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The grand partition function for the Anderson model can be expressed as a Gaussian average
over the partition function of a one-particle system in a fluctuating external potential. Though
the zero-frequency approximation for this potential leads to the correct well-known two limits
of the Anderson model, it turns out to be insufficient even for the first corrections to these
limits. Combining diagrammatic techniques and the functional-integral approach, we use a
new kind of perturbation theory in order to find approximations which fulfill the requirement
of giving the first few corrections to both limits. They correspond to approximations in the
functional integral, which take into account an infinite number of non-Gaussian fluctuations
around the static frequency of the external field, and which thus are inaccessible by the usual
treatment. In particular, the Kondo effect is shown to result from singularities in the particle-
hole propagation. The analysis of the paper suggests that the use of one random field in the
functional-integral approach leads to greater technical difficulties than encountered in other
comparable many-body methods.

I. INTRODUCTION

Recently functional-integra1 methods have been
applied to the Anderson model for a magnetic im-
purity. ' ' They represent a many-body technique,
originally invented by Stratonovich, and completed
by Hubbard and by Muhlschlegel, which essentially
transforms the grand partition function of a physical
system with a time-independent Hamiltonian con-
taining two-particle interactions into a one-particle
problem in time-dependent external fields, the am-
p1itudes of which have to be averaged over with a
Gaussian weight. One then has three major possi-
bilities to treat the transformed problem. (i) One

approximates the amplitudes of the external fields
as Gaussian fluctuations. (ii) One develops a feel-
ing for the physical behavior of the time-dependent
one-particle prob1em and guesses its Green's func-
tion. ' (iii) One searches for certain frequencies of
the external fields, which play a dominant role. The
latter approach proved to be particularly usefu1 in
the treatment of the superconducting electron gas. "
Here the BCS solution for the free energy fo11ows
from taking into account the zero frequency of the
external field only.

This so-called "static approximation" can also
be successfully applied to the functional-integral
formulation of the Anderson model, as was first
shown by Miihlschlegel. In the static approxima-
tion, one obtains exactly the limits 0= 0 (corres-
ponding to the case where the electrons are allowed
to hop, without restrictions, beyond those imposed
by the Pauli principle, on and off the impurity atom)
and VI,~ = 0 (corresponding to the case where one has
band electrons and an impurity atom without inter-
action). This holds true for the "two-variable" ver-

sion of the functional integral used by Muhlschlegel
and by Hamann as we11 as for the "one-variable
scheme" used by Evenson, Schrieffer, and Wang'
and Schrieffer. In the one-variable scheme, the
static approximation of the grand partition function
can be expressed as an integral over the amp1itude
of a static magnetic field, the integrand being a
Gaussian weight factor and the grand partition func-
tion of a one-body system, representing impurity
electrons in a Hartree-type magnetic field with a
self-energy which accounts for the damping caused
by interaction with the conduction electrons. The
free energy, corresponding to the integrand, allows
for an important physical interpretation of how one
passes from the Pauli. susceptibility regime over to
a. localized magnetic moment. ' It is therefore
tempting to consider the stati, c approximation as a
zeroth-order solution and improve it by adding
Gaussian fluctuations of the nonzero-frequency field
amplitudes. Since this approach proved to contain
mathematical difficulties, ' and was unsuccessfu1
in obtaining exactly the first I V„„ I -power correc-
tions to the Vl»,d = 0 Iimit, we undertook the present
study of comparing the functiona1-integral method
with formally exact diagrammatic perturbation tech-
niques.

The one-variable functional integral is related to
perturbation theory with ——,

' U (n~, n~, ) as-a per-
turbation, while ordinarily ' ' one starts from
Un~, n„,. We therefore show briefly in Sec. III how
the two expansions are related. Section IV contains
a review of the one-variable functional-integral
method applied to the Anderson model, whi1e in Sec.
V the relations between the functional integral and
diagrams are established. We find that the static-
approximation sums the contribution of any diagram
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which results from zero energy transfer by the in-
teractions. (There is a close connection between
our result and the corresponding one for the two-
variable scheme, obtained earlier by Dworin). '

We then redefine the diagrams in such a way that we
have only nonzero energy transfer by the interaction
lines, but an additional self-energy contribution
from the zero-frequency field amplitude in each
propagator. We show that the Gaussian fluctuation
approximation in the functional integral corresponds
to summing the ring diagrams in the new series;
however, these diagrams are unimportant in the
large-U case. The most important class in that
case is seen to be unobtainable from a finite-order
approximation in the nonzero-frequency fluctuations
in the functional integral.

In Sec. VI we exploit the fact that for finite PU
» p2~'V«)3, „»1,(P = I/kT), not only one single fre-
quency (as in the static approximation) but all fre-
quencies up to the order of P I! V) are important.
We start from a renormalized static approximation
and show how one can sum classes of diagrams in
such a way that one obtains agreement with known
low-order perturbation expansions in powers of

P I VI /U and U/P I Vl'. This is a new kind of per-
turbation technique which allows one to treat both
limits of the Anderson model with one approxima-
tion. The Kondo effect (Sec. VII) is seen to result
from a singularity in the particle-hole ladder series
for opposite spin of the particle and the hole.

From our analysis it follows that in the Kondo
regime the above-mentioned possibilities (i) and

(iii) for treating the functional integral are insuffi-
cient. Moreover, the technical difficulties seem
to be greater than in other many-body techniques.

II. BASIC FORMULAS

The Anderson Hamiltonian is particularly con-
venient for studying the behavior of magnetic im-
purities in metals. It is given by

H =Hp+Hv+H

Here Hp describes the host metal in a single-band
approximation and a localized orbital on the impur-
ity atom

Hv=~~ (V«ct, c~, + V«c~, c«).
kfy

(4)

where

H =Hp+H v+H,

Hp =~ E'gfrc g(ye/(y +~ f yfycgfyc(fly&
kc fr

—I I 2H = ——,U(n~, —n~, ) .

(6)

(6)

In deriving (6), we have shifted the d-electron en-

ergy by —,
' U:

1
&sty= &ue+ & U

and have used (n~,)'=n~,
For later purposes we introduce Green's func-

tions":

G„e(r) = —(V'A(»B(0)&,

where

A(» =e"'A e

(10)

represents a Heisenberg operator and 7 is an imag-
inary time. Fourier transforming (10), we have

G„s(r) = (I/P) Q„e '" 'G„e(&u„)

(IIP)Z-„e ""'((AIB)& (12)

Here ~„is given by

~„=(2n+ 1)(v/P), for fermions,
(13)

= 2n(v/P), for bosons,

where n =0, +1, + 2, ~ ~ ~; and the fermion case ap-
plies if A and B obey a fermion-type commutation
relation.

The most important Green's function for the fol-
lowing is given by

If there are two electrons in the localized orbital,
the intra-atomic Coulomb interaction drives them

apart; so we include this effect in
l tH =Un„, n„, =Uc„,c„,c„,c„,.

There is an alternative way to write the Hamiltonian
(1) which will be used in Sec. IV:

P
=~' Cgfr Cg(y C (fr +~ E'gfr Cg(y C y(y~

rr

hy

where

(2) G'uu(» = «ca.(»—cu.(0)&. (14)
Its Fourier transform obeys the exact equation of
motion

E~g~
—Ej» og @By Eg~

—6g og /By

are k- and d-electron energies, respectively, mea-
sured relative to the chemical potential. The mag-
netic field B appearing in the Zeeman terms in (3)
has to be weak in the sense that k is still a good
quantum number.

An electron, originally located at the d orbital,
tends to hop on and off the conduction band. This
effect is accounted for by

[i&@„—e~, -gt, VIV« /(i&a„—e~,)]((c~,
~

ct~, &&

= 1+ U (( cz& czar czar I cz, &) (16)

where o= -o.
It is convenient to introduce the abbreviation

S'(&o„)=+IV„~V&a /(fv~ e«)= S„' (16)

For a broad band and a slowly varying V«, we shall
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repeatedly use the approximation

S'(&o„)= -ArN(0)
~

V"„~
~

sign&„=— i—l' sign&a„, (IV)

where N(0) denotes the density of states near the
Fermi surface.

The thermodynamic properties of the Anderson
model are well known in two limits. Setting H~=—0
in (1), the remaining Hamiltonian can be immedi-
ately diagonalized. We then'obtain for the grand
partition function

Z [H Ht] Tre w(HO+H')

—Z EI + %8gt+ ))egg + ))(6gt+egl+U))+e

(18)

Here we have indicated by the square bracket that
Z is a functional of Ho+ H'. From (18) the static
magnetic susceptibility can be calculated via

lnZ
X=

p ~~a (19)

This gives a Curie-type contribution from the im-
purity in addition to the Pauli susceptibility for the
band electrons. On the other hand, a pure Pauli
susceptibility is obtained if one sets H'= 0 in (1). —

The corresponding grand partition function is given
by

Z[H + H ]= Tre ~'"o'"v)

= Z~„exp[ Q e'"" in(i(o„- ~„—S„')], (20)

or

Z[H]=Z[H, +H, ]exp' . (22)

where 5 is an infinitesimal positive quantity through-
out this paper.

III. DIRECT PERTURBATION EXPANSIONS

Knowing the grand partition function in the above

two limits, one can carry out perturbation expansions
either in H~' or in H'. ' ' The former type of ex-
pansion leads to the Kondo effect in finite-order
perturbation theory, the latter only after infinite
summations have been carried out. The latter, how-

ever, has the advantage that the usual many-body
formalism (Wick's theorem and linked-diagram ex-
pansions) can be immediately applied, and the ex-
pansion can be surveyed easily. That is why dia-
grammatic perturbation technique (in Z' instead
of H') will provide us with a tool to judge certain
approximations in the functional-integral approach
(Sec. IV). So we first have to establish the relation
between the perturbation series in H' and H'.

It is straightforward to write the grand partition
function as

Z[H] = Z[H, + H ] exp C,

In order to obtain the pth-order diagrams for C:
(a) Write down vertically P dashed interaction

lines, each of them between two vertices. Then
connect the vertices in all possible ways by full
directed lines, one entering and one leaving each
vertex. The full lines may form between 2 and

p+ 1 closed loops, subject to the restriction that an
interaction line must connect different loops with

opposite spins (see below).
(b) The full lines carry a frequency ur„and a spin

0, which is the same for all full lines forming a
closed loop. A full line stands for

Go~~(e„)s'""' = [i&o„—&~, —S'(&o„)] 'e'""', (24)

where 6 is positive infinitesimal.
(c) An interaction line connects two vertices be-

longing to two loops with opposite spin. It stands
for —,

'
Uo o.

(d) The single diagram carries an over-all factor
(-l)~P/S, where E denotes the number of closed
loops, and 8 is the symmetry factor of the diagram
(for S see the rules for the diagrams for C).

(e) There is frequency conservation at each
vertex. Sum over all independent frequencies (each
sum with a factor I/P) and over the two spin direc-
tions.

Rules for C

In order to obtain the pth-order diagram for C:
(a) Act according to rule (a); however, disregard

the restrictions mentioned there.
(b) A full line carries a frequency z„and a spin

o, which is the same for all full lines forming a
closed loop. A full line stands for

~Odd = [i(d„-Y&z —S ((d„)] (25)

(c) An interaction line may connect any two ver-
tices. It stands for —,

' Uoo'.
(d) The over-all factor is the same as in (d).

The symmetry factor S of a diagram is obviously
the same as for the diagram in the perturbation ex-
pansions for a gas of electrons interacting via two-
body Coulomb forces, and can be found in the stan-
dard textbooks.

(e) There is frequency conservation at each ver-
tex. Sum over all independent frequencies (each
sum with a factor I/P) and over all spins. Some
of the diagrams are shown in Fig. 1.

Here Z[HO+ Hv] is given by (20), while

Z[HO+ Hy] = Z~d exp[ &~ 8'"&' in(i&@„-e~, —S„') ]
40fl y fy

(23)

C and C stand for an infinite sum of topological dis-
tinct closed connected diagrams, which can be con-
structed according to the following rules.

Rules for g
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(o)

(g)

(b) (c)

1
I

I

X~+g
(h)

(e)
(a)

(c)

A
(b)

FIG. 1. All first-order and some characteristic
second-order diagrams in the H' expansion. FIG. 3. Three pairs of canceling diagrams.

(f ) Compared with the well-known rules for the
interacting electron gas, there are some minor
modifications. Using (25), the diagrammatic part
drawn in Fig. 1(b), for example, contains a frequency
sum, which does not converge. However, specifying
the basic interaction as indicated in Fig. 2, we see
that the ascending line of diagram 1(b) represents
C~«o(&o„)e '"&', while the descending. line of diagram
1(b) as well as the balloon-diagram line in 1(a)and 1(c)
represent Co«(&u„)e'"&3, where 6 is positive infin-
itesimal.

After having established the rules for the two dif-
ferent diagrammatic expansions we turn to com-
paring them. We first observe that C contains many
more topological structures than C, as a result of
having artificially written in TI' a part of the one-
body interaction in terms of a two-body interaction
between electrons of equal spin. Consequently, the
pure many-body part of this interaction between
equal spin electrons, i. e. , the part exceeding the
Hartree-Fock interaction, has to drop out in the
diagrams for V. Consider, e. g. , the diagrams
of Fig. 3. The second diagram in Fig. 3(a) or Fig.
3(b), respectively, contains one closed loop more
or one less than the first diagram. Otherwise their
contribution is the same, so they cancel each other;
similarly, diagram 1(g) and that part of l(h) where
o = o' cancel each other. So we are left with all
diagrams or parts of diagrams, which contain only

Hartree-Fock interactions between equal spins (in
addition to the interaction between opposite spins).
The one-body character of this interaction can be
seen more clearly, if we add the four diagrams
(a)-(d), shown in Fig. 4, obtaining (e). Here the
dot stands for

(U/2P)+Go (o3 )(8 '""+e'""—2e'""')=--,' U .
(26)

Viewed as a self-energy, the dot renormalizes
oooo(& ):

Go„o((g„)[1+3 UGooo(upn) ] = (3&n ~de+ 3 U- S„') '

Such a renormalization can be carried out only in
those diagrams, which contain a genuine many-body
interaction (i. e. , at least one interaction line be-
tween opposite spins), for only there the diagram
without Hartree-Fock inclusions for equal spin
(i.e., the diagram with Go„o lines) and the sa,media-
gram with Go«replaced by Go«contain the same
symmetry factor S. Obviously the sum of all gen-
uine renormalized many-body diagrams is given by
C.

So we are left with all diagrams which contain
nothing but Hartree-Fock interactions between equal
spins. Adding the corresponding contributions from
Figs. 1(a) and 1(b) forthefirst-ordertermsin U, as
well as the higher-order terms, which can be ob-
tained by applying the reduction scheme outlined in
Fig. 4, we get

c', ~c,
= ——~o n n

U

2 der

UZ & Go oo((a) ) ~3 (3 U) Z [&o go((d ) ]

+ 3 (2 U) Q [Goop(&3) ]
+nba

FIG. 2. Basic interaction in the H' expansion. Spe-
cial form of the interaction requires specification of the
relative position of the two operators n«and n«. in the
diagrams. The convention we use is to place the first
operator n«of the interaction always above the second
operator n«. in the vertically drawn interaction line.
The same effect could be produced by assigning an ar-
row to the interaction line.

H P+ g+~+
(a) (c)(b)

= HP
0

(d) (e)

FIG. 4. Reduction of the Hartree-Fock interaction
among equal spins to a one-body interaction.
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(28)

whereupoQ

8'= cc 8~$ &~ 8'""» [1+-,' VG;„(&„)]] (28)

follows. Illsertillg (29) into (22) and using (23), we
obtain the desired expression (21).

Summarizing the above results, we have been
able to Inap the diagrammatic expansion with JI'
as perturbation onto the diagrammatic expansion
with H' as pertux'bation because of the foBowing
illx'88 facts~ which hold fol' tile H expRllsion. (i)
Diagrammatic pRx'ts with R genuine IQRny-body 1D-

teraetion between equal spins cancel each other.
(11) Tile 1'8111Rllllllg HRx'tl'88-Fock-type lllterRct1011
between equal spins ean be used to renormalize the
electron lines in all diagrams which contain inter-
actions between opposite spins. (iii) The diagrams
which contain only Hartree-Fock-type interaction
between equal spins and no interactions between
opposite splns cRQ be suIQmed to give R co11ect1on
factor for the zex'o-order grand partition function.

%'6 conclude Sec. ID by sketching how one can ob-
tain self-consistent approximations for the grand
partition function froIQ the diagrammatic point of
view. '~ For that purpose we define a self-energy
part for the exact Green's function (14) with the aid
of the equation of motion (15):

fI(( c„ct~,-c~p~ c~t,) ) =—Zx~ ((o„)((c„~c~t,) ) . (30)

Expanding G~~ (v„) in terms of diagrams using H'

as a perturbation, Z~ (v„) is given by a set of irre-
ducible diagrams. From these diagrams we pick
up RB skeleton diagrams with k interaction lines
and replace the electron lines, whi. ch stand for
Go~~ (&o„), by G~~ (&u„). Denoting the sum of these
renormalized skeleton diagrams by Z,'~o'(&u„), we
have

Zu~ (~n) =~aZua (~n) (31)

Let ~' be defined by

O'=Z, (1/p) Z„„e'"~Z, (1/2k) Z,'~+'((o„) G~, (&„) .

(32)

Then' Rpplylng AIQbegRokR1 s px'oofy lt cRQ be
shown that the thermodynamic potential 0 can be
expressed as

n -=- (1/P) lnZ [H]

= n'- (1/p) Z e'""[Z„',(~„)G;, (~„)-»G' (~„)]

for 0, if the Dyson relation [following from (15) and
(30)) between G,',((o„) and Z ~~((u„) is kept. '8 rn prin-
ciple, (33) can be used later as a guide for finding
appxopriate approximations in the present problem,
using coIQbined perturbatlon-technical RDd function-
al-integral methods.

whenever the two-body-interaction part of a
HRIQlltoniRQ cRQ be written Rs R square of one-body
operators [as H' in Eq. (8)], the identity" 1

exp (u') = f„exp (-x'+ 2am) dk/4v (34)

can be used to reduce the two-body interaction [s
in (34)] to a one-body interaction with a time-varying
external field, which has to be averaged over with
R Gaussian weight. For that purpose we use the
Hamiltonian in the form (6) with (V) and (8), follow-
ing closely the work in Refs. 1-3. It should be
mentioned that this is not the only way to apply func-
tional-integral methods to the present problem.
Thex'8 Rre othex' possibilities fox' wx'1t1ng the two-
body interaction as a sum of squares of one-body
operators. '3 One of them has been used by
Ha mann.

We feel at present that starting from (6) is the
simplest mathematical way, and the way which per-
mits the easiest physical interpretation of the re-
sults. Furthermore, this way will show some
drawbacks of the functional-integral method most
clearly.

The identity (34) can be applied directly to the
right-hand side of

exp[ —P (H8+H„+H')]

= '1 exP[ —P f8 (Hoq+Hvq+H q)dr] „

since, having introduced a Feynman time ordering,
the operators can be treated as e numbers. %8 ob-
ta1n'9

g [H] = f r) g (v) exp[ —v f, dv5' (7')] T'r &

xexpf- fo dv[pI7g +pH„~ cg {r)Z,cn-~,~]] .

Here h (&) ls the "random" field, corresponding to
x in (34), c is given by c = (CPU)'ix, Rnd the aver-
age has to be taken over all possible random fields
with a, Gaussian weight.

As was shown in Refs. 1-3, the grand partition
function (36) can be further transformed Using the.
Fourier transformation

—(1/P) in Z, ,
The obvious advantage of (33) is that an approxima-
tion for Z~~{u„) defines uniquely an approximation

where v is Rn integex', and expressing n~«via non-
equilibrium Green's-function techniques, one obtains
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Z [H] = Q ln(1+exp{- P [a„,—(oc/P)&oj]) .

x exp & p e» "o ( )»
I
in[1+ («/P) ( Go «] I

»» & ] ~ (38)
&oN

Here Z [Ho +H„] is given by (23). The operator in-
side the brackets in {38)can be represented by its
matrix elements in frequency space

(gc/P)( m~(G,'„~n& =(oc/P) & G;«((o„), (38)

where Go«((d„) is given by (25) and $ is the
(Bl )»)th Fourler component of the random field (3 7).
In (38) the zero frequency can be treated in a special
way. Defining the "static grand partition function"
Via

Then, in the static approximation for Vg„= 0, the
grand partition function

Z[H()+H'] -J dgozs~oe ' o

x (1+e "A'"
o)( I+ e"o -"o)

(1 e o»)(» e o»)() e 8(s(»(+»)()+U)) (48)

is in accord with (18).
The static grand partition function (40) can be cal-

culated quite generally, if we approximate S'((d„) as
in (1V). The corresponding expression is given in
the Appendix. For P I' »1 and in the symmetric
case for zero magnetic field (e„,= 0), we obtain

Z„„„(t) = exp (Q e'~' In[ I+ (oc/P) (o G() „((o„))],
(40)

one can rewrite Z[H] as

Z [H] = Z [Ho+ Hv] d &o e "Zs(a«. (&o)
m(O

2«o -) &&oZ„,«, ($o)- exp — tan
'll' mI' m

x ln 1+

The corresponding free energy

PE(~o) = —ln Z,»,«, (~o)+ w$o

(4V)

(48)
2d („exp —m

Y BXp Z TF)ll(1 —K ) (41)

K' =-«&.-. (1-5-..) (1/P) G„, (42)

The curly bracket in (41) represents the grand par-
tition function of the fluctuations $„(v w 0) around a
fixed Hartree magnetic field c)0. The operator E'
contains the fluctuations as a potential and c&0 as a
self-energy. It can be written as a matrix in fre-
quency space:

shows a continuous change from a Pauli-suscepti-
bility regime to a locally exchange-enhanced Pauli-
susceptibility regime up to a strongly localized-
moment regime, as has been discussed in detail
in Refs. 1-3. (See, e. g. , Fig. 1 of Ref. 1.)
Unfortunately, however, the first corrections, in
I'/U or U/1, respectively, predicted by the static
approximation, are not given correctly, as maybe
seen in Sec. V more easily than by direct calcula-
tion. Therefore the authors of Befs. 1-3 improved
the static approximation by including Gaussian
fluctuations around the Hartree field e)0. For that
purpose they expanded Tr ln(l-K') in (41) as

G„'= [f(d„-e«+(«$o/P) S'(~„)]—'. (43) Z, Tr in{1-K')= ——,
' P, Tr(K')o . (48)

The advantage of representing Z[H ] by (41) was
first recognized by Muhlschlegel, 4 who replaced the

curly bracket by 1 and showed that this static ap-
proximation reproduces (18) in the limit V„-„=O,
and {20) in the limit U=O.

In fact, for U=O, we have Z,««, ($o)=1, all $„
integration give 1, and Z[Ho+H„]reduces to,
Z[Ho+Hv]. The case Vgo=O is a bit more compb-
caged. From (25) and (40) we have, quite generally,

Z [Ho+ Hv] .Z„((»( )=oZB...exp[~

The sum on the right hand s-ide of (44) can be evalu-
ated by contour integral techniques. For Vg„= 0,
we have

Q e'"" In(io)„- e,.+ oc(o/P)

The linear term in K' vanishes because of (42).
The approximation (49) resembles the well-known
random phase approximation, and is called RPA'
in Refs. 1-3. Using the explicit expression (42)
for K', one has

—-', g Tr(K')'=-,' Z (50
a, vf 0

with

o„=-(I/P')Z G:G'..,
The sum (51) is calculated in the Appendix. For
zero magnetic field, P1"» 1 and in the symmetric
case we obtain

Pl'
v( iQ„( +2P I')i 0„ i

I fl„ I( 1 fl, I + 2P I")
(52xln 1+ "Poro" oko 52
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where 0„=2mv .
Obviously the approximation (49) can be viewed

as an expansion in terms of („, the amplitudes of
the random field. However, whether we are allowed
to chop the fluctuations at this Gaussian stage de-
pends strongly on the randomness in time and sPace
of the external field. If we had in addition to the
random time dependence of the field a sPatial ran-
domness, as in the electron gas with Coulomb in-
teractions between the electrons, the above expan-
sion would correspond to a random-phase approxi-
mation for the spatial correlations, and the coeffi-
cients of terms like ) $„) ] )s )

0 with i1 ss v would be
small compared to those of ) $„) . In the present
problem, however, we deal with sjatially localized
interactions. Consequently, the approximation (47)
need not be a good one, unless c is so small that
the higher-order coefficients (-c, etc. ) are negli-
gible. So, from the foregoing interpretation, we

may expect that the RPA' [Eq. (49)] is a good ap-
proximation only for small c in the above sense.
That this is indeed the case follows from the fact
that the RPA' gives the correct coefficient for the
U/I' expansion for the susceptibility. It does not
give the I'/U limit correctly. Moreover, it shows
a mathematical breakdown: Calculating the curly
bra, cket in (41), using (4'7), we obtain

& [lf ] - & [Ifo +ffv] f"„@02'ssa11u (& 0)

x II [1 —(c'/v)y„(&0)] '. (53)
V&0

If c is of the order of PI', a pole occurs in (53),
the position of which depends on v and $0.

In order to avoid this mathematical breakdown of
the RPA', one could think of including quartic fluc-
tuations. ' As we shall see from Sec. V, one can-
not get the correct I'/U limit in this case.

A further possibility is to calculate the coefficient
in front of ) $„) by means of variational methods,
following the ideas of Muhlschlegel and Zittartz,
who applied the functional integral to the Ising mod-
el. An attempt in this direction undertaken by the
present author showed that one can obtain the cor-
rect I'/U limit, but it is likely that one obtains a
mathematical breakdown analogous to the one in
RPA'.

This completes our review of the application of
pure functional-integral methods to the present
problem and shows the need for an understanding
of the above approximations by means of compari-
son with formally exact methods. So we turn to
establish the relation between functional integrals
and perturbation expansions.

V. RELATIONS BETWEEN FUNCTION-INTEGRAL
AND DIAGRAMMATIC PERTURBATION EXPANSIONS

In (38), we expand the exponential function, which

has to be averaged with a Gaussian weight, in a
multiple power series in $„. Defining xs by

xs = —Z e'"s'(1/k)(nl[(oc/P))Gss] In&, (54)
a, n

and abbreviating the Gaussian average by brackets,
we have

Z[a] - + (x,)"»

g [+0++V] S=1 SS =0 i S ( Gauss
(55)

x lg„l' ~ (o'c/p)'G«(&ogG«(01, 1)l (1 I &G ..
nto)boa

I
'&G

)to V

(56)

where it is obvious how g~, ~
has been defined.

With the aid of

f 2d ( e ' ' '
I )„ I

=kl/(2v)", for vu-'0

(57)

f d)oe "0(oo"=I/(2v)s[lx3x5x ~ ~ x(2k —1)j,
the Gaussian average in (56) can be shown to give

(2w) Co —g g[a/ gJ J
+2K (g[a])' (56)

XoV

This result is represented diagrammatically in Fig.
5(b). One can convince oneself easily that the rules (a)
to(e) fromSec. 1Vapply. Rule (7) turns out to be
equivalent to the prescription that one has to sum
over the frequencies which are carried by the inter-

n, cr m, cr'

«„~t„c,~»„
niv, o. m+X,cr'

+ I I

0
(b)

FIG. 5. Two rings in (55), {a) before and (b) after
Gaussian averaging.

If we represent x~ diagrammatically by a ring with
k vertices on it (with obvious rules, if we specify
that a full line represents Gss), a general term in
the series on the rhs of (55) consists of a product
of rings. Now the Gaussian averaging may be per-
formed. As a result, all vertices become pairwise
connected, and we obtain the same set of diagrams
as in an unlinked-diagram expansion for Z with H'

as a perturbation. [Diagrams with an odd number
of vertices in (55) vanish after the averaging. j
Since this result is obvious, at least in principle,
we do not attempt to present a general proof. In-
stead of that, we give a specific example, which
illustrates the averaging process. The diagram in
Fig. 5(a) results from (55) if all i1s for k 0 2 vanish,
but p. ~= 2. Its contribution C5 is given by

C, =-,' ( Z (oc/P)'G;, ((o„) Gss((o„,„)
n, v, a
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action lines after all other frequencies have been
summed over ~

Having outlined the relation between the functional-
integral representation of Z[H] and the diagram-
matic perturbation series in F', we turn to R modi-
fied perturbation expansion, which is particularly
useful for an understanding of the static approxi-
mation and the RPA'. Ne start from expanding
exp[+, Tr ln(1 -E') ] in (41) in a multiple power
series in g„(v4 0), and take the Gaussian average
with respect to all v4 0. We finally obtain

Z[H]=Z[Z, +If,] f dg, Z„„„(~,)e '~ expc . (59)

From the derivation of (59) follows that C can be
constructed from C, if we (i) replace Co«(&o„) in
C by Go«(&„), and (ii) observe the condition that

only nonzero frequencies can be transferred by
the interaction lines. {This follows, of course,
from the form of the interaction in K' [see (42) ].}
Comparing this perturbation expansion with the II '
perturbation series, we arrive at our first result.

Result 1: The static approximation in the func-
tional integral sums those contributions from the
Z' perturbation series which arise from considering
only zero-frequency transfer by the interaction
lines.

This result is fairly obvious, and can be guessed
from similar results obtained in the functional-in-
tegral treatment of the BCS Hamiltonian. ' Vivat
is not quite so obvious is the fact that the remaining
IT' perturbation series contributions, which contain
zero- and nonzero-frequency interactions, can be
summed in such a way that all zero-frequency in-
teractions are represented as a Hartree field in
Go«(u&„). This follows, however, from the physical
interpretation of the static approximation. (See
Sec. IV and Refs. 1-3.)

Before discussing the drawbacks of the static ap-
proximation, we want to gain some insight into the
diagrams contributing to C.

For that purpose we first sum the "ring diagrams"
in Fig. 6. Since R ring dlRgrRm with k lnterRctlon
lines has a symmetry factor 8= 2A, the series is
given by

5(I/2h)Z [(-c'/2vP')Z G„'G„'..j"
a& &40 Cs f!

= -l&»[I -(c'/2v)&~ q'„] .
VPO

Here the definition (51) for p„has been used. In-
serting (60) for C in (59) we arrive at the RPA' ap-
proximation (58). This is our second result.

Result 2: The RPA approximation in the func-
tional integral corresponds to a ring-diagram sum-
mation and the exact treatment of the zero-frequency
transfer in the H perturbation series.

There is, however, no criterion that the ring dia-
grams are the most important diagrams. This may

0" 0 I

l + l + 0 ~ ~

FIG. 6. Hing-diagraH1 approximation for C corre-
sponds to the RPA

' approximation in the functional in-
tegral.

be seen from the other second-order diagrams [in
addition to Fig. 5(b)] which have the same topologi-
cal structure as those drawn in Fig. 1(f) and 1(g).
Denoting the contribution of diagrams 5(b), 1(f), 1(g)
by X„X&, X~, respectively, we have

(61)

(vO e

Xg=- —,'(c'/2w)'[Z Z (y'„)'- Z (I/P')(6„'0„')'
VA0 e ff,V, fy

Z (G„)'(G'„e*""+G„'e'"")+Z (G:)'].
ffg Vga

In calculating these diagrams, we confine ourselves
to the symmetric case, without an external mag-
netic field, and assume Pl"»1.

As a result of the calculations of these sums which
are given in the Appendix, we find: (a) The second
and third expression in the square brackets in (62)
and (62) are negligible compared to the first one.
That means for P&» 1 and PU» 1 we can disregard
the restriction to nonzero frequencies in frequency
summations. (b) For c)0«PI', the contribution Ã&
is negligible compared to X& and X„while for c(z
of the order of c and PI'»ca, X& is the most im-
portant contribution.

The contributions of higher-order diagrams are
much more complicated to write down and to cal-
culate than (61), (62), or (63). Summarizing the
results of the calculations (for the third- and some
of the fourth-order diagrams), we also find that we
can disregard the restriction on nonzero frequen-
cies in frequency summations for PI'» 1 and PU
»1, The diagrams which correspond to X& are giv-
en in Fig. 7. It should be noted that these diagrams
are aff of the same order of mag. nitude for v)~= e
and pZ' »c . (This will become clear in Sec. VI. )
An immediate consequence of the fact that we have
no summation restriction any more in the diagram
for Pl » I and Pt'J»1 follows from the considera-
tions in Sec. III.

Result 3: For Pl » 1 and PU» 1, the diagram
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I + I I
+ - =I +.

0 0 0

FIG. 7. Most important diagrams for c)0= g and PF
«c . (Diagrams which result from the above by per-
muting the two endpoints of an interaction line have been
suppressed. )

—~Og P.BCg~CgqC g~Cg~+Hy, (64)

We have artificially introduced a two-particle inter-
action in an exactly soluble model. Applying func-
tional-integral methods to (64), we find that the
static approximation leads to correct limits B = 0
and H&=0. The RPA approximation, however,
breaks down mathematically. This example illus-
trates clearly that the known approximations in the

contributions which result from a pure many-body
interaction between equal spins are negligible.

The proof from Sec. III holds equally well if
Go gg(&d ) is replaced by G'„in all diagrams. Exam-
ples of canceling diagrams are the contribution
~&X& [(61)]and Xz[(62)], and it is easy to see that in
the RPA result (53) p„should be replaced by —,'y„
and that we cannot avoid the mathematical break-
down.

In Sec. III we saw further that diagrams with Har-
tree- Fock self-energies could be renormalized. In
Sec. VI we shall apply this concept to the present
case. It will be shown that it is crucial to include
the series of Fig. 7 in order to get the correct co-
efficient for I'/U expansions of physical quantities.
We anticipate this result.

Result 4: No finite-order approximation for the
fluctuations in the functional integral can lead to the
correct coefficients in the I'/U expansion of physi-
cal quantities. This result holds true in particular
for the static approximation and the RPA . We also
understand &, hy the static approximation does not
correctly give the first-order coefficient in the U/I'
expansion: In the static approximation diagram 6(a)
is not included. Since it is included in RPA, this
approximation gives the U/1 coefficient correctly.

Reviewing the main outcome of this section, we
wish to emphasize that the application of functional-
integral methods to the Hamiltonian (6) leads into
difficulties, since the possible approximations in
the functional integral sum only a part of the artifi-
cially introduced many-body interaction between
equal spins (see result 4).

We conclude this section with sketching another
simple example of this fact. Writing Ho+H„[from
(2) and (4)] as

Hp+Hy=~ fk+ck&c ffy+~ cgcgfycgz
kty fy

functional integral are insufficient. We therefore
turn to establishing a combined perturbation-tech-
nical and functional-integral approach.

VI. RENORMALIZED APPROXIMATIONS IN FUNCTIONAL
INTEGRAL

In principle, Eq. (59) provides us with a tool to
combine the advantages of the functional-integral
method with perturbation expansions. While ordi-
nary perturbation expansions necessarily are re-
stricted in their validity to one of the two limits of
the Anderson model, the static approximation is
valid in both limits. We can easily improve the
static approximation in approximating C in (59) by
including all diagrams up to a certain power in c /
2v=PU. This approximation, however, is a syste-
matic one only in the small U/I" case. There is no
guarantee that it is valid in the large U/I' case on
which we want to concentrate our effort in this sec-
tion.

We start from the observation that in that case
the integrand in (59) has two sharp maxima near
) (0) =c/2v, provided that expC behaves reasonably
as a function of $p. So we may judge the contribu-
tion of a diagram in the large U/I' case from its
behavior near I(0( =c/2v. For )o-c, we have al-
ready seen that among the second-order diagrams
only the one drawn in Fig. '7 with the contribution
Xz from (63) has to be taken into account. The sec-
ond-order ring-diagram contribution, on the other
hand, is negligible. [One can easily convince one-
self that from the ring-diagram series in (60) only
the first term contributes appreciably for $0-c. ]

The most important diagrams in every order are
given by the series drawn in Fig. V. It was stated
in Sec. V that they all are of the same order of mag-
nitude. Indeed, for the first-order diagram we
have the contribution

——,'(c /2m)(1/P ) Z G'„G'„,„
fy, n, V If:P

= (c'/2v) (-, —[(1/v) arctan (c)0/PI')] —(I/2v)PI'/

(65)

Here we have evaluated the sums over n and v with
the aid of rule (f) of Sec. III and have restricted
ourselves to the symmetric case in zero magnetic
field and JHI'» 1. The general expression can be
written down from the Appendix [Eq. (A3)]. The
last term in the curly bracket results from the v = 0
contribution in the sum, and one can convince one-
self quite easily that it can be neglected if PI'»1,
in particular near the maximum (c)0) =c /(2w),
where the diagram. has a contribution of the order
of PI'/c)0.

The contribution of the kth-order diagram of the
series in Fig. 7 (k —2) is given by
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—I/k(co/2vP )"Z (G'„Z G'„,„)
a, n @00

= —(1/k)(c /2wP )~Z [G'„(a/v) arctan(c$ p/PI')]o

c~ 2PI'
lnZ(y) = const —o lny+4

(71)
e, n

S lnZ(y)
Bp

c~ 8PI"
+

y g 2+ (72)

Here 1/k is the reciprocal symmetry factor of the
diagram, and the prime on the first sum denotes a
principal value. The right-hand side again holds
true for PI'»1, no-magnetic-field, symmetric case.
Near the maximum, the arctan in (66) may be re-
placed by &m, and the remaining n sum is given
by the kth derivative with respect to c$ 0 of the ex-
pression given in (A4). So we obtain for (66) an or-
der of magnitude of Pl/c$p, near the maximum, and
thus there the whole series drawn in Fig. 7 is of
importance.

From (65) and (66) we find for the total contribu-
tion of the diagrams in Fig. 7:

~ - O' C(px P e'""' G'„—a.rctar.'pr

1 c&p 2c l&pI c I(p~=——+ —arctan — arctan
2v 4 m PI' v jr
2cl( I

—21'A I elk, ~I
—IA I)arctan

whereupon

X= XBmd+kT 2
/" B 1

follows, in agreement with, e. g. , Scalapino. '
Consequently, our plan of summing the most

important diagrams near the maxima has led to
the correct result for the susceptibility up to I'/U
in the local-moment limit and (obviously, since
the first-order diagram in U is included) to the
correct result up to U/I' in the Pauli-susceptibility
limit.

We next make use of result 8 of Sec. V for PI'
» 1 and PU» 1. Then in analogy to Sec. III, The

only interaction between equal spins which remains
for PI'» 1 and PU» 1 is represented by the ex-
change contribution of the Hartree-Fock self-energy
in the Green's-function lines. (The direct or Har-
tree term is already included in the static approx-
imation. ) As in (2V), we renormalize the Green's
function G in all genuine many-body diagrams by
this self-energy and obtain

I'

G„' [1—(1/P) G„'(c'/2v) Z. G„', „]-'=-G„'

with

(6V) = (i(u„—eo, + (I/P) [oc$o (c /2v-o)

x arctan(- Pe„+crc(p)/PI'] —S'(~„)}'
(74)

A = (c'/2v') arctan (c& o/PI'). (68)

1+2
s lnZ(y)
Bp

(69)

+here

Z(y)=Z[ITo+Hv] f d(oe '"""Z.«u. (ho) expc.
(70)

Inserting (67) for C, the integrand of (70) near the
maxima $p= c/2oy is approximated by

exp{- oyer'o +c
l 5ol —(2/~) PF (PF/v)-

x in[I+ (c
I &pl

—I& I)'/P&]} .

The saddle-point integration yields

We want to stress that (6V) is a valid expression
only near the maxima. Only there it represents an
improvement over the static approximation, which
may be seen from the fact that we obtain the correct
expression for the susceptibility from approximat-
ing C in (59) by (6V). The susceptibility is given

while the sum of the diagrams which contain noth-
ing but the exchange term of the Hartree-Pock
self-energy as an interaction represents a cor-
rection to the static partition function and has been
calculated in (6V).

Near the maxima of the integrand in (59) o$p
=c/2v, the new Green's function G'„resembles the
Green's function Gp«(&u„) in (24). We have achieved
there the major goal of renormalizing the d-elec-
tron energies to their original value (8) in the
large U limit and have gotten rid of the artificially
introduced many-body interaction.

Our final version of the functional integral in
the one-variable scheme, valid for PI'» 1 and
PU»1, reads

Z[&]=Z[Ifo+ffo]f dhpZ;;«(&o)e "o exp C .(75)

Here Z„«« is the product of Zst«jp(/p) and the
rhs of (67). C is given by topologically the same
set of diagrams as C in Sec. III but without Har-
tree-type self-energy inclusion in the Green's-
function lines, which represent G „, as given in
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FIG. 8. Particle-hole ladder series which leads
to the Kondo effect.

(V4). In Sec. Vti we shall start from (V5) and cal-
culate the first Kondoln(T/D) term for the suscep-
tibility.

VII. KONDO EFFECT

The Schrieffer-Wolff transformation, which
connects the Anderson model with the Kondo model,
first led to the conclusion that the susceptibility of
the Anderson model shows a logarithmic temper-
ature dependence in the (I'/U) coefficient. This
result was later confirmed by Scalapino and in
more detail by Dworin. We shall see later that
in order to find this result, we are not allowed to
approximate S'(e„) from (16) by a constant level
width as in (1V). Consequently, the susceptibility
formula (69) is not valid for the Kondo regime,
and we have to start from the partition function in
an external magnetic field. As a guide for finding
the Kondo term, we can use the fact that for zero
magnetic field there is no anomalous temperature
dependence in the (I'/U)o coefficient. Consequently,
we have to look for a singularity in the diagrams
which vanishes for zero magnetic field. Physical
intuition suggests to expect this singularity in an
infinite series of diagrams and not in a single
diagram. Such a singularity indeed occurs in the
particle-hole-ladder series, drawn in Fig. 8. (The
particle and the hole have opposite spin. ) The
symmetry factor of a kth-order diagram is S = 2k.
Denoting the sum in Fig. 8 by L, we have for
pI'»1, pU»l, and a finite ratio I"/U,

r. = --,' 7 in[I+(c'/2vP')P 0„'.„G„]
a, v n

power in I'/U. [For the first diagram of L we
know this result already from (61) and (As). ] Ex-
panding up to second order, we may discriminate
between contributions coming from expanding
only Green's-function lines carrying the same
spin (i. e. , belonging to the upper or the lower
closed electron line in an I. diagram) and those
coming from two Green's-function lines with
opposite spins. In the former case, we again get
no contribution.

Instead of drawing all the conclusions from dia-
grams, we could have examined the exact expres-
sion for the particle-hole ladder series L while
taking explicitly into account the zero-frequency
summation restrictions. It is given by

where

Uo
———A.c /2v

x=Uo~„[Uo+P'(G.'..&:) '] .

(VV)

(vs)

(v9)

Denoting the particle-hole propagator by P„,

J„=(c'/2vP') Z „G„'.„G„-',

we obtain

(81)

The terms resulting from two Green's-function
lines with opposite spins can either come from ex-
panding (V9) up to second order in I' or from ex-
panding two different & up to first order in I'. The
former contributions, which we denote by L,' ',
come from the particle-hole pair between two sub-
sequent rungs. The latter contributions will be
denoted by L2 ' .

We first concentrate on the calculation of L& '.
In view of the fact that ~»PU»Pl »1, we may
calculate I.,' ' from (V6), which is much simpler
than (Vv). We then have from (V5)

Zi"'-ZIHo] f defoe 'o Z."Ai.(&o)~ rgU=o&i"'

+-,'Z ( 'c/2vp)p G„'„G„.
fyg v

(vs)

with
r/u=o

g ) ~(() (s2)

Approximating C in (V5) by the particle-hole ladder
series L, we look for contributions to the grand
partition function, which come from the (I'/U)' ex-
pansion of L.

We want to emphasize however that (V6) is not

valid for I'/U= 0. As we know from the static
approximation, for I'/U= 0 only the zero frequency-
transfer is important and all C or C diagrams have

to vanish. One can check this easily for an arbi-
trary diagram for L, , taking explicitly into account
the summation restrictions on nonzero frequencies.
It turns out that L vanishes even up to the first

2

=2 po & (G((+( Gn') rgv=o
n

x(pi~" I ) . (88)

For I'/U=O, the renormalized static expression
Z,',«, ($o) has to go over to the static result Z„,«,
((o), since the correction term (6V) holds true only
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near idol = c/2((. In evaluating the integral in (80),
we then can apply the saddle-point integration meth-
od and evaluate I.,' ' near $0 = + c/2((.

Restricting again to the symmetric case, we first
calculate P„lr~v 0. With s = jo/ItoI, we obtain

" roc*0 (0~'12' 2vp', (jap„,„+os c'/4((p+og' p B)(i(d„—o's c'/4((p —og' p B)

c' f(osc'/4vt3+ og' i(B) f ( —cs—c~/4((P-cg' ((B) c' —os
2m' 2m'i v+os ca/2((+2cPg' p B 2(( 2((i v+os c'/2((+2oPg' lL B (84)

Here we have expressed a~, according to (3) and have replaced the Fermi functions by + 1 because of c2/2((

From (84) it follows that

1 1
1

1 i —csea/2(( 1 c cs
(86)I+P„2

~

2(i'i v+os c'/27(+ 2cPg' i(B 2 2i7( 27(i v+ 20Pg' i( B
r/v=o

The behavior of this expression in the limits v 0 and B 0 obviously depends on the order in which these
limits are taken.

We next insert (85) into (82) and calculate (80) by saddle-point integration. We obtain

2
(4) c'/~[B] +sands ~e

2 2 p
i B Pv I(=8 gz~

With P,"~ from (83), (86) becomes

SB g'ff 8&,"'[&]-& ~
e' ~' Z e'~~" -2 U'[os/(2((i v+2opg'i(B)] Z [i(o„,„+o(s-,'U+g' p B)] '

ZP', ff, I

(av)

The c sum in (8V) simply yields a factor of 2. The n sum can be done by contour integration, whereupon the
main contribution to (8V) will come from. the two first-order poles at 2((i v/p —e„- and at &;,. Replacing the
squared denominators by appropriate averages, we then obtain

s'"[B]-z e"" Z s"""'(-I)— ' Z Iv I'Iv I' f"' f'"" (88)
~=~4~ U 2 ((i+v2P gp, B a, a "

2m i v/P —a, + e;
The v sum finally gives cotanh functions of the energy denominators, and after some rearrangement, (88) can
be written

kd i 4 U2 2g~i(B

One easily sees that the rhs of (89) is an even func-
tion of the magnetic field and that the first nonvan-
ishing contribution of the first term shows a log-
arithmic singularity. Using the definition (1V) for
F, we obtain

g(4) (Bi g avoca 64gg'(»B)' K

Here B is of the order of the bandwidth.
Multiplying this expression by ( —1/P), we obtain.

the corresponding correction for the free energy,
from which the susceptibility follows in agreement
with Scalapino. '6

From the above analysis it is clear that the con-
tribution of L~~" does not lead to a Kondo-type sin-
gularity. An explicit calculation, however, is
difficult, for we cannot use (V6) anymore. The
second derivative with respect to c'/2((P' of (Va)
develops an unphysical singularity at I'/U = 0,
since the condition I'/U = finite is hurt. Con-
sequently we have to consider the exact expres-
sion (VV) or we have to examine the diagrams.
It is not difficult to see that in the diagrams a
combination of denominators like in (88) never
occurs, if we look for the (I'/U)' expansion of a
pair of Green's functions of opposite spin, which
do not belong to a particle-hole pair between two
subsequent rungs.
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VIII. CONCLUSION

In Sec.&II we saw the Kondo effect resulting from
a singularity in the particle-hole propagation. We
calculated only in the small I'/U limit, though the
approximation is valid also in the U/'1 limit and
gives the (U/I') coefficients of physical quantities
correctly, as is clear from the foregoing. An ana-
lytical evaluation of the sum (77), however, is im-
possible. Consequently, we cannot answer the ques-
tion how the Kondo effect vanishes for U- I'. Fur-
thermore, it is not clear whether the particle-hole
ladder is important at all in the intermediate region
U- F. It is our feeling from the analysis of this pa-
per that all diagrams are of equal importance in
that region. In order to find a reasonable approx-
imation, one has no reliable guide like perturbation
theory. There the only possibility seems to be to
establish self-consistent approximations using the
results of Sec. III, Eqs. (32) and (33). Technically
this is extremely complicated. It is clear that all
these improvements over the static approximation
cannot be obtained by applying the conventional func-

tional-integral methods of distinguishing certain fre-
quencies or restricting to Gaussian fluctuations.
In addition, we have seen that there is a nontrivial
renormalization problem in the one-variable func-
tional-integral approach, because one starts from
a Hamiltonian, where the d-, electron energy is
shifted.

Altogether, it must be said that the conventional
functional-integral approach to the Anderson model
does not seem to be technically easier than other
many-body methods.
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APPENDIX

Here we calculate several frequency sums which are needed in the main text.
(a) We begin with

OO

n
i~„+iI"signer„2m „

21"
d(d f((d ) 2

d&u [f(pd) +f(- (u)], = — d(u
1 2r 1" I"

4m ~ +I 21tg (d +I 2
(Al)

(A2)

1 1 1 l 1—Z e'" 'G' =Z +
P„„iP~„—PF«+ac)p+iPI'sign&a„ iP&u„+iPI'sign+„2

Here the first step follows from converting the sum in the usual way into an integral with the Fermi func-
tion f(&u), and exploiting the analytic properties of the integrand. In the same way we find

6

P „ i&a„+iI'sign~„2
n

(b) With G„' from (43) and (17), and with the aid of (Al), we have

1 -1 1 1
= —Im + + ~

„» p n+ + (i/22') ( ping +0'c)p) + pI /2v n+ —,
' + pI'/2v 2

Here we were allowed to neglect the exponential factor in front of the square bracket since the corresponding
sum converges. The sum on the non-negative n's is a well-known representation of digamma functions. '
Consequently, we have

(1/p) Z e ""» 0'„=a —2' + (I/v) Imp[ —,
' + p I'/22 + (i/2m) (-pe«+ ace 2)] . (A3)

"n

It is easy to find the following limiting cases of (A3):

' '" ' G„' = a -', + (I/2)arctan [(—p e«+ ac& )/p I'], for p I'» 1
(A4)

= + 2 + 2 tanh[ 2 (- pC 2 + ac) p] for PI'=0 .
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(c) Next we calculate tbe sum occurring in the static partition function (40):
0

Z e'"~'in[I+(«/P)(OG~O„((u„)]=X
~

dy —Z e'"~'in 1+ —toGt„((o„)
Oy fl a J 8y

[Gore(+ )] +&y(0/p

dye' n'G'„(c- y)

= Z' «, Zyp+(I/~)imp[ .'+ P-I /2~+ (f/2v) (- pe,.+eye, )] I
C

I'(2+ PI'/» (f/—»)(P&g. «4—))
I (-', + pi /2~ —{f/2v)pe,.)

The last line follows from the definition of the g function as logarithmic derivative of the I' function (bere
called I' to distinguish it from the quantity I'). The limiting case pl » 1 of (A5) is given in (47) and is in
agreement with Eq. (8) of Ref. l.

(d) We calculate 4)'„from Eq. (51). Since 4)'„ is an even function in v, we may assume p&0. We then split
the n sum into three parts n & 0, 0&g & —p, —p&n & —~. Any of them can be expressed in terms of digamma
functions. Writing for short a = {I/2wf)( —pe~, + «$0), we have

—1 2 1 PI' I PI' I I " 1 Pr
4)„=(2 )3

Re $ 2+2 +0 +)1)
2 +2 +V+0 —

( )2 p /
$ —v+2 +0-~

1 PI" 1 Pl" 1 Pl'
r)("-- — -~ — —- -~ --—-}2 2m 2 27 2 2w

For pI'=0 we have 4)„' =0, and for pI'»1 we obtain Eq. (52).
(e) The sum (61), which we want to calculate next, can only be estimated. We have for pI'»1, &„,=0

from (61) and (52)

Using the inequality (for o.'x &0) nx/(I+ nx) ( in{1+ox) ( o.x, we obtain

e PI" . . . , , n„n„+2PI'

( ( PI' c 1 ~ PI' Q„(A„+2PI')

All sums can be represented by digamma functions, which subsequently are replaced by their asymptotic
series ~ t}It e finally obtain

arc an ~ 3~p 2 p y 2 g~3 p 3 4 g Rx'c an

For e)0«PI", the inequality reads

and X& is of the order of c /pI' for c(0«pl".
For c(0» PI', the inequality reads

/c2 2 {PF)8 1 /
8 2 PRFR

tel, I' «'
and X~ is of the order of {PI/$0) near c-$0 and

c)0» pl'.
(f) The calculation of X~ from {62)is quite easy.

Since the first term Dn the rhs of {62) is —pXy, the
same estimates as in {AV) hold. The second and
the third term on the rhs of {62) can be easily ob-
tained by differentiation from (A4). Finally we
obtain

Pl
2 2 '(P'I c $

PI'
)2w)8')' ~ 'L')' +)))))' c')' J'
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and it ls clear that the curly hracket ln (AB) ls one order of magnitude smaller than the ]eading terms
provided that pI" » l. Using (A4), the calculation of X& in (63) leads to

Here we have already dropped a third term, which is half the second term in the curly hracket in, (Aa).
For c $0 «p I', Xz is of the order of c ' (c $0)2/(p &)' and much smaller than Xz is of the order c2p I j] 20

and much larger than the other diagrams.
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As part of a study of spin-wave relaxation, spin-wave ljnewidths have been measuxed in

EuS. EuS is a good candidate for this study because of its high saturation magnetization, 47t'M

= 14000 G at T = O'K and small exchange energy which is reflected in its Cuxie temperature,

T& =16 K. The linewidths due to three-spin-wave dipole-dipole interactions are large ranging

up to 100 Oe. The theory of three-spin-wave relaxation processes explains the linewidths ob-
served both in relation to different spin waves at a fixed texnperature and temperature depen-

dence for a given spin wave over the range measured, i.e. , 2-6 K.

I. INTRODUCTION

Materials which have a high magnetization offer
a new area for the study of spin-wave relaxation
effects. Since the magnetic dipole-dipole interac-

tion in these materials is strong, me expect that
x elaxation processes associated arith this interac-
tion grill contribute significantly. EuS which has a
saturation magnetization of 14000 6 at T =O'K is a
good cand1date for this study. In this compound,


