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The electron-phonon contribution p,~(T, c) to the resistivity of an impure metal, or dilute
metal alloy, can be drastically different from that of the ideally pure metal, p,~(T), if, in the

region of the Fermi energy, the conduction-electron relaxation time 70(&) for impurity scat-
tering varies with energy & on a scale comparable to or less than the Debye energy K~D of
the metal. This effect is a consequence of the sensitivity of the (inelastic) electron-phonon
resistivity to any energy-dependent component in the nonequilibrium electron-distribution
function. We present a working formula for the effect and indicate several important con-
sequences for nontransitional metals containing magnetic or nonmagnetic transitional impur-
ities. In the limit of small impurity concentrations c, the alloy and host electron-phonon re-
sistivities are connected to the electron-diffusion thermopower S(T, c) of the alloy via the
simple relation p»(T, c) —c»(T) {l+(I'~~lez) (S(T, c)/So(T)] ], where So denote. s the "free-elec-
tron" thermopower. More generally, pep(T, c), and also p&mp (T, c), the resistivity resulting
from impurity scattering, are expressed in terms of the first and second derivatives of Tp at
the Fermi energy &&. The anomalous electron-phonon resistivity will cause sharp peaks to
appear in the atomic-resistivity temperature curves of very dilute magnetic-impurity systems
(e.g. , CuFe, AuFe, AuMn). Experimentally, measurements of deviations from Matthiessen's
rule should furnish useful information on the energy dependence of the electron-impurity scat-
tering.

I. INTRODUCTION AND SUMMARY

This paper is the first of a series of papers which
deals with the influence of a very energy-dependent
electron-impurity scattering cross section on the
electron-phonon contributions to the electronic
transport properties of an impure metal or dilute
metal alloy. It is devoted to a discussion of the
electrical resistivity.

Suppose a small concentration c of metallic im-

purity atoms is dissolved in a pure metal. Let

p,,(T) denote the electron-phonon resistivity of the

pure metal at temperature T and

r,(&-„; c, T)=v, (&r),

the conduction-electron relaxation time which en-
sues for elastic scattering from the impurity atoms.
%e assume the presence of a single paramagnetic
conduction band in which the energy of an electron
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lo the Bloch momentum state Sk 18 &p. The essen-
tial new finding of our work is that the electrical
resistivity which results from electron-phonon (ep)
scattering in the alloy, p„(T, c), is appreciably
different from po, (T) if, in the region of the Fermi
energy &z, the relaxation time ro(e) varies with

energy & oo a scale comparable to or less than
the Debye energy Rex) of the pure metal. For
spherical energy bands coupled to an isotropic
acoustic-phonon field, we will obtain the simple
result

p,y(T, c)= poy(T) [I+ao(T, c)'] (1.1)

for temperatures sufficiently low that po» po„(T),
that is, T «To(c), where p,(T„c)=p,',(T,). Here
po(T, c) denotes the impurity resistivity [m/ne
xTO(&r, T, c)] and

whel 6 (oy= sky»" s denotes the lsotx'oplc Sound veloc"
ity; k& the Fex mi wave vector; and ~, e, and g
the electx'oolc mass» charge» RQd Qumbel density»
respectively. As will be seen in the subsequent
text, the modification of the alloy ep resistivity
relative to the pure-metal value is a consequence
of the 86Qsltlvlty of the lnelRstlc ep I'eslstlvlty to
any energy-dependent component in the nonequili-
brium electronic distribution function. For small
concentrations, Eq. (1.1) is approximately gen-
eralized to higher temperatures, T & To» by the
result

where, for breivty, we have dropped the arguments
of ao and po. Formulas more general than (1.3)
will be derived. Equations (1.1) and (l. 3) serve
amply to illustrate in this intx'oductory section the
new effects with which this paper is concerned.

The important consequence of (1.3) is that the
temperature-dependent component of the resistivity
of a dilute alloy or impure metal at low tempera-
tures (T» To) is not even approximately given by
the pure-host resistivity p,,(T) (Maffhiessen's
Rule) when the electron-impurity scattering is sig-
nificantly energy dependent. Experimentally, this
effect will be of particular importance (ao& 1) for
dilute-alloy systems in which the impurity is either
magnetic or nearly magnetic, i.e. , transitional
impurities in appropriate nontransitional hosts.
Perhaps the most significant indication of a strongly
energy-dependent electron-impurity scattering in
these alloy systems is the experimental observation
of the anomalously large thermoelectric powers of
these alloys. If the celebrated S Inro/&e formula.
is used to connect the absolute thermopower 8 to

the first energy derivative of v'0 at &» then the key
parameter ao entering (l. 3) is obtained from the
observed thermopower by the formula

uo(T, c)= (@~&/&&) [~(T, c)/~0(T)] (T «To),
(1.4)

where 80 denotes the free-electron value 80
= (V h~T/3eeF). For typical noble-metal magnetic-
impuxity systems, such as is formed by a few
hundred ppm of Fe or Mn in Cu or Au, Eq. (1.4)
yields magnitudes of ao in excess of unity for t m-
peratures at and below roughly Gn/10.

Presumably, the effect described by (1.3) is also
important for degenerate semiconductors (&0 h~n/&~)
where, in the absence of many-body effects, ao
can be found to be of the order of unity.

The modification of the ep resistivity by the en-
ergy dependence of the impurity scattering has
consequences relevant to the following particular
situations (a) the empirical determination of p~y(T)
for noble, and possibly other metals from speci-
mens containing small traces of transitional im-
purities; (b) the presentation and interpretation of
resistivity data on dilute local-moment alloys based
on the validity of Matthiessen's Hule; (c) the under-
standing of remarkable deviations from Matthies-
sen'8 Rule observed in a large number of dilute-
Rlloy Systems Rt temperatures low Rnd lotermedlate
relative to BD; (d) the measurement of [p„(T, c)
—p,', (T)] as a probe of the energy dependence of ro.

our discussion of the electrical resistivity starts
from a Ziman type of formula in which the devia-
tion of the electron-distribution function from its
equilibrium value is taken to be of a simple but
plausible superposition of the solutions of the lin-
earized Boltzmann equations fox impurity scattering
aod ep scattering alone. Kith this ansatz, both
the impurity and ep contributions to the alloy re-
sistivity are evaluated for a spherical band of elec-
trons. An isotropic acoustic-phonon field is as-
sumed. The results are expressed in terms of
the pure-metal resistivity p',,(T), po, and param-
eters (like ao) related to the first and second energy
derivatives of 7'0 evaluated at &z. In the limit of
low concentrations, the results for p, ~ reduce to
(1.3). Explicit calculations of the magnitude of
the new terms are performed for several well-
known dilute local-moment alloy systems like AuFe
and CuFe. The theory is also discussed for the
case of nonmagnetic transitional alloys, and cal-
culatloos Rre preseDted fox' the Dearly-local-mo-
ment alloysvA/Cr and A/Mn. The modification of
the impurity resistivity by the energy dependence
of ro(&1) is necessarily also considered. The re-
sults of the theoretical study and of the explicit
computations are discussed in the light of the points
(a)-(d) listed in the previous paragraph.
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II. MODEL AND GENERAL CONSIDERATION

Our derivation of the electrical resistivity of a
dilute alloy starts from the linearized Boltzmann
equation for combined electron-impurity electron-
phonon scattering:

,E.;.f' . f(e vkBE' O'RB ,(c"„; T, c))+ )««;,

(2. 1)

where E denotes the electric field, v„= &e),/&4 5
the electronic group velocity, and the function p„
is the usual function that specifies the deviation
of the conduction-electron distribution function
from its Fermi-Dirac equilibrium distribution f-,

9 0

f ~
-f-„= ns(".-~ (2. 2)

The first term of the right-hand side of (2. 1) is
the effect of the elastic impurity scattering, char-
acterized by the energy-dependent relaxation time
ro(a)",; c, T). The latter quantity may depend on
both the absolute temperature T and the concentra-
tion of impurities c. For brevity, we will exhibit
the possible dependence of 7'0 on T and c only when
we wish to stress this possibility; otherwise, we
shall merely write ro(e)",). The second term on the
right-hand side of (2. 1) denotes the linearized ep
collision integral appropriate for the pure metal,

x [f '-(1-f&.;)5(e-„„-—ey- h(d, )+fy„-(I —f ~(, )

2v+ V,',(k, k+q)(q;. , -q f) (2 6)
B

where

V'(k, k+q) =(2~/k)
I
~(q) I' n'(I .)

«(««), =(—„Z «', («,(~,))', '

+«~ «„ZZ «!,(«, & ~ «)(«s.;-«;)')

0 509'0
BE

-=p, y (T, c) + p,y(T, c) .

(2. 5)

(2. 6)

The first term in (2.6) denotes the "impurity re-
sistivity" and is defined as the term in (2. 5) pro-
portional to r, '. The second term of (2. 6) is the
"electron-phonon resistivity of the alloy" and is
defined as the term in (2. 5) proportional to
Vo, (k, k'). The terms p, ,(T, c) and p„(T, c) are,
of course, not independent as they are both to be
determined by a common solution of Eq. (2. 1)
for cpg.

At this stage, we wish to make a few general re-
marks concerning the evaluation of (2. 5) and (2.6).
The general solution of (2. 1) will be of the form'

q)g=-eE v„"7(e,), (2.7)

where 7 has dimensions of time and, for our iso-
tropic model, depends only on the modulus of k.
In the limit of low temperatures, the ep term in
(2. 1) vanishes8 so that at the lowest temperatures

q)-„=-eE ~ v-„~0(eg T, c) (T «T,) . (2.6)

Provided that vo does not vary appreciably over an
energy range comparable to k~T, the resulting re-
sistivity will be given by the usual expression po'
=ne v'o(ez)/m. We recall that To is the temperature
at which p„(T)= po(T, c). In the limit of high tem-
peratures (T» To), the ep term dominates the
right-hand side of the Boltzmann equation and,
consequently,

x 5(q)",+&
—t1+ jg(()z)] (2.4)

q)g= —eE v)7' (~,) (»»0), (2.9)

The expression (2. 4) for the linearized ep transition
rate considers a spherical band of electrons coupled
to an isotropic acoustic-phonon field @cd,= ksq via
a coupling constant X(q). When an explicit knowl-
edge of the q dependence of A(q) is required, we
shall assume that I A(q) I'()- q for small q/2k+. How-
ever, in the limit of small concentrations, it will
turn out that we will not require the explicit q de-
pendence of A(q). no(he, ) denotes the equilibriu;n
Bose-Einstein distribution function. We have as-
sumed that the phonon field is at equilibrium.

If we multiply the left-hand side of (2. 1) by q)-„/0
and sum over all states k% (0 denotes the volume
of the system), the resulting expression is seen to
be the vector product of the electric current i and
the field E. On eliminating the field E by the trans-
port relation i = E/p, we obtain the following positive
definite form for the alloy resistivity:

This quantity is obtainable from experiment via

p.', (&) = (ne'ro, /m)-', (2. 10)

where po„(T) denotes the ep resistivity of the pure
metal.

We note that the ep contribution to the resistivity
p„(&, c) is proportional to a sum over terms in-
volving the square of fluctuations of yp:

where r~~(e~) is obtained from the solution of the
linearized Boltzmann equation for ep scattering
alone. It can be deduced that, in the region of qF,
7,, varies with energy on the scale of &F. ' Conse-
quently, since we shall only be interested in con-
tributions to r(c) that vary on an energy scale com-
parable to S&~ or less, we shall take



The appearance of these terms is not peculiar to
the ep scattering mechanism, but is a general oc-
currence for any scattering mechanism, a fact
that is clearly related to the dissipation-fluctuation
theorem. " However, a key feature that distin-
guishes the ep mechanism from that of the present
impurity-scattering mechanism is that the former
is inelastic. This has the consequence that in
(2. 11)yf will change not only with variations in the
electronic group velocity v g but also with changes
in the relaxation time 7'

5y= eE(-5vY+vR') .
The first term in (2. 12) is the fluctuation in pf,
that is ordinarily considered in the calculation of
p~~. Denote this by 6pz ~. The second term of
(2. 12) is usually tacitly ignored as it is considered
to make a contribution of relative order @&un /ci„.
For c~ and af, „"close to cz, and with 5v- kq/m and

This form of Y{&) is correct in the two limits T «To
and T» To, but is probably in error in the transi-
tional regime T- To. However, we believe (2. 15)
to be capable of giving at least semiquantitatively
correct results for temperatures of the order To.
The basis for this remark is that our subsequent
results for the modification of p„(T, c) from p~(T)
will be generally expressed in terms of the first
and second derivatives of the exact v'(a) at 6 = ez,
and it is only in the explicit calculetion of these
energy derivatives that the assumption (2.15) is
made.

A major assumption that we shall make in our
evaluation of the resistivity is that of expanding
&(&) ill a Taylol' sel'les:

retaining only those terms of order (& —si, )2 or
less. We may rewrite (2.16) in the form

2

as is appropriate- for the ep scattering event, we
have

t) ak" E1+ „

where a is defined by

8 inY(~)a =@s
9&

and k and q denote unit vectors specifying the di-
rections of k and q. Clearly, if v is taken to be
7'~~, then

11YiplylIlg tile lleglect of tile secolld tel'1Yi 111 (2. 12)
or (2. 13). However, for the dilute alloy or impure
metal at temperatures low compared to To, we
have &(e)= Yo(a), and if in the region of er, 7 0 varies
with E, on a scale comparable to or less than S~„
then the parameter a ~ 1. In this case, the second
term in (2. 11) or (2. 12) is at least as great as the
first term and cannot be ignored. This is the origin
of the effect with which this paper is concerned.

At temperatures exceeding To, Y(c) must ap-
proach v'~, so that a becomes negligible and the ef-
fect described above vanishes, i.e. , the electron-
phonon component of the resistivity of the dilute
alloy becomes the same as that of the pure host
metal. In order to obtain this high-temperature
limit in the present calculation, we will assume
that 7 (&) is generally given by

where 1}=(&—&z)/ksT, use~= h&„and the param-
eter b measures the strength of the second derivi-
tlve of 'p~

@ QP~ 9 f'

Now, in the evaluation of the resistivity, from
formula (2.5) for example, the important values of
g are those less than approximately unity —cor-
responding to the measure of electrons in the ther-
mal layer k~2' at the top of the Fermi sea. The
expansion (2. 16) will be valid for 6Y/Y «1, which
implies that the coefficients of 1} and of 1} in (2. 1V)
be &&1. These conditions demand that

(2.20)

at any temperature T and concentration c. The
significance of (2. 19) and (2. 20) is that while the
characteristic energy of variation of v' should be
comparable to or less than S~D for our effect to be
important, the use of the Taylor-series expansion
for v requires that the characteristic energy be
nevertheless much greater than k~T. The usual
8 1nv/8& formula for the low-temperature electronic
thermopower follows from the use of (2. 16) and is'

@AT 8lnY(e; T, c)
3 e 8&

where functions varying with energy on the scale of
&z have been neglected. Expressing a in terms of
8, we evidently require
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(2. 22)
sionless parameters a and b. Carrying through
the differentiation of r((.'), these are

As mentioned in Sec. I, the inequality on the left-
hand side of (2.22) is satisfied for magnetic tran-
sitional impurities for temperatures ~

gp eg This
temperature range clearly satisfies the right-hand
side of (2. 22). We stress that the satisfaction of
the inequality on the right-hand side of (2. 22) is
consistent with the use of (2. 21) for the electronic
thermopower.

Some comments on the possible experimental
determination of the parameter b will be discussed
at a latter stage of this paper. %'e now consider
the explicit evaluation of p, ,(T, c) and p„(T, c)
from Eq. (2. 5).

III. EVALUATION OF RESISTIVITIES

while

Clp

1+po, (T)/p()

(ktcp)' (P'c
)

where

pp &+Po Pep T

8 in% ap
s&,., 1+~,(c~)/r Oy

(3.5)

(3.6)

The evaluation of p, ,(T, c) and p„(T, c) as de-
fined by Eqs. (2. 5) and (2.6) for the model ep tran-
sition rate (2. 4) and relaxation-time ansatz, (2. V)

and (2.15), is straightforward, although algebrai-
cally tedious. In particular, the evaluation of
p„(T, c) follows closely that of the standard deriva
tion' of this quantity for the pure metal. For these
reasons, we will only give the salient features of
the calculation.

First, sums over k in (2. 5) are replaced by in-
tegrals according to'5

(1/fl)Z„-- [2/(2v)'] f d'I . (3.1)

The impurity resistivity is then readily deduced
from (2. 5) to be of the form

0 b F 0
~

6 -6F

2 —4~~0+ 2+o+ 2b bo

[1+P, (T)/Pal J
(T, c)

(3.V)

The "weight" factors involving the ratio p„(T)/po
appear in (3.5) and (3.6) on identifying this ratio
with ro(ez)/r, , Note that as (T/To)- ~, both a
and 5- 0. The result of applying (3.4) to evaluate
(3.2) for p,~ can now be expressed in terms of
a, +0 b and ho

T'
p, ,(T, c) =p()(T, c) 1+—

6 eD

p, (T, c)= (-p, (T, c) Cc '
( ) ( ))

0

where

T b
D(T, c)=1+, ()

( )/
(3.8)

(f" pf c(c)
) (3 2)

where

Po(T, c) —= [ne ro(ez, T, c)/m] (3.3)

and, in the region of E=EF, we have neglected the
energy dependence of the electronic group velocity
v], relative to that of r(E) We note. that providing
that the conditions (2. 19) and (2.20) are satisfied,
we may use the Sommerfeld expansion,

cc 2 82
de ' v(e) = r(a~)+(ksT)' —, + ~ ..

0 eg 6=6F
(3.4)

for the evaluation of the integrals in (3.2). In ex-
panding (3.2), we shall require the first and second
derivatives of

v(e)-'=[r, (~)]-'+(r'„)-' at e=q~.
It will be convenient to work in terms of the dimen-

Equations (3.5)-(3.8) describe the effect which
the energy dependence of r(e) has on the impurity
contribution to the resistivity. The effect has been
considered previously in connection with transitional
impurities by Friedel, ' Korringa and Gerritsen, '
and Domenicali. "

The electron-phonon contribution to the alloy
resistivity is given by

0 d k d'q

0
0 ~ 2

d'0 sf kx If„(k, k+q)5(t)- - - 2e, vga"„
)T

(3.9)
The denominator of (3.9) reduces to the considera-
tion of the denominator of (3.2) for p, ~(T, c), so
we are left with the evaluation of the numerator of
(3.9). Now, for our isotropic model,

keEPP', = ~ [(k+1))c(c-„-)-kl(c;)])
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where

1 SeE [(k+q)r(e1., ) -kr(e), )]'

1 AeE [h'br'+ q'r'(&)",.;)~
3

3

m

m

2
2 2 2 2 «

~~ q

—2k qr(&)r(&"„;)]

q v' &"„v' E'p, " +k 5r

(s. 10)

p„(T, c)= p,'y(T) [1+a(T, c)'] (T«Bo) . (3.13)

This result is independent of the form assumed
for the isotropic ep coupling constant A(q).

More generally, we have to insert (3.12) into the
numerator of (3.9) and perform the appropriate
integrations. The method of evaluating these in-

2tegrals over forms of 5(t).„"„„"such as given by
(3. 12) is discussed in detail in standard tre ati ses'~4
Such evaluations lead to the following result for
p„(T, c):

p„(T, c)

and we have anticipated the condition"

—2k q=q'+ (h(uo/er)

demanded by the conversation of energy,

&7+g &~+@~q=0 ~ (3.11)

2

+
3

a +b + — D(T, c)',7r 2 25 (3.14)

where

(T)I(, (&]' ~ (8 )(z(' ~ ( - ')

in the ep scattering event. We may now insert into
(3.10) the Taylor-series expansion (2. 16) for r(e),
noting that in view of (3.11), E)"„", may be replaced
by &~ + k+„where the plus and minus signs denote
the absorption or emission of a phonon by the scat-
tered electron. The plus sign is to be used when
the first term of (2. 4) for V,, is encountered in
evaluating (3.9), while the minus sign is to be used
in conjunction with the second term of (2.4). The

2
quantity 5$ -„)",„" may be expressed in the form

2

m ~ f1+m-

=(5%i,f.a)' I+& a. &" +
n, m

where

(5(j)„-' „.", )'= —,
' [(h/m) eEr(sr)]'

(s. i2)

is the expression for 5(j)"„)",„- that ordinarily deter-
mines the ep resistivity of a pure metal, ' and the
coefficients a„m are related to the first and second
derivatives of r(c) evaluated at er.

We note at this stage a general result for T/Bo
As (T/B,')- 0, we have from (3.12)

5(p„- 1,-= (5(b)()I, ) (1+a()0),

where, as may be verified by using (3.10) and
(2. 16), aoo is just the square of the parameter a.
Since a is independent of the integration variables
in the numerator of (3.9), the factor (1+a~) may
be factorized out of this numerator. If the denomi-
nator of (3.9) is evaluated at T= 0, then the result-
ing expression for p„(T, c)/(1+a ) is just the con-
ventional expression for p„(T), i.e. , at low tem-
peratures (T«B$&), we have the result

d.,(x) = ~.(x)/~, (x)

&„.(x)
dg p

(e ' —1)(1 —e ') (s. is)

denote Bloch-Gruneisen integrals. The appearance
of the factor (T/BD)' as the greatest power of
(T/Bo) in the bracketed quantity multiplying p,, in
(3.14) indicates that our Taylor-series expansion
(2. 16) was terminated after the second-order term.
Even powers of (T/Bo) do not appear in (3. 14) since
contributions to such terms cancel on taking ac-
count of both processes of phonon emission and
absorption. The square of the quantity D(T, c),
defined by (3.8), appears in (3. 14) as a result of
evaluating the denominator of (3.9). Finally, we
mention that the explicit form of the coefficient of
(T/Bo) in (3. 16) depends on the assumption that
lA(q) l ~q, for small q. Equations (3.7) and (3.14)
are the main results of this section.

Before considering the application of these re-
sults to particular situations, we shall check that
(3.7) and (3.14) reduce to certain expected results
in appropriate limits. We first note that, as they
stand, our results (3.7) and (3. 14) are independent
of the ansatz (2. 15)for the form of r(e) We as-.
sume the ansatz (2. 15) when the particular expres-
sions (3.5) and (3.6) are used for a and b, respec-
tively. If (2. 15) were in fact rigorous, the total
electrical resistivity would simply be

(T
ne'r(c )-'r" & f() r(e)

)n e~ r(~ )0

=[po+p,~(T)][1—
~ v (T/Bo) b],

(s. is)



ANOMALOUS E LECT RON-PHONON TRANSPORT P ROPE RTIES ~ ~ ~ 3839

where in writing (3. 16) the inequalities (2. 19) and
(2.20) have been assumed. Since v'(e) is assumed
given by (2. 15), 5 is given by (3.6). Thus, for
T«TD, we have

Pall y (T, c) = Pp [1—
o w (T/8v) bp ], (3.17)

where we have neglected terms of relative order
p„/p, or less. For T»T„(3.6) and (3.16) give

p& &„(T, c) = p,,(T) (1+ (po /pro)

IV. LOW-CONCENTRATION LIMIT AND ATOMIC
RESISTIVITY

For very small concentrations, the temperature
Tp(c), at which pp = po„becomes small and can
satisfy the inequality (Tp/8v) «1. Consequently,
the weight factors

R(T, c) = [1+p'.,(T)/p, ]-' (4. 1)

contained in the explicit definitions (3.5) and (3.6)
of the key parameters a and b cause these param-
eters to diminish rapidly for T T0, i.e. , the in-
fluence of the energy dependence of the electron-
impurity scattering is rapidly washed out as the

ep mechanism becomes dominant. It follows that
for such small concentrations the terms in (3.14)
of relative order (T/8D)', (8v-8o) may be ne-
glected, giving for the ep resistivity

x [1—
o v'(T/8o) (bp —2ap)]} .

(3.16)
Since the ansatz (2. 15) is correct for T «To and
T» Tp, then our results (3.7) and (3. 14) for
p, ~(T, c) and p„(T, c) should combine to predict
(3.17) and (3.18) in the appropriate limits of tem-
perature. That this is so may be verified by the
explicit inspection of formulas (3.7), (3.6), and

(3.14), together with the use of (3.5) and (3.6) for
a and b. We now consider in Secs. IV-VI some
specific applications of the results obtained in this
section.

a,(T, c)=- p, ,(T, c) - pp(T=0, c) (4 4)

S,(T, c) = p„(T, c)-- p',,(T) (4.5)

=p'„(T)a,'(T, c)R(T, c)' (c-0) (4.6)

Note that, from (3.7),
pp(T=O, c)=p, ,(T=O, c),

and that we have taken care to consider the possi-
bility of an intrinsic T dependence of p0, i. e. ,

pp(T, c)-'=ne'vp(e~; T, c)/m .
At T=O, p,», „=pp(T=0, c) and, in principle, is ob-
tainable from experiment. P„(T) is also obtainable
experimentally from measurements on the ideally
pure metal. Thus, by observing p,»,„(T, c), it will
be possible to deduce the sum of 6,(T, c) and

h, (T, c). The question we wish to consider is: "How

big is (Ao/6, ) when A, (T, c) has its largest value
as a function of temperature7" If h, (T, c) is to be
singularly observable, then we requi~e &,/(&, ),„
«1. The maximum value of 6, occurs in the vi-
cinity of T = To (R- ~o) giving'

that the effect we are considering vanishes.
As already discussed in Sec. I, the most impor-

tant application of (4.2) is to be the case of magnetic
transitional impurities where a0 can be of the order
of unity or more at low temperatures. Before con-
sidering some explicit calculations of the conse-
quences of (4. 2) for some typical dilute magnetic-
impurity systems, we shall consider the question
of the importance of the modification of the ep re-
sistivity relative to that of the impurity resistivity
p, (T, c).

The total resistance of the alloy may be written as

Pallor( ~ c) = Po(T= 0, c)+P~&(T) + bi(T, c)+ho(T, c),
(4.3)

where we have defined

p„(T, c)= po„(T) [1+ap(T, c) R(T, c) ], (4.2) &1(TO c) ao(TO c) Po(TO c)
p, (T=O, c) 4 pp(T=O, c) (4.7)

which is the result (1.3) of Sec. I. As mentioned
in Sec. III, the result (4. 2) is independent of the
explicit form of the q dependence of the isotropic
ep coupling constant. In the present calculation,
the factor p„(T) in (4. 2) is to be identified with the
observed ep resistivity of the pure metal. It need
not necessarily be assumed that p„~ T'(T «8v),
which follows from the assumption that I &(q) I ~ q
for small q.

Suppose in the low-concentration limit that
w(E)p~~ c. Then ao is independent of c. Thus, Pxo
viding T «Tp(c), so that R(T, c) = 1, the modification
of the alloy resistivity by the energy dependence of
the electron-impurity scattering is c independent.
Clearly, however, as c-O, so also does Tp(c) so

Since we have Tp(c) «8D, the terms of order
(T/8v)o in (3.7) and (3.8) maybe expanded out to
give

&1(TO c) Po(» c) Po(T = 0 c)
pp(T=0, c) po(T=O, c)

pp(T, c) T
po(T= 0, c) 8o'

(4.6)

where

u =+o o [—bp(Tp, c) ——,
' 3a (T, c} ] . (4.9)

We may now compare (4. 8) and (4.7), assuming
that for magnetic transitional impurities the param-
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ro(c) = (cpo/c)'I' .
For Fe in pux*e Cu, we have

a = 2.6~10 p Qcm K"

and p, =11 lI Qcm/at. %, giving

r,(c)/e, -O. 4 "',

(4. 1o)

where we have assumed e~= 330'K for Cu and c
is in at. %. Thus, if c=0.01, T,- en/16.

W'e define the "atomic resistivity" as

a p(T, c)/c =- [p„„,(r, c) p',,(T)j/c . — (4.11)

If hj CRD be Qeglected relRtive to d 2, 1.6. , 1f we
consider po(T, c) = po= T independent, we hav«rom
(4.2)-(4.5)

= —' + (T)a', (T, c)R'(T, c) . (4.12)

We shall use this formula to predict the atomic re-
sistivities of dilute C@Fe, AuFe, Rnd AuMD alloys.
Formula (1.4) is used to obtain the llarameter ao

eters ao and u are of the order umty (or more) at
T To. Typical dilute magnetic -impurity 8ystemsi,
6.g. CNFe 01 AIMFe 1nd1cRte thRt the fix'st tex'm
of (4.8), which arises from the intrinsic T depen-
dence of I'o, is of the order of minus 10-15%.
This is very much greater than what could ever be
expected from the second term of (4. 8) [ (T/en) ],
which we shall therefore neglect. For ao & 1, the
magnitude of (4.7) is Positive and at least - 25%.
Thus, experimentally, we should expect b,,(r, c)
to be distinguishable from AI(r, c) in the region of
the maximum value of 62, i.e. , T- To.

Since AI diminishes while bo increases (for r
~ To) with increasing r, the observed value of

a(r, c) = aI(r, c)+a,(r, c)

should initially decrease with increasing T and then
increase with T after passing through R minimum.
This pred1ctloQ 18 1D generRl accord with experi-
ment and is a, natural explanation of the rather
curious observation ' that when in "Kondo systems"
the host p', ,(T) is subtracted from p~„„(r, c), a
I'681stRnce InlniIQuID xematn8 1D the subtrRcted
(P~I0~ —P~o) dRtR. As T & To~ Ao(r, c) decays raPld-
ly to zero, so that after passing through a tempera-
ture mlnlmum 'tile quantity 6(r c) passes 'till'ougll

a sharp maximum in the region of T- To. Thus,
the qualitative shape of the b, (r, c-0)-versus-T
curve is that of a minimum followed by a maximum.
This behavior also seems to be in agreement with
exilerimental studies of b,(r, c).oo

Before considering some explicit calculations of
AI(r, c), let us briefly estimate To. If we assume
Peo(r) =sr Rnd Po(r~ c) =cPo, where Po is a constant
of the order of several ll Gem/at. /o, then

I I I I I I
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I
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o /
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—- C =0.02'/o

0.005'/o

0.02'/o
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T/8[)

FIG. 1. Atomic resistivities of some dilute magnetic-
impurity systems as calculated from Kq. (4. 11) of the
text, . The Debye temperature 8& was taken to be 330'K
for Cu and 200 K for Au.

from the observed low-temperature thermopower
8(r, c) of the alloys. The observed values of S
have the form '

( )
A(ks/e)T

y (4.12)

where A is a constant ranging from about 0.2 to
0.4, and T,-1'K for concentrations lese than

0. 1 at. %. Prom (4.11) Rnd (4.12), we have

(2/II') A R&a,

los(r+ T,)
-o. she, /(r+r, ) .

Although ao is very large for T && T„ the contribu-
tion of the second (anomalous) term of (4. 11) is
very small in this temperature range, and we shall
only require values of ao for T & T,. In this tem-
Perature range, we have, tyyically, ao-(Io ec)r-'.
We shall use this average estimate of ao for aEE the
alloys we consider. We wish here to predict only
the generRl ordel of magnitude of the effect on
6p/c. With ao fixed in this way, we need only de-
termine the values of en, po (the T = 0 atomic re-
sistivity), and p„(T), all of which are easily found
in the literature. The results of our calculations
are shown in Fig. I, whex'e concentrations ranging
from c = 0.001 to c = 0. 1 at. % have been studied.

Ae we anticipated earlier in this section, the ef-
fect of the anomalous term in the ep resistivity of
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the alloy is to give rise to a sharp peak in the
atomic resistivity as a function of temperature.
The effect is particularly strong for CuFe where
Fig. 1 shows that a Fe concentration of only 10 ppm
will increase Ap/c 40/o over its T=O value. The
qualitative observation of sharp peaks (increasing
with decreasing c) in the atomic resistivity-versus-
T curves of dilute solutions of transitional atoms
in certain noble metals was noted some years ago
by Gerritsen and Linde. The form of the published
data, together with the absence of measurements
of the thermopower on the same specimens, does
not, in our opinion, allow a numerically detailed
comparison between theory and experiment. How-
ever, we hope that this paper will inspire subse-
quent experimental work which will enable a quan-
titative comparison of theory and experiment to be
made.

We now go on to consider briefly the question
of more concentrated alloy systems.

lmown, then b, (T, c) is determined entirely by ao
and bo. Now ao is, in principle, obtainable from
the electronic diffuse thermopower so that measure-
ments of both b,(T, c) and S(T, c), together with the
use of the theoretical formula h(T, c), could be
used to determine the second-derivative parameter
bo(T, c). If, on the other hand, a reliable theoreti-
cal expression is available for ro(e; T, c) for e
close to e~, then C(T, c) may be predicted com-
pletely theoretically. '

A particularly simple situation occurs when 1/7'0

is independent of T and proportional to c, since then
the two key parameters ao and. bp are just constants
independent of T and c. Thus, providing the in-
equalities (2. 1S) and (2.20) are satisfied, b, (T, c)
is completely determined by the latter two constants.
We now consider this situation for the case of non-
magnetic transitional impurities.

VI. APPLICATION TO NONMAGNETIC TRANSITIONAL
IMPURITIES

=a,(T, c)+a,(T, c), (5. 1)

where A~ and bz are defined by (4. 4) and (4. 5), may
be termed the "deviation from Matthiessen's Rule, "
and is deducible from the observed total alloy re-
sistivity when p,, and p,»,„(T= 0, c) are known. As
discussed in Sec. IV, the effect of the energy de-
pendence of v'0 is to produce a positive peak in
h~(T, c) as a function of T. The deviation h, (T, c),
which is negative, is proportional to po(T, c) which
increases with increasing concentration. Thus, as
c is increased, 6,(T, c) tends to cancel the positive
contribution from C z(T, c)which varies much slower
with c than 6,. Thus, the positive contribution
to 6(T, c) is eliminated after some value of c has
been reached (see Fig. 3, Sec. VI). We also note
from (3.18) that in the limit T» To, hz(T, c) be-
comes negative anyhow if bo &2ao.

We see from (4.4) and (4. 5) and from (3.7), (3.8),
and (3.14), which may be used to obtain explicit
expressions from 6, and bz, that h(T, c) is deter-
mined by the first- and second-derivative param-
eters a, b, and ao and bo. Since the former two
parameters can be expressed by means of (3.5) and
(3.6) in terms of the latter two when po and p„are

V. HIGHER CONCENTRATIONS AND MATTHIESSEN'S
RULE

At higher concentrations where To/Bn is no longer
so small as was considered the case in Sec. IV, we
must retain the terms in (3.7), (3.8), and (3.14) of
relative order (T/Bz) . Retention of these terms
brings in the importance of the parameter b, de-
fined by (3.6), which measures the strength of the
second derivative of r(&)

The quantity

b, (T, c) = p,».y(T, c) p'„(T) —p, (T—=0, c)

If ao and b0 are constants, the low-temperature
thermopower is linear in T while the limiting low-
temperature form of the alloy resistivity is, from
(3.7), (3.8), and (3.S),

p,»,„(T,c)=pot1 —
~ v (T/BD) bo] (T «To) .

(6.1)
Thus, ao and bo can be determined experimentally
from the low-temperature thermopower and the
initial T decrease of the electrical resistivity. We
also note that in the limit T» To, we have from
(3.18)

p,»,„(T, c) —p,,(T) = pp[1 6 5 (T/Qr', ) (bo 2ao)]

(T» To) . (6.2)

Thus, the coefficient of the negative T deviation
from Matthiessen's rule changes by a factor of
(bo —2a~o)/bo in going from T «T, to T» To.

A situation corresponding approximately to con-
stant az and bo is that of nonmagnetic transitional

lo

AIMno. o46 0

cp i I
E

O
I -5—

-IO—
e

I

0 O. I 0.2 03 0.4 0.5

FIG. 2. Theoretically predicted deviations from Mat-
thiessen's rule, &, for two nearly-local-moment Al alloys.
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impurities in nontransitional hosts, where following
the work of Friedel, ' one can consider the resonant
scattering of conduction electrons from virtual d
levels, or "virtual bound states" (VBS), in the vi-
cinity of the Fermi energy:

(6.3)

Here I' denotes the half-width of a Lorentzian VBS,
and &p and I'p denote constants. I' is related to the
conduction-electron phase shift (I = 2) by the relation

10 I, I (

C=0.046

~ 0

-5

I

-10

tan6, =r/(~ —~,) .
Equations (6. 3) and (6.4) give

ao = (h(o, /r) sin(26, ),
ho = 2(e(u, /I )'(sin6 ))' .

(6.4)

(6.6)

(6.6)

-15

200 0.1 0.2 0.3 0.4 0.5
T/8p

FIG. 3. Theoretically predicted deviations from Mat-
thiessen's rule, &, for several dilute AlMn alloys.

If the l =2 phase shift is the dominant phase shift,
then by Friedel's sum rule the magnitude of 5, is
fixed by

6, =(v/2)[z/(2I + 1)], (6.7)

where z denotes the effective valency difference be-
tween the transitional impurity atom and host-metal
atom.

For typical nonmagnetic transitional impurities
in noble metals, we have (ka&, /I')-0. 1. We require
the square of this quantity to be comparable to unity
for a sizable modification of p„(T, c). Thus, typ-
ically, we do not expect a large effect in p„(T, c)
due to nonmagnetic transitional impurities. How-

ever, for the particular alloy systems A/Mn and

A/Cr, Caplan and Rizzuto have put forward the in-
teresting idea that the width of the VBS in these al-
loys is extremely narrow and, in fact, is not much
greater than @co~. This anomalously small value
of I' is correlated with the close proximity of the
impurity state to a state carrying a local (magnetic)
moment. If this interpretation of the Al alloys is
correct, then these alloy systems would be ideal
systems for studying experimentally the present
ep effect. Moreover, since measurements of both
the low-temperature linear thermopower and of
the initial negative T resistance deviation ' (6. 1)
have already appeared in the literature, thus pro-
viding values of ap and bp, we may use the general
results of Sec. III to acutally predict h(T, c) for
dilute A/Mn and A/Cr alloys. For A/Mn, we find
ap=0. 25 and bp=0. 45, while for A/Cr we obtain the

somewhat lower estimates ap=0 036 bp=0 1 The
result of the theoretical calculation for &(T, c) is
shown in Fig. 2 for 0. 046-at. /o Mn and 0.09-at. % Cr,
these being the actual concentrations used in Ref.
25. In the case of AlMn, the energy dependence of
ro is sufficiently strong that b~(T, c) dominates
d&(T, c) over a finite temperature interval, whereas
4& dominates h~ for the case of AlCr for which the
energy dependence of 7'p is considerably weaker.
In Fig. 3, we show our theoretical calculations of
h(T, c) versus T for AIMn for various values of c.
As c is increased from zero, the importance of the
denominator D(T, c) in (3.7) and (3.14) increases
to the extent of causing d, (T, c) to be negative for
all T and c. However, the presence of the strong
positive peak in h2 is evident in the total deviation
6 for all the concentrations studied in Fig. 3.

Presumably there exist other nearly-local-mo-
ment dilute-alloy systems where I" is beginning to
approach kcoD, and such alloys, together with the
Al alloys discussed above, would be particularly
suitable for use in an experimental investigation of
the effects found theoretically in this paper.
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Electrical-resistivity measurements have been performed on five single crystals of pure tin
in the temperature interval 8-300'K. From these measurements, the temperature-dependent
anisotropy (a= p~,/p~) of the electrical resistivity has been determined. A striking maximum in
the a-versus-T curve is noted at T= 20'K. The features of this curve at high, intermediate,
and low temperatures are interpreted in terms of a simplified model for an anisotropic metal.
The model predicts that the a-versus-T curve for all electrically anisotropic metals with anis-
otropy a „as T — will exhibit a maximum +m~ =+~ at intermediate or low temperatures.

INTRODUCTION

This paper reports the results of an experimental
investigation of the temperature-dependent elec-
trical-resistivity anisotropy of pure tin. Five ori-
ented pure-tin single crystals (less than 3-ppm
impurity) were measured between 8 and 300'K.
The anisotropy was determined to be a strongly
varying function of temperature for tin. A greatly
simplified model for an anisotropic metal is em-

ployed to explain the gross features of the a-versus-
T data.

The orientation dependence of the resistivity of a
tetragonal crystal such as tin may be written in the
form

p(6) = p, [1+(a- l) cos'e],
where 8 is the angle between the tetrad axis and the
current direction, p, is p(90 ), and a, which we


