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It is shown that the kq representation leads to a separation of variables in the dynamics of
electrons in perturbed crystals. The method is applied to the impurity problem in semiconduc-
tors, higher-order effects for the variation of the impurity potential being obtained. An expli-
cit result is given for the second-order effect, @which leads to a significant improvement of the
theory.

theory for the impurity problem in semicon-
ductors started many years ago with the effective-
mass approximation' (EMA). Since then, many
improvements and corrections have been introduced
into the theory in order to achieve a better agree-
ment with experiment, One of the main assump-
tions of all the theories based on the EMA is the
slowness of variation of the impuritypotential, . Un-
til now, no account has been taken of the higher-
order effects connected with the slow variation of
the impurity potential.

In this paper, a new approach is given to the
EMA. It is well known that the solution of a given
problem in physics can be significantly simplified
by choosing suitable coordinates that best reflect
the symmetry of the problem. In a solid, the most
fundamental symmetry is its invariance under trans-
lations by a Bravais lattice vector R. Because of
this symmetry, the potential depends only on the
location q of the electron inside a unit cell and does
not depend on H. This fact formed the basis for
the application of the kq representation to the dy-
namics of electrons in solids. ' Here the Aq rep-
resentation is applied to the impurity problem in
semiconductors. Being based on the symmetry of
the problem, the method developed is strikingly
simple, leading for the first time to a qualitative
explanation of the connection between the trans-
lational symmetry of a crystal and the simplicity
of the fundamental results in the dynamics of elec-
trons in perturbed solids. For the impurity prob-
lem, the method developed in this paper leads to
an effective-mass equation to any order in thevari-
ation of the impurity potential. An explicit equa-
tion is derived, including the second-order effect,
and it is shown that the correction can be very im-
portant in improving the agreement between theory
and experiment.

We shall start with Schrodinger's equation inthe
coordinate representation for an electron in a pe-
riodic potential V(r) and an impurity potential' (r),

[p/2m+ V(r) + ~ (r)] y (r) =ey(r). (I)
In the kq representation, this equation becomes3

~+@(q)+~ g,
—+q C(kq)=ec(kq) .2m Bq Bk

(2)

In Eq. (2), k is the quasimomentum which gives
the momentum of the electron up to a vector K of
the reciprocal lattice p = K+ k, and q is the quasi-
coordinate which gives the radius vector of the
electron up to a vector R of the Bravais lattice
r=R+q. Equation (2) is obtained from Eq. (I) by
using the expressions for p and r in the Aq repre-
sentations p= —i B/Bq, r=i B/Bk+q. As was al-
ready mentioned before, the periodic potential V
in Eq. (2) depends only on the quasicoordinate q.
The wave function' C(kq) in the kq representation
is a Bloch-type function, and it satisfies the fol-
lowing conditionse:

C (k, q+ R) = e'"'" C (k, q), (3)

C(k+K, q) =C(k, q) . (4)

A straightforward treatment of the impurityprob-
lem is achieved by introducing the coordinates R.

and q (the Bravais lattice vector and the quasico-
ordinate correspondingly) into Schrodinger's equa-
tion. This can easily be carried out by using Eq.
(2) and by defining a new wave function,

y(R, q)= J e'"'" C(kq)d'a, (5)

where the integration in (5) is on the first Brillouin
zone. Schrlinger's equation for the wave function
$(R, q) will be

c
+ V(q)+ ~ (R+q) p(&, q)=eg(R, q) ~

2%i Bq (5)
In order to appreciate the simplicity achieved by
the use of the coordinates R and q, let us first ana-
lyze Eq. (6) qualitatively. In the absence of the
impurity perturbation, the Hamiltonian does not
depend on R. This is a natural thing to expect and
is a consequence of the translational symmetry of
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the crystal. Aeeording to the general rules of
quantum mechanics if some coordinate does not
appear in the Hamiltonian, the conjugate of this
coordinate should be a constant of motion. For
example, for a free electron, the radius vector r
does not appear in the Hamiltonian and the momen-
tum p, the conjugate of the coordinate, is a con-
stant of motion. For a Bloch electron [Eq. (6) with
Q = 0], the Hamiltonian does not depend on R and

the constant of motion is the quasimomentum k
which by definition (5) is the conjugate of R. That
K Rnd jl Rl'8 colljllgRte coordinates cR11 also be seell
from the expression of the radius vector r in the
kq representation 1 = i 8/8k + q. Compare it with
r = R+ q. It follows that R= i 8/8k. From the last
expression, one finds that the commutator of R
and k equals i, i.e. , that K and k are conjugate co-
ordinates. The analogy between r and p for a free
electron and R and k for a Bloch electron goes
much further. To see it, we now develop an ex-
pansion for the wave function g (R, q) in (5). This
expansion will be of particular importance for the
whole treatment of the impurity problem. The
function C (kq) in (5) can be expanded in Bloch func-
tion s3

C (kq) = P a„(k) y„, (q) =g e"'"F„(K) y„, (q) . {7)

In Eq. (V), E„(K)is obtained from the expansion of
the periodic function B„{k}.By substituting (V) into
(5), one gets

0(&, q)=Z(„, (q) &„(R), (6)

(10)

The result in (10) is of great interest. It shows
that in the R coordinate the Bloch electron moves
like a free particle. Inthe latter ca,se p and r come
instead of k and R. Result (10) also indicates that
withrespect to the %coordinate acrystal is Rhomo-
geneous medium. We see, therefore, that when
described in the 0 coordinate an electron in a
crystal behaves like a free particle with a Hamil-
tonian e„(k).

When the impurity potential is present in Eq. (6),
the Hamiltonian clearly depends also on R. There
is, however, avery interesting feature of Eq. (6)
that can be noted at once. If the perturbation po-
tential does not change on a distance of a unit cell,
then one can neglect the dependence of the pertur-
bation in q, and '0 will depend only on R. The vari-
ables R and q separate in the Hamiltonian and one
should therefore expect that in the R coordinate
the electron will move as if there were no crystal.
The Hamiltonian for the impurity problem will be

8.(k)+ ~ (R), (11)

where 8„(k) is the same operator as appeared for
the unperturbed Bloch electron.

Let us now turn to the quantitative description
of the proMem. By substituting expansion (6) into
Eq. (6), and by performing the same operations
that led to Eq. (9), one finds the following equa-
tion for the function Il (R):

~„(k)Z (K)+P u„„(K,k)Z„{K)=as„(K),

where t)I„» (q) is an operator with k replaced by
—& 8/8R (here again K and k appear as conjugate
coordinates) and was already used previously.
It should be noted that there are no assumptions
and no approximations involved in expansion (6).
In previous work, 'the coordinate Kwas introduced
without the quasicoordinate q and the separation of
variables achieved by expansion (6)was not obtained
before. It would not be easy to arrive at expansion
(6) and Schrodinger's equation (6) without the kq
representation.

Having expansion (6), let us continue the discus-
sion of the Bloch electron (9 = 0). By substituting
(6) into (6), multiplying from the left by the oper-
ator gt» (q) [the operator g„» (q) is obtained by re-
placing k by —f 8/8R in the function g» (q), see
Ref. 4], and integrating over q one finds the equa-
tion for E„(R),

e„(k) Z. (K)= e Z. (R) .
This is a difference equation (k= —i 8/8R} which
for the energy e =a„(k) (here k is the quasimomen-
tum) is satisfied by

u (R)u„, (q)=u„, (q) V(R)+[&{R),u„, (q)1, (14)

where the brackets in (14) stand for a commutator.
Equation (13) will become

~.„(R, k) = ~(R) 5.„+f ut. , (q) [~(R), u„„(q)]d'q .
(15)

The first term in (15) when substituted in Eq. (12)
leads to the conventional effective-mass equation'
with the Hamiltonian of Eq. (11)

where k = —i 8/8R and the operator g„„is

V „(R,k)= f q'»(q) 0 (R+q)q„»(q)d'q

= f u'„»(q) u (r)u„»(q)d'q .
In Eq. (13}, u„» (q) is the periodic part of the Bloch
function. Equation (12) is an exact multiband equa-
tion for the impurity problem for the wave func-
tion E (K) in the mA representation (m is the band
index and 0 is a Bravais lattice vector).

In the case when 8 (K) is a slowly varying func-
tion, it is convenient to interchange the order of
two terms in (13):
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[f~ (k)+ U (R)]F (R) = e F (R) (i6)

This expansion can easily be generalized for any

k and for a degenerate case. o The first term in

(17}does not contain derivatives with respect to
0 and it gives a vamshing commutator in (15). The
second term in (17) will lead to the following one-
band first-order correction in (15):

8 'U (R)
t (~) I Bu))()) (q)

umoq ( Bk
od7'

In general, this is a nonvanishing correction. How-

ever, most crystals of interest possess inversion
symmetry and for them the integral in (16}van-
ishes. ' We are left with the second-order one-
band correction in (15)

1 8''U(Ã) ( 8'u", (q) (-)do
2 8%BR 8k&k

O'U(R) 8 f(8u", (q)) (gg, (t())d,

+ u', (q) dq .8'u, (q)
8k 8k 0

(19)

For a known band structure [known u„(q)], the

coefficients of Bo Q (Ã}/BRBR and [BU( )/8~] (8/8~)

in (19) can be calculated. Here, let us give an

estimate of the second-order correction. For this
we write u„„(q}by means of Wannier functions'
a (q)

u „(q)=P„exp[fk. (R —q)]a„(q-R). (20)

Using formula (20}, assuming very small overlap

of the Wannier functions on different sites, and

assuming also cubic symmetry for a (q), the sec-
ond-order correction becomes

1 8 ~ (R)
2 9&

(21)

where i„=fd'r r' ~a„(r)
~

(22)

is the average of the square of the radius vector
r in the Wannier state a„(r). In order to obtain

result (21), we have also assumed that the impu-

rity potential depends only on the absolute value of

For a slowly varying '0 (R), it is now easy to ob-
tain higher-order terms in the effective Hamilton-
ian from Eq. (15). To do this, let us write u„„(q)
in powers of k about ko. Usually, ko is chosen as
an extremum of the energy function' e (k). For
simplicity, we assume ko = 0 and no degeneracy.
Then

82
u„„(q)= u„(, (q)+ "' k+ — ""' k k+. ~ . . (17)

ek 0 2 8k 8k

I et us now write down the corrected effective
Hamiltonian equation. We assume that the impurity
potential is '0 = —eo/yx(y is the dielectric con-
stant). We have

[&~(k}- (e'/y, R) ~' e'/yR'] F (R) = e F (R) . (23)

The third term on the right-hand side of (23) is of
the order (r /R, ) with respect to the second term,
where 8& is of the order of the impurity radius.
That the correction term has to be of the order
(r /R&) was one of the main predictions' of the
EMA. Here we have obtained the term explicitly.
The important point is that the correction term
depends on the band index and therefore one will,
in general, have different corrections for different
bands. In order to estimate the correction in the
energy levels that is caused by this term let us
notice that Eq. (23) can approximately be written
without the correction term but with a modified
dielectric constant

x
i+ (~./R, )' (24)

e„=~„[I+2 (i /R, )'] (26)

In order to compare the correction in (26) with
experiment, one has to know the average radius

in the corresponding Wannier state. A reason-
able number for i is the lattice constant, since
it is reasonable to assume that a Wannier function
is spread out over a unit cell of the Bravais
lattice. ' For a comparison with experiment, let
us take as an example the ionization energy for
acceptor levels in Ge where the EMA is known to
work very well' (the following data are taken from
this reference). The theoretical value according
to formula (25) is 6. 9 meV ((m„/m=0. 3, y=16}.
The experimental ionization energy is almost the
same for different acceptors and is about 10 meV.
Since we have R,- =25 A for the ground state of an
acceptor and we have ~ =a„«= 5. 6 A, the correc-
tion to the ionization energy according to formula
(26) is about 10% (with the right sign}. As we see,
the agreement with experiment is excellent' One
should note that, in general, the corrected formula
(26) leads to larger ionization energies than does
formula (25), and thus to better agreement with
experiment.

In conclusion, we would like to make a number
o, remarks. First, the striking simplicity of the

The energy levels of the impurity atom for the con-
ventional equation (11) are'

o.= —(m '8'/2h' g') (I/n'). (25)

Here m* is the effective mass for the band under
consideration. For the corrected levels we have
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derivation of the EMA in the R and q coordinates
should be stressed. These coordinates are most
suitable for the description of the motion of an
electron in a perturbed crystal because they lead
to a separation of variables. It is because of the
simplicity of the method developed in this paper
that it becomes possible to calculate higher-order

terms in the effective-mass Hamiltonian. Correc-
tions that are connected with the slowness of vari-
ation of the impurity potential were never before
introduced in the EMA. As was shown here, these
corrections can be very significant and lead in gen-
eral to a better agreement with experiments.
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A study of the temperature dependence of the decay time and luminescent intensity of the
infrared emission in (Zn, O) doped GaP has unambiguously identified this emission at room
temperature as a radiative transition resulting from the recombination of a bound electron at
an oxygen donor with a free hole in the valence band. From the temperature dependence of
the decay time and the variation of the decay times as a function of free-hole concentration
at room temperature, it is concluded that the recombination of the bound electron at an oxy-
gen donor with the free hole is primarily radiative.

I. INTRODUCTION

The ionization energy of the oxygen donor (En)
in GaP at 1.6 K is 0.895 eV. ' GaP doped with

oxygen and shallow acceptors has revealed the
following radiative recombinations at low temp-
eratures: (i) a bound exciton transition' at the
nearest-neighborO-Zn or 0-Cd complex, res-
ponsible for the efficient luminescence in red di-
odes; (ii) overlapping with this bound exciton emis-
sion, a red pair emission due to the recombina-
tion of an electron bound at the oxygen site of the
complex with a hole at a remote Zn or Cd accep-
tor; (iii) an electron capture "internal" emission
involving a transition from the excited state of the
oxygen donor to its ground state'; (iv) conventional
donor-acceptor (DA) pair recombination involving
the oxygen donor and shallow acceptors such as C,

Zn, and Cd. An example of (iv} involves an iso-
lated oxygen donor and zinc acceptor (E„-0.064 eV)
to yield a DA pair spectrum in the near infrared
(peaked at - l. 35 eV) at low temperatures. At
300'K and at higher temperatures most of the zinc
acceptors are ionized, 6'Vwhich implies that DA
spectra should be weak or absent at these tempera-
tures. However, because of the increased avail-
ability of the free holes, the bound electrons at0' are likely to recombine with free holes. This
paper reports on the association of the room-temp-
erature infrared spectrum peaked at -1.36 eV in
(Zn, 0) doped Gap with the luminescence caused
by the radiative recombination of a bound electron
at an oxygen site with a free hole (henceforth re-
ferred to as BF transition}, as reflected in the
decay time and the temperature dependence of the-
intensity of the infrared emission. In the past it


