
3794 R. R. BARTKO WSKI

shows that the slope of linewidth versus temperature
for the dominant three-magnon confluence process is
proportional to k. In magnitude, the slope is 30%
higher than predicted by theory. Cases 2 and 3 are
much higher than theory, reflecting the discrepan-
cies in their region of Fig. 2. The slopes observed
for these cases point to the excitation of higher-k
spin waves as mentioned previously with case 2

having a higher slope corresponding to the greater
range of k available at the energy of the corner po-
sition. Figure 3 also shows the three curves inter-
cepting the temperature axis at T= 0 K. In the
treatment of Sparks, which does not employ the
high-temperature approximation, it is shown that
a T= O'K intercept on a plot of this type is only a
good approximation for k greater than a value given
in his theory. For the case of EuS this value corre-
sponds to an intercept of 0. 5 'K for case 1, owing
to the breakdown of the high-temperature approxi-
mation for the spin waves which interact with the
excited state. For cases 2 and 3, it appears, from
the magnitude of the linewidth, that the spin waves
actually excited in this experiment have a value of

k comparable to case 1 or have a value of 0 differ-
ent from 90'. In this case, the high-temperature
approximation for all spin waves involved in the re-
laxation can be valid and the t= 0 K intercept seen
in Fig. 3 can be understood.

IV. CONCLUSION

Although experimental difficulties exist, it ap-
pears that the spin-wave relaxation in EuS is ex-
plained by three-magnon processes. These pro-
cesses can account for the variation in linewidth
with spin-wave parameters as the spin-wave spec-
trum is swept. They also predict the linear tem-
perature dependence for the linewidth of a given
spin wave, which is observed from 2 to 6'K. This
leads us to the conclusion that simple spin-wave
theory, with the inclusion of two- and three-mangon
terms from the dipole-dipole interaction, provides
a satisfactory explanation of spin-wave relaxation
in the low-k portion of the spin-wave spectrum even
in the high-magnetization low-exchange materials
where the interactions are very strong.
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Ritz-method calculations are used to estimate the angles between applied magnetic fields
of the order of 10 Oe and the magnetization in the vicinity of W or Nd impurity atoms in Fe
or Ni. It is assumed that the impurity atom is substitutional and that its main effect is the
magnetostriction, due to the mechanical strain caused by introducing an atom having a dif-
ferent size from that of the other atoms in the lattice, but it is shown that magnetostatic ef-
fects, caused by introducing a nonmagnetic atom, might also be important. Radii of free
atoms are used, and because of this and other approximations used in the calculations of the
various energy terms, the theoretical angles are only a crude approximation; but they do
come to within a factor of 2 or so of the experimentally measured angles.

INTRODUCTION

In a previous publication' it has been argued that
the direction of the magnetization in the immediate
vicinity of impurity atoms in soft ferromagnetic
materials, such as Fe or Ni, differs considerably

from its direction in most of the ferromagnetic
material when a magnetic field of the order of 10
Oe is app'. ied. This was essentially an ad hoc in-
terpretation of the experimental results of Ben-
Zvi et al. ' on recoiling nuclei embedded in Fe or
Ni foils. According to this experiment, the field
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at the site of the embedded nucleus is at an angle
of about 30' to an applied field of about 1000 Oe,
whereas magnetic measurements show that when
such a field is app1ied to an iron or nickel foi1
practically all the magnetization is parallel to the
field. It was therefore suggested' that this ap-
parent discrepancy be removed by assuming that
the magnetization in the vicinity of an impurity
atom, which is the quantity measured in the Ben-
Zvi et al . experiment, behaves differently from
the average magnetization which affects the mag-
netic measurements. A semiquantitative argu-
ment indicated that the difference between the vi-
cinity of the embedded nucleus and the rest of the
ferromagnetic material could possibly be ac-
counted for by mechanical strains, via magneto-
striction. It was argued' that these strains could
be due to dislocations, interstitials, and vacancies
created by the recoil nucleus in the vicinity, or
simply due to the distortion of the lattice caused
by replacing an Fe (or Ni) atom by an impurity
atom of a different atomic size.

In the meantime, some experimental evidence
has been published indicating that the radiation
damage in Fe, and probably in other metals too,
is generally unimportant. Unlike implantation
into Ge or Si, which causes a high degree of dis-
order, Inost of the ions lQ1planted into Fe are lo-
cated within one Thomas-Fermi screening dis-
tance (i. e. ,

- 0. 1 A) from the Fe lattice sites, and

so, apparently, are most of the Fe atoms which
are initially knocked out of their sites. Although
dislocations, and other lattice defects, are not
completely ruled out by these experiments, there
are indications of a relatively perfect lattice after
a transient time of the order of 10 ' see. There-
fore, one can rather safely assume that if there
are strain effects at the implanted ion sites, these
are just due to the introduction of a different atom-
ic size into an otherwise perfect lattice.

It thus seems worthwhile to try an actual quanti-
tative study of the suggested mechanism to see if
it can yield the angle measured in the Ben-Zvi
et al. experiment. However, the rigorous problem
is too complicated and contains too many unknown

parameters. Therefore, no attempt at rigor will

be tried here, and only a rough estimate will be
obtained, based on a relatively simple approxi-
rnation. The approximation is based in the first
place on the assumption of a continuous material,
which is a rather risky assumption when one is in-
terested in the immediate vicinity of the impurity
atom, on an atomic scale. Even for this con-
tinuous-material approximation, the energy will
not be minimized for all possible configurations of
the magnetization, but rather the Ritz approxi-
mation will be used, in which a certain functional
form is assumed, and the energy is minimized

only with respect to certain parameters (oneparam-
eter in the case studied here). But at least the
approximation of the linearized theory will not be
used here, since this has been shown' to be of very
doubtful validity for our problem, which will be
more clearly seen in See. II. %e choose the

foem obtained from the leading terms in the
linearized-theory approximation, but the energy
for this functional form is then calculated rigor-
ously, in the sense that the linear approximation
is not used; yet the exchange is neglected, and the
magnetostatic self-enengy is somewhat modified,
for reasons which will be discussed in Sec. III.
A further approximation is involved in the calcu-
lation of the actual angle from the Ritz-method
results, which will be discussed in Sec. IV.

Because of all these approximations, the results
presented here cannot be regarded as more ac-
curate than an order-of-magnitude estimate. Yet,
none of the approximations seems so bad that it
should lead to the wrong order of magnitude. In

this respect it is very encouraging to see that the
numerical results obtained from these approxi-
mations are of the correct order; actually they
corn":= to within a factor of 2 of all the experimen-
ta1. results obtained so far. Moreover, in a re-
cent experiment, to be discussed in Sec. V, %
was implanted into an alloy with very low mag-
netostriction, and the angular distribution was
practically undisturbed. This is at least a quali-
tative verification of our main assumption that
magnetostriction is the most important factor.

II, MAGNETOSTRICTIVE AND FIELD ENERGIES

A. General

Consider a continuous and isotropic material in
which an atom of radius xo is removed, and an
atom having a radius xo+5ro is inserted in its
place. A standard metallurgical technique is to
assume a point force, and obtain its amplitude
from the change in volume. One then finds that
the only nonvanishing displacement component, in

polar spherical coordinates, is4

U = (1+v)/(1 —v)

and v is the Poisson's ratio of the host material.
This approach has been used successfully not only

for interpreting metallurgical propeties, but also
for other physical problems, such as the effect of

impurities on resonance linewidth, ~ and therefore
seems adequate for our purpose.

For lack of any better data, we shall use atomic
radii of free atoms. These are listed in Table I,
and it is clear that they should be regarded as
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TABLE I. Atomic diameters (from Ref. 6) used in the
numerical computations of this work.

Atom

Diameter (A)

Fe

2. 52

Ni

2.49 2. 82

Nd

3.63

The interaction between elastic strains and

magnetization in cubic crystals is formally taken
into account to a first-order approximation by
adding to the other energy terms the following
energy density term:

E, =B,(n e„„+P e„+y e„)
+B,(nPe„, +Pye„+yo, e,„). (3)

Here B, and B~ are the magnetoelastic coupling
constants, whose numerical values are listed in
Table II; a, P, and y are the direction cosines of
the magnetization vector; and the e's are the
strain components. The e's are obtained by the
appropriate differentiations of (I). When these are
substituted in (3), one obtains, using spherical
coordinates r, 8, and Q,

E, = Uro 6xor 3 [ B, (n sin'8 cos Q

+P sin'8 sin'P+y' cos'8)

+ 2B~ sin 8 (o.P sin 8 sin Q cos Q

+ py cos 8 sin p+y o cos 8 cos Q)]. (4)

At least for a very large applied field, the mag-
netostriction works mainly against this field,
which tries to align the magnetization in its di-
rection, other energy terms being negligible. The
density of the interaction energy between the ap-

crude estimates only. For the Poisson's ratio of
iron, one can find in the literature various values
which depend on the composition. Rather than
enter these fine details, we shall use a v of 0. 3
for both Ni and Fe (Table II).

B. Ritz Functional Form

o = (h/H ) (Ro/r)' sin 8 cos 8 cos p,
p= (h/H) (R, /x)' sin 8 cos 8 sing

(6a)

(Sb)

with

h=2Uro Ro 6roB~/M, .
It is seen that the dependence of the angle on

I/H is retained, as in the previous estimation'
based on the linearized theory. Moreover, aver-
aging n + P over the whole material in the usual
way leads to a term proportional to H in the
magnetization. Such a term is always present in
the approach to saturation of the magnetization
and is usually interpreted' in terms of magneto-
crystalline anisotropy. For the present study it
is encouraging to note that the model does not lead
to a term which is not known from magnetic mea-
surements. It should be noted, however, that a
theoretical study of this H term in the approach
to saturation should include such a contribution
from the strain around impurity. Also, it has al-
ready been noted" that an H ' term can be obtained

plied field, H and the magnetization M is

E~ ——-M H.
If it is assumed, for simplicity, that H is applied
parallel to the e axis (i. e. , along a crystallo-
graphic cubic axis), and if one uses the approxi-
mation of the linearized theory by assuming that
H is so large that o, «1 and P «1, the leading
term in (6) is quadratic,

E„=-,' JIM, (o.'+P'), (6a)

where M, is the saturation magnetization. On the
other hand, (4) contains the linear term

E, = 2Ur -2O6r~r 'Bz sin 8 cos 8 (n cos P+P sing).

(6b)

Minimizing the sum of the two energy terms in (6)
for the region

o=ro+ «o
one obtains

TABLE II. Physical parameters of Fe and Ni used in the numerical computations of this work.

Fe Ni

Poisson's ratio v

Magnetoelastic coupling constants {ergjcm ): B&

Bg

Compressibility C~ (atm ')

Saturation magnetization rM ~~ (0)

Change of M~ with pressure I~ &MB/8p (atm ')

Anisotropy constant E& (erg/cm )

0. 3

—2. 9 xl07

6.4 xl0~

6. 20 x10 7

5395

—l.78 x10 ~

4. 8 x105

0. 3

6. 2 x107

9.0 x10~

5.49 xl0 7

1521

—2. 07 x10

4.5 x 10
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from line def ects, and this seems to call for a new

evaluation of this term, especially since themag-
netocrystalline- anisotropy constant obtained from
the approach to saturation of a polycrystalline sam-
ple does not usually agree' with the value of this
constant obtained directly from the magnetization
of single crystals.

However, if one uses the values of Tables I and
II in (9), it is seen that I4 is at least about 104 Oe
(for W in Fe), and up to 10' Oe for Nd in Ni.
Clearly such values do not justify using (8), which
has been obtained under the assumption n «1,
P «1, in order to interpret experiments done with
H of 103 Oe or so. But one can certainly use the
functional form of (8) as a basis for a Ritz-method
calculations of the energy, and this is the approach
adopted here.

C. Magnetostrictive Energy

In principle, the calculation shouM be done for
different angles between the applied field and the
crystallographic axes, and then the results should

be averaged for the random distribution of these
angles among the different crystallites of the poly-
crystalline material. However, for the crude ap-
proximations used here, the averaging is done in
the energy terms, not in the fina, l result. To do

this, we keep the notation of the z axis as parallel
to the applied field 0, and assume that the crystal-
lographic z axis is at an angle eo to this axis.
Equation (4) is then rewritten in this new coordi-
nate system, rotated by the angle e„and the ex-
pression is averaged for all possible go, as if the

direction cosines of the magnetization are indepen-
dent of eo. This trick is an approximation for re-
placing each direction cosine by its average over

Bo, and should be a good approximation if the de-
pendence on 6o is a well-behaved function. Using
the components n„n~, and a, in a cylinChit. "al co-
ordinate system, it is assumed that these are in-
dependent of (j), and the expression for the energy
is averaged for all possible P. The result of these
averagings is

E, = U, -B, (n, cos8+ &~sin8)ho O'O p

+ ' ' (n,' —n', ) (1+cos' 8)

(B,—B,) n, n, sin8 cos8

&j.- &2~ ' ' (o,' —o,') [ coc'C + —', co (Cc)])

(10)
In thiswork we choose the particular form im-

plied by (8),

=- 0, n, = g (fto/~)3 sin8 cos8,

where a is the parameter with respect to which the
total energy will be minimized. This form (11)
now has to be substituted in (10) and then the ener-
gy density should be integrated over the volume of
the whole infinite sample (7) to yield the total mag-
netostrictive energy. But since adding or sub-
tracting constant terms (independent of a) to the
energy should not make any difference for the
minimization with respect to a, it is convenient to
subtract the energy of the saturated state, a =0.
After carrying out trivial integrations, expanding
in a power series, and using tabulated' integrals,
the difference between the energy at the state (11)
and that at the saturated state is

a 4.—(7B, +8B2)a' a a
5 3 V

[(2n —1)!!]'(2s+ 2)
x P (2n —1) (4n + 5) ! !

6

D. Field Energy

The density of the interaction energy of the mag-
netization and the applied field is given by (5), and

there is no difficulty in substituting (11)in (5) and in-
tegrating over the volume of the ferromagnetic
material. However, the value of the saturation
magnetization M, in the vicinity of the impurity
atom cannot be the same as in the rest of the ma-

terial because of at least two effects.
First, when a nonmagnetic atom replaces an iron

or nickel atom in an otherwise perfect lattice, its
nearest neighbors lose their exchange interaction
with it. This should modify the saturation mag-
netization in that vicinity, as has been shown in re-
cent years by numerous theoretical papers. "
It has often been claimed that such calculations
should be related to certain experiments ' which

revealed that there was something different in the

vicinity of impurity atoms, even though there were
difficulties in relating one experiment to the other ~

even from a purely experimental36 standpoint. But
whether this is so or not, the detailed calculations
show' ' at least one thing: The change in the

saturation magnetization due to this effect is at
most of the order of a few percent at room temper-
ature, and our rough model cannot deal with such
fine details.

The other effect is directly related to the strain-
ing of the lattice, Because ferromagnetism de-
pends rather critically on interatomic distances,
the saturation magnetization should depend on

lattice strains, and actually it is observed that the
saturation magnetization changes when a pressure
is applied to a ferromagnetic material. ' Using
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TABI E III. Effective pressure at x=80 due to the dis-
placement (1), and the saturation magnetization (13) that
results from it according to &M~/8p of Table II, for W
and Nd impurit. ies in ¹iand Fe.

Impurity
and host

Win Fe
%' in Ni
Nd in Fe
Nd in Ni

Effective pressure
{atm)

0.576 &106

0.724 x10'
2. ].3 x10'
2. 50 x106

—553
—228
—2045
—787

the compresstbllltles of Fe alld Nl (Table II), allc!

the radii in Table I, it is seen that the change of
the central-sphere radius in equivalent to a pres-
sure of the order of 10 atm (see Table III).
There is certainly no a Priori reasontoneglect the

effect of such a pressure on the saturation mag-
netiz ation.

In order to take into account the strain depen-
dence of M, , we have to assume that its pressure
dependence is linear even up to the enormous pres-
sure involved, for lack of other dependence which

can be deduced from theory or experiment. Noting

that (1) should lead to a pressure which varies as
r ', we take the saturation magnetization to be

M, =M,'"+M."' (ft, /r)' (13)

Here M,"' is the value measured38 in unstrained
crystals (Table II), and M,"' will be taken so that
at r =Ro the value of M, obtained from (13) will be
the same as the value of M, extrapolated from its
experimental pressure dependence, for a material
under the pressures listed in Table III.

The problem is now well defined if one can agree
on what the experimental results are, but these
are, unfortunately, not so well defined, Kouvel
discussed the validity of various measurements,
and reached the conclusion that older measure-
ments were unreliable because they did not use a
sufficiently high field to saturate their samples,
In the present context, it is particularly interesting
to note that it takes~9 fields over approximately
1000 Oe to saturate Fe or Ni under hydrostatic
pressure of about 3 kbar. The more recent mea-
surements all agree on a negative effect for Ni,
i. e. , a decrease in M, with increasing pressure.
The value used in Table II for Ni is read, as the
room-temperature value, from the graph of
Fujiwara, et a/. , who plot this effect as a func-
tion of temperature.

For iron, the experimental results at high pres-
sures show' that the magnetization does not vary
linearly with pressure. The most detailed curve
of M, versus P is given by Graham" for Fe with
3-at. '70 Si, and presumably this cannot be much
different for pure Fe. According to this curve,

M( 1)
M (3)

~~2n —1 (14)

III. OTHER ENERGY TERMS

A. Magnetoerystalline Amsotropy

For a coordinate system which is parallel to the
cubic axes, the magnetocrystalline-anisotropy
energy density of a cubic crystal is usually written
in the form35

E lf. (+2PR P2~2 3+8 )

M, decreases linearly with pressure up to about
130 kbar. Then there is a sharper decrease, until
for pressures of some 200 kbar and higher the
magnetization is zero. But it is pretty well estab-
lished that the bcc n-iron is transformed into fcc
y-iron or into hcp c-iron, and that the transfor-
mation starts at a pressure of about 120 kbar and is
completed at about 160 kbar. '~ The sharp decrease
of M, in the Graham experiment should, therefore,
indicate a crystallographic transformation to these
nonmagnetic iron phases, and a crystallographic
transformation must be a bulk property. The
whole idea of crystallographic structure loses its
meaning when a few atoms are concerned, and it
is difficult to conceive that such a structure of a
few atoms is nonmagnetic„

Because of these difficulties, it was decided to
keep (13) and to extrapolate to the higher pressures
the linear dependence as measured at the lower
pressures, As for the numerical value of the
change in the linear region, the pressure depen-
dence of the internal field at the nucleus is re-
ported" from Mossbauer-effect measurements,
which also fit some NMR data, and these are a
direct measurement of what we need for our calcu-
lation. A least-squares fit yielded' the value
which we use in Table II. It is about one-half of
the value which can be read from the graph of
Fujiwara et al. for Fe at room temperature, but
apparently a factor of 2 is the best fit one can ex-
pect for this kind of data.

The values for the change of M, with pressure
are thus listed in Table II; for Ni the value is
taken from Fujiwara et al. , and for Fe the value
is taken from Moyzis and Drickamer. ~ Using
these values and the pressures listed in Table III,
one obtains the values of M,'~' which should be used
in (13), as listed in Table III. Substituting now (13)
and (ll) into (5), the difference in energy (due to
interaction with the field) between the state (11) and
the saturated state is obtained by integrating E„
over the volume of the whole infinite material.
The result is

aw, + [ {3n-1)!!]'u'"
3 ', (3n- I)(4n+I)!!



whel'6 the next term with E2 j.s neglected here.
The xoom-temperature values of the constant E,
in Pe Rnd Ni are listed in Table II. For R poly-
crystalline sample with a random distribution of
the directions of crystallographic axes, the same
px'Gcedu16 of approximate minimization 1s used Rs
for the magnetostrictive enex'gy in Sec. HC: Equa-
tion (15) is written for a coordinate system rotated
at an angle 60 with respect to the crystallographic
s axis, and then averaged over Q and eo, assuming
that u, , n„and o.~ are independent of Q and eo.
This leads to

E„=(z, /40) [4(a', —a,') +7(-,'~,'+2m,'n', —~', )] .
(i8)

Substituting fl'onl (ll) Rnd llltegrRtlng ovel' the
volume, one obtains

W„= (4', ft', /228) (-a'+ u'/2V) .
This treatment assumes that K, does not change

with pressure. There have been. some attempts36

to cRlculRte some pressure dependence of X~ from
experimental magnetization curves. But the tech-
nique is very doubtful, and at any rate, such a
treatment should include the contribution from
mRgnetostx'1ctlon, which we cons1dex' sepRX'Rtely.

If there mere some reliable experimental data on
the effect of pressure on K, , it would have been
very simple to introduce them inta the calculation
by assuming R radial variation of this constant,
»ke M, in (13), but such data are not available,

8. Exchange Energy

The expression which is usually used for the

exchange-energy density in the approximation of a,

continuous DlRttex' ls

z, = —,
' c[(vn}'+ (vp)'+ (vy)'],

where the exchange constant C is approximately
2x10 ' erg/cm, both for Fe and for Ni. For the

highly strained material one can write, analogously

to (18),

(19)

Rnd use for C, the value of C 1n an unstrained crys-
tRl, Cp 1s detel mined s1IQ11Rx'ly 'to M, by the

requirement that C of (19) has at x =80 the same
valve of C in a crystal under the pressure listed in

Table III, There are no direct measux'ements of

C as a function of pressux'e, but one can deduce it
fxom the dependence of C Gn the lattice constant

and on the Curie tempera'. ure. The change of the

lattice constant with stra&n can be dix ectly obtained

from the displacement (1). The change of the

Curie temperature with pxessuxe was measured, '~

However, even a rough estimate can immediately
show that using (11)in (18),with or without the use of

(19},will lead to energies which are much larger than
all the other energies considered in this work.
This does not necessarily mean much, because
calculations of domain-mall energies3s 4o usually
show that for a reasonably smooth spatial variation
of the magnetization the exchange energy is much
smaller than other energy texms; but some kinks
that hardly change the other tex'ms can make the
exchange energy calculated from (18) much larger
than other energy terms, Actually, it can take a
small modification of the functional form of a
Ritz-method ca,lculation to change the exchange
from an infinite to a negligible value, ' The reason
for this xather strange behavior of the exchange
encl'gy ls that (18) WRS del'lved fl'0111 R fll'8't tel'Ill

of a Taylor series, assuming a, very slow variation
of the magnetization, and just cannot be used when

large va, riations of the magnetization take place in
a small volume, as in (ll) in the vicinity of r =80.

It has been argued42 that (ll) can be rather
safely used in problems where one is looking for
the absolute minimum of all possible functional
configurations, because on a Inicroscopic scale an

abrupt change in the magnetization means that
certain pairs of spins have an energy which is
lax"ger by orders of magnitude than other pairs,
and such a distribution cannot be conceived as Rn

. energy minimum. It was xemarked, however,
that such an argument does not hold in the vicinity
of cxystal imperfections Rnd when one is looking

just fox an estimate, as in the Ritz-method calcu-
lations employed here. Moreover, in the present
case~ the nearest ne1ghbox's to R nonmagnetic im-

purity do not have one of the neighboring spins to
exchange-interact with, This can be expressed as
a, surface anisotropy, and it is usually claimed
that this surface anisotropy can be neglected be-
cause it affects only the fem spins near the sur-
face. But in this particulax problem, it is mainly
those few spins near the "surface" that we are
interested 1n.

Since RH these points have never been cheeked
quantitatively, it seexned worthwhile to try Rnd

see how good an approximation (18) is for the par-
ticular case (11). In order to do this, a bcc lattice
with a lattice constant ao = 2, 8606 A, as in iron,
was considered. The spins on the lattice sites
were assumed to be cia,ssical vectors having the
directions implied by (ll), where r is the distance
of the lattice site from the impurity atom (assumed
to have no spin), and R, was taken as 1, 41 A. The
excha11ge energy between spins g& and 8& was
taken as 5

W„=-VS,. S, ,

where J is related to the exchRnge constant, men-
tioned in the foregoing, by'
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8 J=~goC.
This energy was summed for all possible combi-
nations of nearest neighbors S; Rnd 8&. The con-
vergence of the sum was very rapid, and spins Rt

lattice sites a few lattice constants away from the
impurity atom already made a negligible contri-
bution to the total sum.

Computations were done for various values of
the parameter a in (11), and each of these compu-
tations was done twice: once under the assumption
of an undistorted cubic lattice with a constant C,
and once by approximating the effect of strain as
in (19), with the appropriate modification of (20).
For the values of a tried, these two cases always
gave the same exchange energy to within a few
percent. On the other hand, the enexgy obtained
from (18) was one to two orders of magnitude
larger than the energy obtained from (20). The
use of (18) is thus definitely impossible for the
case studied here, and more misleading than the
dropping of the exchange energy altogether. Ne-
glecting the exchange energy might mean that the
wrong r dependence is used in (11), and, therefore,
the results cannot be more than a crude order-of-
magnitude estimation. However, it should be
noted that in the rather similar problem of the
energy of a Bloch wall, rigorous two-dimensional
computations gave results which came within a
factor of 2 or so of the original crude one-dimen-
sional estimations which had used an approach
similar to the one used here.

= 4', (o., cos 0 + n, sin0) . (22)

Substituting (ll) and (13) into (21) and (22), one can
write the potential in the form

&=4&[ Z„~,"'f„(&)+M,'" g„(r)] P,„., (cose )R .

where f„and g„are certain polynomials which can
be obtained by not-too-complicated integrations.
This potential can now be used in the conventional
expression for the magnetostatic self-energy
density,

E@ ——yM 7'V.

Substituting from the foregoing and carrying out the
integrations for the whole infinite material, ~ & Ro,
one obtains

n=1

for Y & fto. (21b)

The boundary conditions are the regularity of V for
x-0 for x- ~, continuity at Ro, and a discontinuity
in the derivative, given by

V'2V = 0 for v&RO

8 sin 8=4w cosg —— —)~ u,Bt' x gg

(21a.)

C. Magnetostatic Self-Energy

If the impurity atom were considered to be a non-
magnetic cavity in the ferromagnetic material, one
could take the magnetostatic self-energy involved
from the calculations of Humphreys and Rhodes,
since (11) here is a particular case of the func-
tional form they use for the magnetization, which
was even extended later 6 to a more general case,
with more parameters, for the study of actual
cavities. However, for a series expansion in
powers of a, results are reported ~

6 up to second
order only, and there is an error in the published '~

results. Besides, if one wants to assume (13), the
whole potentlRl plobleIQ ls IIlodlf led Rnd hRs to be
reevaluated.

We shaH, therefore, start by the evaluation of
the magnetostatic potential of the volume and sur-
face charge. In the general case, when M, is a
function of x, this potential V in a ferromagnetic
material with a cavity of radius Ro should be the
solution of

+1 +1 45~ ~1 45~ ~3 63~ ~2 2835 i C3 8505 ~

16 ~ 3D4 ~ 148
47p5 i ~3 p2 2'75 9 ™3 1q 3/5 ~ (28)

Formally, this is the magnetostatic self-energy
of a continuous ferromagnetic material whose
magnetization varies according to (ll) and (13)
around a nonmagnetic spherical cavity whose radius
is Ro. For a continuous material with strictly
localized magnetization it is well defined, but one
should be careful not to push the approximation of
continuity too far, and the idea of a cavity of one
atomic size seems rather strange, especially if
one tries to imagine the surface charge on the
inner surface of such a cavity. On an atomic scale
the magnetization distribution might be quite com-
plex even in pure Fe without the impurity atom,
so that it is difficult even to define the cavity there;
and when such a cavity is introduced, the mag-
netic-charge distribution in the vicinity can prob-
ably readjust itself to compensate for the "surface
charge. " In any case, the "cavity" cannot be
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272 g 868 ~ 15 544 ~ 12 OV6
2 60V5 ~ ~8 11025 & ~8 868 625 & ~8 1 091 4VS~

6 466 5 296~4 18 Vlls +4 3 2V4 426~ ~4 16 SV3 135 ~ etc (2 f)

IV. RESULTS

The various energy terms which were calcu-
lated in Secs. II and III should now be combined
in order to obtain the total difference in energy
between the assumed configuration (11) and the
state of saturation,

This total energy W~ is now minimized with re-
spect to the amplitude a of the configuration (11)
in order to obtain the value of this parametex.

Evidently, a small value of a means the material
is almost saturated in the direction of the applied
field, while a large value of this parameter in-
dicates that a considerable portion of the mag-
netization is not aligned with the applied field in
the vicinity of the impurity atom. We therefore
define an angle 8 between the direction of the ap-
plied magnetic field and that of the average mag-
netization on the sphere r =80 by the relation

slue = ((Qp + Qg) „s )

For the particular case (11), one obtains, by
carrying out the averaging in (29),

sine = (f22)~~2@,

(29)

(30)

and this angle will therefore be used in plotting the
numerical results. For the order-. . of-magnitude
estimation it should be good enough,

quite nonmagnetic if thexe is some contribution
from the polarization of the conduction electrons.

From this argument it can be concluded that,
whereas the magnetostatic self-energy due to the
volume charge can be well approximated by a
continuous-material calculation, the contribution
of the surface charge obtained from such a calcu-
lation is most probably wrong, even as an order-
of-magnitude estimate. However, in order not to
jump to the wx'ong conclusions, it was decided to
do all the computations twice: once for the mag-
netostatic sen-energy as obtained in the foregoing
for a formal cavity, namely, (25) and (26); and
once for the case in which the contribution of the
suxface charge is artificially removed from the
magnetostatic Potentia/. For the latter case, one
has to solve (21), but replace (22) by the artificial
assumption that sV/&r is continuous on x =8, ,
keeping the other three boundary conditions the
same as in the previous case. After carrying out
the integrations, one obtains again the same form
of (25), only with

45 ~ +2 — 4725 i +2 — 2025 &

oi

C9

IO—
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FIG. 1. Theoretical absolute values of the angle be-
hveen the direction of the applied magnetic field H and
the direction of the magnetization in the vicinity of a W
impurity atom in Fe plotted as a function of the magnitude
of H. In a and b the surface charge on the surface of the
cavity is neglected, and in e and d it, is included. In a
and c the value of M~8& is taken as in Table III, while b
and d are for M(82&=0. Curves a' and 5' are the same as
a and b, respectively, except that they contain the mag-
netostatic terms in a which are neglected in a and b.
The actual angle as defined in (30) is positive for a, a',

Rnd 5, Rnd ls negRtive fol c Rnd d,

Angles thus obtained from (30), by using the
value of a which minimizes (28), are plotted in
Fig. 1 as a function of the applied field H for the
case of a W impurity atom in an iron lattice.
Curve a in this figure is obtained by using the
value of M,' ' from Table ID and the constants (2V)
in (25), which means ignoring the surface charge
of the spherical cavity whose radius is B0. Since
only a few magnetostatic terms can be calculated
fairly easily, one might wonder if the effect of the
rema ning te ms 's ot too large to be 'gno ed.
In order to demonstrate the difference, curve a',
which has been computed without the fourth-order
terms A4, B4, and C4 of (2'7), is also plotted.

It has been mentioned in Sec. IID that different
experiments on the effect of pressure on the sat-
uxation magnetization do not agree vexy well, and

therefore the values of m,'" in Table m, which are
calculated from these measuxements, should be
very inaccurate. It is thus important to know that
the results do not depend too critically on the
values of Table IG. In order to check this point,
the computations were repeated using M,'2'=0, and
the results are plotted as curve b in Fig. 1. It is
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FIG. 2. Same notations as in Fig. 1 for the vicinity
of a Nd impurity in iron.

very encouraging to see that the results are rather
insensitive to changes in this parameter, M,'" .
The curve b' is analogous to a' and is obtained by
neglecting the fourth-order terms in (27).

In all these curves, (27) has been used in the
expression for the magnetostatic self-energy (25).
If one introduces the surface charge required by a
formal continuum theory, Eq. (26) should be used
instead of (27) in (25). Computations for this case
lead to curve c in Fig. 1 if the value of M,' ' from
Table III is used, and to curve d of the same figure
if M,' ' is assumed to vanish. It should be noted,
however, that for these two cases the parameter
a which minimizes the energy is negative, and its
absolute value was used for obtaining the angle 9
in (30). The point is that although both the strain
and magnetostatic energy terms try to pull the
magnetiz ation away from the direction of the ap-
plied magnetic field, they pull in different direc-
tions and their effects subtract if (26) is used.
For the particular parameters used in Fig. 1 (i. e. ,

W in Fe), it just turned out that the surface-charge
contribution to the magnetostatic self-energy is
about twice the contribution of the magnetoelastic
term; therefore, the subtraction (curve c) leads to
roughly the same magnitude of the angle as the re-
moval of the surface charge (curve a).

Figure 2 is a plot of similarly obtained angles
as a function of the applied field II for the case of a
Nd impurity atom in an Fe lattice. The notations

of the various curves are the same as in Fig. 1,
and it is seen that when the surface charge is ig-
nored —namely, when (27) is used —the angles for
the Nd impurity are not much different from the
angles at the W impurity. On the other hand, when

(26) is used, one obtains small angles —in partic-
ular, in curve c. This happens because the con-
tribution of the surface charge to the magnetostatic
self-energy is opposite in sign and almost equal in
magnitude to the magnetoelastic energy, so that
these contributions very nearly cancel. This be-
came very obvious from the various energy terms
computed during the minimization process, and it
was seen that two large numbers had actually
been subtracted to obtain a much smaller one.
Therefore, the small values depend too critically
on the accurate calculation of the two energy terms,
none of which has been calculated here very ac-
curately, and can easily change very much with
relatively small changes in the parameters which

are only roughly known, e. g. , the radii in Table
I. This is also seen from the effect of M,' ', i. e. ,
the relatively large difference between curves c
and d in this figure.

In principle, there is a simple way of distin-
guishing between the predictions of (27) and those
of (26); and this works best for W (Fig. 1) because
there the curves are close enough and a high ac-
curacy is therefore not necessary. To do this,
one should be able to switch off the magnetostri. c-
tion of the material. If this is done, and if the
magnetoelastic energy is the most important term,
as is assumed in the derivation of curve a, the
angles should drop to very small values for the
same magnetic fields. On the other hand, if the
theory leading to curve c holds and the terms sub-
tract, a switching off of the magnetostriction will
lead to a considerable increase in the angles for
the same field, H.

Of course, it is not possible to switch off the
magnetostriction in a given material, but measure-
ments can be made on a Ni-Fe alloy in the vicinity
of 80-at. /g Ni where the magnetostriction passes
through zero or at least is' very small. Such
measurements are being carried out by Goldring
and his group, ' and the results are in accordance
with curve a of Fig. 1, as will be discussed in
Sec. V.

Computations similar to those reported Figs. 1
and 2 were also tried for W or Nd in Ni, using
the parameters of Tables I-III. However, in all
the cases corresponding to the various curves in
Figs. 1 and 2, no energy minimum was found, and
the lowest energy was for the maximum allowable
value of (11), namely, a= 2, which corresponds,
according to (30), to an angle of about 47'. More
refined calculations for W in Ni, taking into ac-
count the particularly large reduction of the Ni
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moxnent in the vicinity of W, will be published
elsewhere.

V. DISCUSSION

It is not the purpose of this paper to present
any clear-cut results of a rigorous theory,
Rather, it is meant to serve as an indication to
the validity of an approach to a very complex
problem which, hopefully, other researchers will
be able to follow, and to improve to a stage of a
satisfactory physical theory. In this respect, it
is sufficient to note that an order-of-magnitude
estimate led to the correct order of magnitude to
account for the experimental results, which were
36' ~ 2' for W in Ni, 30 a 6' for W in Fe, and
24'+6' for Nd in Fe at a field of about 1000 Oe.
The theoretical results around this field are close
enough to these values, in view of all the approxi-
mations used.

The field dependence of the angle, in the range
of field values computed here, might be too small,
but not very much so. The only experimental datum
these graphs can be compared to right now is a
single measurement on W implanted in Fe in a
larger applied magnetic field. This field was ap-
proximately 3 000 Oe, but with a high degree of
uncertainty because it was measured with a rel-
atively large probe between small pole pieces.
In this field, the angle between the direction of the
ayylied field and that of the field at the site of the
W nucleus was almost, but not quite, too small to
be measured. " This probably implies a consid-
erably stronger field dependence of the angle than
in Fig. 1. But the fit seems good enough for an
order-of- magnitude estimate.

One of the main drawbacks of the theory is the
leaving out of the exchange energy, because if this en-
ergy term turns out to be large in spite of the argu-
ments presented in Sec. III 8, the theoretical angles
will be much reduced. Hopefully, this approximation
is more or less compensated by the use of the Ritz-
method approximation, which tends to calculate too
small angles; because when one calculates the field
necessary to remove the magnetization from the

enexgy minimum under certain constraints, one is
never sure if there is not any deeper minimum
somewhere which takes a higher field to get out of.
The approximation involved in calculating the mag-
netostrictive energy from a continuous-material
model should be good enough, since it is used
successfully in other' physical problems. How-

ever, the radii of Table I used in the numerical
computations of this model are rather doubtful.

It has been suggested in Sec. IV that the role of
magnetostatic seLf-energy, which is very difficult
to decide from theoretical considerations be found

from a measurement of the angular distribution for
' W implanted into a Ni-Fe alloy with low magneto-

striction. The choice of W, rather than ' Nd, is
obvious from Fig. 2, which is too sensitive to
approximations in the theory because of the sub-
traction of alxnost equal numbers, whereas the
case for W (Fig. 1) is clear cut. According to
this figure, if curve a holds, the angular distri-
bution in an 80- at. lo Ni-Fe alloy should be much

less perturbed than in Fe or Ni. On the other
hand, if curve c holds, the angular distribution in
this alloy should be considerably move perturbed
than in pure Ni or Fe for the same magnetic field.
This argument assumes, of course, that the im-
planted nucleus in the alloy responds to the average
properties of the ordered alloy, but this seems
very likely in view of the Mossbauer-effect mea-
surements according to which the Ni nucleus is
found in a hyperfine field which can be directly
related to the average magnetization of the alloy.

However, since implantation into an alloy has
not been tried before, there is another a priori
possibility that the implanted W will come to rest
in a vicinity which is considerably more Fe-rich
or Ni-rich than the average of the alloy, and the
magnetostriction will be almost the same as for
pure Fe or for pure Ni. After all, Ni and Fe atoms
must be knocked out of their sites by the high-en-
ergy ions entering the lattice, and they do not
necessarily rearrange themselves later in the
same ordered alloy configuration which they had

before. There is a lot of evidence' that in a pure
metal the atoms which have been knocked away
from their sites generally return in a relatively
short time to the lattice sites, although there
might also be some notable exceptions to this.
However, in a pure metal all the atoms are equi-
valent and it does not make any difference which

atom entexs which Lattice site, whereas in an alloy
a rearrangement of the atoms can lead to clusters
of different compositions. Moreover, such a
viewpoint is supported by the observation that there
is a large change in the remanence and coercive
force of Ni-Fe alloys when irradiated by neutrons,
whereas such irradiation hardly changes these
properties in Fe or Ni metals, '4 but there might
be" some notable exceptions here too. If this is
the case, one would expect the perturbation of the
angular distribution in the alloy to be about the
same as, or somewhat larger than, the pertur-
bation in Ni.

Experimental results" indicate that the pertur'-
bation in an 80-at. /g Ni-Fe alloy is considerably
smaller than the pex"turbation in Ni at the same
field H, This is in accordance with the assump-
tions leading to curve a in Figs. 1 and 2, namely,
that the most important factor determining the ap-
proach to saturation in the vicinity of impurities
is the magnetostriction, It is essentially what one
would expect by using just the qualitative argu-
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ments presented before. '
Another possible experimental checking of the

theory has already been suggested, ' namely, to
repeat the neutron scattering experiment of Low
and Colli. ns, ' applying a larger magnetic field
because their results should change considerably
if their Fe or Ni was not saturated in the vicinity
of impurities. ' It was later noted' that the same
checking can be done by reducing the applied mag-
netic field, which is easier than increasing it.
Such an experiment has recently been done in
which the scattering from one sample was mea-
sured once with the magnetic-field current turned
on full and once with the current reduced by a
factor of 3, and there was no significant differ-
ence in scattering between the two cases. '
Unfortunately, however, this was done for Fe
impurity in Ni, which is the least significant possi-
bility because Ni and Fe have practically the same

radius and they are both magnetic, so that neither
magnetostrictive nor magnetostatic contributions
can be as large as for the cases discussed here.
It should be more interesting to check the samples
of W impurity in iIii. ~7~

Finally, it should be noted that both this theory
and the experimental results ~" quoted in it are at

apparent discrepancy with the conclusion of
Deutch' that the perturbed angular correlations for
several rare earths implanted in iron follows the
magnetization curve of iron. However, the curve
of Deutch' does not quite follow conventional mag-
netization curves for iron or Ni, ' besides the

possibility of a difference in sensitivity of different
measurements. Yet this theory is in agreement
with the findings of Deutch 9 6 and of others
that it takes a field of 10000 Oe to saturate the
perturbed angular-correlation effect in nuclei im-
planted in iron.
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We present a theory of the temperature dependence of the frequency, linewidth, and infrared
absorption strength of the E~ optical phonon in CoF2, assuming that the coupling between the
phonon and the AD exciton is responsible for these effects. We find that a model based on the
orbit-lattice interaction can account for these phenomena. We also predict that the E~ phonon
should be split by application of a magnetic field parallel to the c axis. We estimate the "g
factor" associated with this splitting and find that one should be able to observe the splitting
in readily attainable magnetic fields. The temperature dependence of the above phenomena
in the paramagnetic and antiferromagnetic state is discussed. A point-charge estimate of the
optical-phonon-exciton coupling constant produces a value much smaller than that required to
fit the data.

I. INTRODUCTION

The properties of the Co ion in insulating crys-
tals are most striking. The ground state of this
ion (a d configuration) has threefold orbital degen-

eracy in a cubic crystalline field, while the spin
8= &. The presence of spin-orbit coupling or com-
ponents of the crystalline field with low symmetry

split the twelve-fold degenexate ground-state mani-

fold into a complex of low-lying energy levels.
Detailed experimental' and theoretical study of
Co++ placed substitutionally in Mgra have been eax'-

ried out by Gladney. In this environment, the
twelve-fold degeneracy of the d ground state is
split into six Kramers doublets, with excitation
energies that range from 150 to 1400 cm

An approximate description of the electronics
excited states of the Co++ ion in the antiferromagnet

CoFz (T„=37. 7 'K) may be obtained from Gladney's

energy level scheme for Co-doped Mgpa. In par-

ticular, Martel, Cowley, and Stevenson have
studied the low-lying eleetxonic excitations in this
compound. These authors find two sets of exciton
levels that lie in the 150-cm" range, for T& T„.
The two exciton bands are referred to as the AC
level and the AD level. The AC exciton band suf-
fers a Davydov splitting for a general value of the
wave vector k, while symmetry considerations
indicate that the Davydov splitting vanishes in the
AD band, in agreement with the observations. 3

Allen and Guggenheim' have observed infrared
(IR) absorption by an optical phonon of Z, symmetry
in both the paramagnetic and antiferromagnetic
state of CoF3. The integrated strength of this line
was found to exhibit a strong temperature depen-
dence. The width of the line was also strongly
temperature dependent, with a minimum at T„,
and a rather large (=6 cm ') increase in the fre-
quency of the E~ mode was observed as the crystal


