts and by Teflon probe
mounts (F).

with a Honeywell 2779 pV potentiometer and a
Honeywell 3990 guarded pV null detector. System
resolution was approximately 10 V.

The data were analyzed for indications of temper-
ature gradients down the lengths of the samples or
azimuthal gradients about the Dewar symmetry
axis. Significant longitudinal gradients would man-
ifest themselves as vertical shifts in all five p-
versus-T curves with respect to existing p-versus-
T data for tin. Azimuthal gradients would leave
some samples warmer than others. This would
result in systematic deviations from linearity in the
p-versus-cos P data at various temperatures, as
we assumed that all samples were at the thermom-
eter temperature. Evidence for longitudinal gra-
dients was not found in the data, and although sys-
tematic deviations in the p-versus-cos 8 data were
noted, they were extremely small and well within
the uncertainty in the geometrical factors (= 1/o) of
the five crystals.

EXPERIMENTAL RESULTS

The anisotropy of the electrical resistivity of the
tin crystals as a function of temperature is shown
in Fig. 2. Data determined in several previous
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FIG. 2. Anisotropy of electrical resistivity for pure
tin as a function of temperature.

studies are included for comparison. Particularly
noteworthy features of the curve are the initial slow
rise in a as the temperature is decreased below
room temperature, the strikingly large variation
of a with T, and the maximum in a at T=20'K.

We will be interested in a„, the anisotropy as
T-, in the analysis of the data. To this end, we
plot a versus T 3 for T & 100 'K (Fig. 3). The high-
temperature limit for a is found to be approximately

1.48. It should be noted that the exact power de-
pendence for a in this plot is not critical. Approxi-
mately the same result would be obtained if we
plotted a versus T

The amount by which a rises above its high-tem-
perature limit (a- a„) is plotted on a logarithmic
scale in Fig. 4. Of particular note is the apparent
T variation of this quantity for T& 100 K. This
vindicates our procedure used to obtain a in Fig.
3. The rather extended region of constant a in the
vicinity of T =20'K is also distinctive. There is
some evidence of structure in this curve between
18 and 40 K, but the size of the error in a precludes
a definite statement to this effect.

As T decreases below 15'K, the error in our
anisotropy determinations becomes increasingly
larger due to the very low voltages involved in the
resistivity determinations (typically less than 10
V). The evidence, for what it is worth, is that a
falls off toward the high-temperature limit (a„) as
T-0. %'hile the data of Aleksandrov and D'Yakov2
in Fig. 2 would indicate that a minimum in a is
reached in the vicinity of 7'K, one must be reluc-
tant to draw this conclusion in light of the absence
of an error analysis in their work.

Not shown are the p-versus-T curves for the five
crystals measured in this work. The data were com-
pared to the recent compilation of the National Bu-
reau of Standards and found to be in excellent agree-
ment with previous investigations over the whole

,
temperature range investigated.
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FIG. 3. Determination of a, the anisotropy of the
electrical resistivity as T-

FIG. 4. Temperature-dependent contribution to aniso-
tropy (a-a„) show'ing T dependence for T &100 K and
maximum value at T= 20 K.
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DISCUSSION OF RESULTS II TO C AXIS

+II cc + II II

where &II is the relaxation time appropriate to the
resistive processes present. Using a similar ar-
gument, we find that a~~A, 7'„so that

a = p„/p, = v, /o„= (A, /A„) (7, /7 „). (3)

In order to make our simplified model as realis-
tic as possible, we have contrived the situation so
that both zone boundaries slicing the Fermi sur-

The temperature-dependent variation of a for
pure tin can be substantially understood in terms
of a simplified nearly-free-electron model for an
anisotropic metal. We begin with the model pro-
posed by Klemens et al. ' in which the Fermi sur-
face of tin is taken as a sphere in extended momen-
tum space, except in the vicinity of Brillouin-zone
boundaries having nonvanishing structure factor.
Reasonably large areas of the Fermi surface extend
beyond Brillouin- zone boundaries in directions
centered about 0', 60', and 90' with respect to the
c axis and can be expected to contribute significantly
to the conduction process. Since the larger areas of
the Fermi surface in this model are oriented in such
a way that conduction in any direction perpendicular
to the c axis is preferred, a is expected to be
greater than 1. This agrees with our experimental
measurements at all temperatures.

It is convenient to replace this model of the Fermi
surface of tin with an even simpler one retaining
the features necessary to explain an anisotropic
electrical resistivity. Consider a distorted Fermi
sphere (or ellipsoid) intersecting a Brillouin-zone
structure in the form of a rectangular parallelpiped
[Fig. 5(a) j. This structure contains many of the
features that are required for tin, having fourfold
symmetry about the c axis, an anisotropic Brillouin-
zone structure (in the correct sense for tin having
c/a & 1 in real space), and large areas of the Fermi
surface extending beyond the zone boundaries in
directions parallel and perperdicular to the sym-
metry axis.

The fourfold symmetry of the model allows us a
further simplification. For the purposes of elec-
trical-conductivity calculations, nothing is lost by
considering the tin electron structure in terms of
a two-dimensional rectangular Brillouin zone with
regions of the Fermi surface extending beyohd it
directed parallel and perpendicular to the sym-
metry axis [Fig. 5(b)].

We assume that the only area of the Fermi sur-
face contributing to 0„, the conductivity parallel
to the c axis, is A„. Since o„=(e /m) n„7, where
nl, is the number of electrons available for elec-
trical conduction in the parallel direction, we can
write

C

r —~"A

(a)

FIG. 5. (a) Simplified model of Fermi surface ex-
tending beyond Brillouin-zone boundaries showing areas
available for conduction in the parallel and perpendicular
directions. Fourfold symmetry about c axis allows furth-
er simplication to a two-dimensional model (b).

face into segments having areas A, and A, are ori-
ented such that U processes involving them are ef-
fective resistive mechanisms. In other words, the
significant zone boundaries are perperndicular to
the applied electric field when considering p, and

p, . This is necessary since U processes are the
only significant resistive processes over much of
the temperature range covered in this work.

At temperatures between 10'K and several hun-
dred 'K, the ideal resistivity of these specimens
exceeds by far the residual resistivity. At the
same time, the momentum transfer 6K associated
with a typical electron-phonon interaction is small
compared with the distance between a typical con-
duction-electron state and the intersection between
the Fermi surface and the Brillouin-zone boundary.
Therefore, the electron state does a random walk
on the large Fermi-surface areas in this tempera-
ture region. The relaxation time appropriate for
inclusion in Eq. (3) takes the form

~0+ ~RW (4)

where 70 is the relaxation time characteristic of
the electron-phonon scattering process and &» is
the mean time required for an electron state on the
Fermi-surface segment to move via random walk
to a point within

~
5K~ of the Brillouin-zone bound-

ary. Once the state arrives near the zone boundary,
a single scattering event can take it to the boundary
where it undergoes a U process and is scattered
resistively.

Consider first the form of ~Rw. An electron
state having suffered m small-angle phonon-scat-
tering events has moved a distance lg5KI = ~m
&& l5KI, where lg&KI is the most probable total dis-
tance moved on the Fermi surface. 7Rw is equal
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to m~, , so that

We note that IGKI ~T (for small-angle scattering)
and I$6KI ccA when the electron state is brought
to the bounds. ry, so that r in Eq. (3) takes the form

& = &o + CA/T

where C is a constant within which we deposit our
ignorance of a variety of proportionality constants.
In the following, we will assume that 7o is isotropic
and that C =C, .

High Temperatures

Lowest Temperatures

According to the preceding arguments, we would

expect that as T- 0 ' K in an ideal metal crystal,
ao= a . However, ideal crystals are not available
to the laboratory, and as the temperature is low-
ered further, significant contributions to the resis-
tivities (p„and p,) due to imperfection scattering
(typically large angle) begin to emerge. Thus, the
relaxation-time advantage that the electron states
have on the larger segments of the Fermi surface
is increasingly eroded as the temperature is de-
creased. If one assumes that Matthiessen's rule
holds on each Fermi-surface segment and that the
relaxation time for imperfection scattering is
isotropic, one can easily show that a is of the form

As T-~, the electron-phonon interactions pro-
duce 6K's large enough to consistently bring the
electron state to the zone boundary. Therefore,
7»-0 for both parallel and perpendicular direc-
tions, and Eq. (3) yields

a„=A, AII ) (7)

Intermediate Temperatures

As the temperature decreases, l5Kl decreases,
and electron states will first begin to undergo ran-
dom walk on the largest portions of the Fermi
surface (the portions directed perpendicular to the
c axis). In this temperature region, we expect
that 7„=vo, and v, =70+ CA, /T, so that, combining
Eqs. (3), (6), and (7), we obtain

a = (a./70 ) (~0+ CA,/T') = D/T'+ a„.
Rearranging terms, we obtain a —a„=D/T2. The
T dependence of (a —a„) is noted in Fig. 4.

Low Temperatures

since 7', = 7, I
= &o . For tin, we find that a„=1.48 from

the extrapolation in Fig. 3.

p] poi+ 1

where p, and p, are the ideal and residual electrical
resistivities, respectively. For our samples, we

find that poII=3&&10 Qcm and p0, =2~10 Qcm
from an examination of the p-versus- T curves in
the temperature interval 7-12 K. Using Eq. (10),
we conclude that a significant drop in a due to
residual resistivity contributions should not occur
until T & 10'K. This is consistent with the features
of Fig. 4 that can be seen above the rising scatter
in the data.

In a sense, it is uncanny that this model which

ignores (i) the anisotropy of the phonon spectrum,
(ii) the anisotropy of the electron-phonon interac-
tion, (iii) any real detail of the Fermi surface of

tin, and (iv) the anisotropy of the impurity resis-
tivity is so successful in explaining the features of
our data. On the other hand, the dominant role
that U processes play in the resistive processes
is reasonably well accounted for in our model. The
degree to which this model of an anisotropic metal
is useful as a general one can only be tested with

data on other pure-metal crystals.

2a = a„&,/7'„= a„. (9)

Equation (9) predicts that the maximum in the a-
versus- T curve should be broad over the region in

which the foregoing assumptions are satisfied and

should be equal to a„. From Fig. 2, am, „=2.0,
while a = 2. 2. The numerical agreement is suf-
ficient to be encouraging, when one considers the

degree of approximation involved in this model.

At lower temperatures, l6Kl decreases until

electron states on both areas of the Fermi surface
undergo random walk before suffering a resistive
U process. Eventually, the random-walk component
of the relaxation time dominates both 7g and &

I
and

Eq. (3) becomes

SUMMARY

The temperature dependence of the electrical-
resistivity anisotropy has been measured for pure
tin in the temperature interval 8-300 K. An ex-
tremely simplified model of an anisotropic metal
is quite successful in explaining the gross features
of the data. Extrapolation of this model to other
anisotropic metals suggests that the features of
the anisotropy-versus-temperature curves for all
pure noncubic metals shout. be similar, having a
maximum anisotropy approximately equal to the
square of a„, the anisotropy as T-~. The lack
of data on other anisotropic metals precludes us
from checking this point at this time.
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B. N. Narahari Achar
&xgonne National I aboxatm"y, Axgonne, Illinois 60439

(Received 18 June 1970)

A lattice-dynamical theory of diffusion based on the fluctuations in a certain reaction co-
ordinate first used by Flynn is presented. The theory of vibrations of isotopic impurities in
a crystal is applied to evaluate the parameter AK that describes the isotope effect in diffusion.
Numerical results for Cu, Ag, Au, Al, Ni, Co, Pb, Na, and e-Fe are presented. The effect
of both relaxation near the vacancy and temperature on &K are also studied.

I. INTRODUCTION

Recently, there has been renewed interest in the
study of diffusion phenomena in metals, and the
state of the art has been described by Peterson. '
The degree of accuracy and sophistication that has
been achieved experimentally, with the advent of
tracer techniques, is paralleled by some significant
theoretical developments. Glyde, while examining
the theories of rate processes in solids, showed
that the dynamical approach used by Rice, and Rice
and Frisch3 is equivalent in formal content to the
equilibrium statistical-mechanical approach used
by Vineyard. Franklin' formulated an anharmonic
theory of atomic migration that resembles the
equilibrium statistical-mechanical approach.
Flynn presented a dynamical theory of diffusion in
the elastic continuum limit. His theory, based on
fluctuations in a specific reaction coordinate, has
met with considerable success in accounting for
the diverse features of atomic migration. Impres-

sive as these efforts are, quantitative calculation
of specific parameters that appear in the theory
of diffusion have been largely unsatisfactory. One
example is ~K, which, together with a correlation
factor f, is a measure of the isotope effect in dif-
fusion. Although accurate experimental measure-
ments of the dependence of tracer diffusion rate on
isotopic mass have been available for quite some
time, ' theoretical calculations of 4K with a com-
parable degree of sophistication have not been
available. In a recent paper, Glyde' rederived the
expression for the classical jump rate I' for tracer
diffusion to demonstrate clearly its mass depen-
dence; however, no numerical application to real
systems was made. Huntington et al. ' have attemp-
ted to calculate several fundamental parameters
involved in the diffusion phenomena by computer
simulation of atomic migration. They evaluated
the parameter 4K on the basis of the reaction rate
theory, where 4K is equal to the ratio of the
kinetic energy of the moving atom, in the dissolu-


