D.C., 1964).

(1970).

lished).

(1969).

391 (1969).

536 (1968).

21, 904 (1968).

(1969).

D. R. Hamann (Ref. 8).

²³Handbook of Mathematical Functions, edited by M.

²⁴P. E. Bloomfield (unpublished); J. Zittartz and E.

²⁵Preliminary version of our calculations was pre-

²⁶This is a simple generalization of the formula of

²⁷S. D. Silverstein and C. B. Duke, Phys. Rev.

Letters 18, 695 (1967); Phys. Rev. 161, 462 (1967).

²⁸H. Ishii, Progr. Theoret. Phys. (Kyoto) <u>43</u>, 578

^{\$1}A. Narath, K. Brog, and W. Jones, Jr. (unpub-

³³A. Narath and A. C. Gossard, Phys. Rev. 183,

³²C. Stassis and C. G. Shull, J. Appl. Phys. <u>41</u>, 1146

³⁴M. D. Daybell and W. A. Steyert, Phys. Rev. <u>167</u>,

³⁵Y. Osaka, Progr. Theoret. Phys. (Kyoto) <u>42</u>, 734

³⁷C. S. Shastry and B. N. Ganguly, Phys. Letters 29A, 433 (1969). ³⁸D. C. Golibersuch, Ph.D. thesis, University of

Pennsylvania, 1969 (unpublished); D. C. Golibersuch

³⁹O. J. Lumpkin, Phys. Rev. <u>164</u>, 324 (1967). ⁴⁰N. Rivier and M. J. Zuckerman, Phys. Rev. Letters

⁴¹H. Rohrer, Phys. Rev. <u>174</u>, 583 (1968).

³⁶J. Zittartz, Z. Physik 217, 43 (1968).

and A. Heeger (unpublished).

Abramowitz and I. A. Stegun (U. S. GPO, Washington,

Müller-Hartmann, Z. Physik 212, 380 (1968).

sented in J. Appl. Phys. 40, 1101 (1969).

²⁹R. More (private communication). ³⁰J. Zittartz, Z. Physik <u>217</u>, 155 (1968).

40, 380 (1968).

- ⁶M. S. Fullenbaum and D. S. Falk, Phys. Rev. <u>178</u>, 763 (1969).
- ⁷J. Appelbaum and J. Kondo, Phys. Rev. Letters 18, 485 (1967); Phys. Rev. 170, 542 (1968).
 - ⁸D. R. Hamann, Phys. Rev. 158, 570 (1967).
 - ⁹P. E. Bloomfield and D. R. Hamann, Phys. Rev.
- $\frac{164}{10}$ A. J. Heeger, L. B. Welsh, M. A. Jensen, and B.
- Gladstone, Phys. Rev. 172, 302 (1968); A. Narath, A. C. Gossard, and J. H. Wernick, Phys. Rev. Letters 20, 198 (1968).
- ¹¹D. C. Golibersuch and A. J. Heeger, Phys. Rev.
- $\frac{182}{1^{2}}$ 584 (1969). $\frac{1}{1^{2}}$ M. S. Fullenbaum and D. S. Falk, Phys. Rev. <u>157</u>, 452 (1967).
- ¹³M. A. Ruderman and C. Kittel, Phys. Rev. <u>96</u>, 99 (1954); K. Yosida, ibid. 106, 893 (1957).
- ¹⁴H. V. Everts and B. N. Ganguly, Phys. Rev. <u>174</u>, 594 (1968).
- ¹⁵M. T. Beal-Monod and R.A. Weiner, Phys. Rev. <u>170, 552 (1968).</u> ¹⁶P. Monod, Phys. Rev. Letters <u>19</u>, 1113 (1967).

¹⁷R. More and H. Suhl, Phys. Rev. Letters <u>20</u>, 500 (1968); R. More, Ph.D. thesis, San Diego, 1968

(unpublished).

¹⁸A. P. Klein, Phys. Rev. <u>172</u>, 520 (1968); <u>181</u>, 579 (1969).

¹⁹F. Takano and T. Ogawa, Progr. Theoret. Phys. (Kyoto) <u>35</u>, 343 (1966).

²⁰P. E. Bloomfield and P. R. Sievert, Phys. Letters 29A, 447 (1969). ²¹R. Kubo, J. Phys. Soc. Japan <u>17</u>, 1100 (1962).

 $^{22}(-1)^{p}(p-1)!$, where p is the number of factors appearing in the factored term. In Eq. (6) p = 2 for all the terms, excepting the one in Eq. (6d) where p=3.

PHYSICAL REVIEW B

VOLUME 2, NUMBER 9

1 NOVEMBER 1970

Static Correlation Function in Dilute Alloys*

B. N. Ganguly

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

and

C. S. Shastry

Department of Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (Received 2 March 1970)

The nonperturbative expression for the static correlation function, $\langle \vec{S}^{el}(r) \cdot \vec{S}^{imp} \rangle$, formulated in an earlier publication, is computed numerically. Our calculation shows that for large distances $(k_F^{-1} < r < D/T_K)$ the static correlation function damps down much faster than $1/r^2$. This is in disagreement with the large-distance $- |a| [(\sin k_F r)/k_F r]^2$ behavior predicted by some recent calculations.

I. INTRODUCTION

The static correlation function (henceforth referred to as SCF) in dilute magnetic alloys has been subjected to extensive theoretical investigation in the last few years.¹⁻⁶ The SCF is of considerable physical importance, as a spatial average of this

function describes the impurity contribution to the magnetic susceptibility in dilute alloys. In a recent publication. Fullenbaum and Falk³ have examined the SCF on the basis of Nagaoka's theory⁷ as well as the singlet-state theories due to Heeger and Jensen⁸ and Applebaum and Kondo.⁹ They found that for low temperatures the dominant behavior of

the SCF is given by $-|a| [(\sin k_F r)/k_F r]^2$ at large distances $(k_F r \gg 1)$. Here k_F is the Fermi momentum and a is a constant. On the contrary, by iterating Nagaoka's decoupled Green's function we have found, apart from some oscillatory terms involving Si and Ci functions, a nonoscillatory (- const J^2/γ^3) term in the second-order expression for the SCF. This nonoscillatory term was shown to be responsible for the well-known Kondo-type $\log(\epsilon_F/T)$ singularity in the susceptibility.^{10,11} More recently, Keiter¹² has investigated this correlation function using a graphical perturbation technique. Keiter's leading two terms are in complete agreement with our perturbational calculation. The very-long-range $[(\sin k_F r)/k_F r)]^2$ contribution to the SCF was also not found by Keiter.

One of the authors has derived a nonperturbational expression for the SCF based on Nagaoka's theory which is valid at all temperatures.² It was also demonstrated that in the high-temperature limit the nonperturbational expression for the SCF reproduces the perturbational results.^{1,12} Unfortunately, the nonperturbational expression involves certain integrals containing t matrices which, to the authors' knowledge, are not possible to carry out analytically. The existing controversial theoretical results for the SCF, particularly at large distances, prompted us to carry out a detailed numerical calculation of the spatial behavior of the SCF in the nonperturbative regime $(T < T_K)$ and to compare the results with different existing calculations. The paper is organized in the following way: In Sec. II we give a brief derivation of the nonperturbational expression for the SCF based on the Bloomfield-Hamann¹³ solution for the Nagaoka equations. In Sec. III we give the results of our numerical analysis of the SCF and compare them with different calculations.

II. NONPERTURBATIONAL FORMALISM OF STATIC CORRELATION

Based on Nagaoka's theory, the SCF $\langle \mathbf{\tilde{S}^{el}}(r) \cdot \mathbf{\tilde{S}^{imp}} \rangle$ can be expressed as⁷

$$\langle \mathbf{\tilde{S}^{e1}}(\mathbf{r}) \circ \mathbf{\tilde{S}^{imp}} \rangle = \frac{2}{3} \sum_{\mathbf{\vec{k}} \ \mathbf{\vec{k}'}} \int_{-\infty}^{+\infty} d\omega f \ (\omega) \left[-2 \ \mathrm{Im} \Gamma_{\mathbf{\vec{k}}\mathbf{\vec{k}}}, \ (\omega) \right] \\ \times e^{i(\mathbf{\vec{k}} - \mathbf{\vec{k}}) \cdot \mathbf{\vec{r}}}, \tag{1}$$

where

[

$$\Gamma_{\vec{k}\vec{k}'}(\omega) = \langle C_{\vec{k}'}, S_{\vec{z}} + C_{\vec{k}'}, S_{\vec{z}} | C_{\vec{k}} \rangle.$$
⁽²⁾

Our notation is the same as that of Nagaoka. After performing the ω integration in (1), the SCF can be expressed in terms of two basic functions, $G_A(\omega)$ and $\phi_A^1(\omega)$, as²

$$\begin{split} \langle \mathbf{\tilde{S}^{e1}}(\mathbf{\gamma}) \cdot \mathbf{\tilde{S}^{imp}} \rangle &= -\frac{4}{3} \sum_{\mathbf{\tilde{k}}, \mathbf{\tilde{k}'}} e^{i \left(\mathbf{\tilde{k}} - \mathbf{\tilde{k}'} \right) \cdot \mathbf{\tilde{r}}} \left[2\pi (\epsilon_k - \epsilon_{k'}) \right]^{-1} \left\{ (1/\pi \rho \gamma) \operatorname{Re} \left[JG_A(\epsilon_k) - \phi_A^1(\epsilon_k) - JG_A(\epsilon_{k'}) + \phi_A^1(\epsilon_{k'}) \right] \right. \\ &+ \left(J\pi/2N \right) \left[m_{\mathbf{\tilde{k}'}} - S(S+1) \right] \left[f(\epsilon_{k'}) - f(\epsilon_k) \right] + \left(J/4N\gamma \right) \left[m_{k'} - S(S+1) \right] \\ &\times \operatorname{Im} \left[JG_A(\epsilon_k) - \phi_A^1(\epsilon_k) - JG_A(\epsilon_{k'}) + \phi_A^1(\epsilon_{k'}) \right] \right], \end{split}$$

where

$$n_{k}(\omega) = \frac{1}{2} [f(\omega) + \frac{1}{2}] + (2\pi\gamma)^{-1} \operatorname{Im} \phi_{A}^{1}(\omega), \qquad (4)$$

$$m_k(\omega) = (2/\pi^2 \gamma^2) \operatorname{Re}[JG_A(\omega) - \phi_A^1(\omega)], \qquad (5)$$

$$JG_{A}(\omega) = \gamma \left[\frac{1}{2} \ln \frac{(\omega + D) (\omega - D)}{(2\pi i T)^{2}} - \psi \left(\frac{1}{2} + \frac{\omega}{2\pi i T} \right) \right]^{*},$$

$$(6)$$

$$\phi_{A}^{1}(\omega) = - \left\{ 1 + \delta + \gamma \left[X_{R}^{2}(\omega) + S(S+1)\pi^{2} \right]^{1/2} e^{-i\eta} \right\}^{*}.$$

$$(7)$$

In writing Eqs. (6) and (7) we have made use of the Bloomfield-Hamann solution for the Nagaoka theory. $\psi(\omega)$ is the digamma function and the expressions for $X_{\mathcal{R}}(\omega)$ and $e^{-i\eta}$ can be found in Ref. 13. The non-perturbational expression for the SCF given by Eq. (3) is derived using the singular, nonlinear integral-equation representation of Nagaoka's decoupled Green's-function equations. It is to be noted that the above expression for the SCF does not depend on a specific solution of the integral equation.

III. NUMERICAL RESULTS AND DISCUSSION

We now proceed to compute Eq. (3) using Eqs. (4)-(7). In the calculation of the digamma function we have made use of the asymptotic expression

$$\psi(Z) \sim \ln z - \frac{1}{2Z} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2nZ^{2n}}$$
, (8)

where the B_n 's are the Bernoulli numbers. In carrying out the k summations we have taken a Lorentzian density of states for the conduction band of width $4 \times 10^4 \,^{\circ}$ K; the Kondo temperature $T_K = 18 \,^{\circ}$ K; the coupling constant $\gamma = -0.13533$; the magnitude of the impurity spin $S = \frac{1}{2}$; and the Fermi momentum $k_F \simeq 1.57 \times 10^8$ cm. To ensure the accuracy of our calculation we have divided the k summation regions into many parts with appropriate intervals. The calculation of the function $G_A(\omega)$ given by Eq. (6) is straightforward. The calculation of the function $\phi_A^1(\omega)$ is somewhat complicated, as it involves the

(3)

FIG. 1. The ω dependence of $\operatorname{Im} \phi_A^1(\omega)$ and $\operatorname{Re} \phi_A^1(\omega)$.

phase factor $e^{-i\eta}$. The results of our calculation for $\operatorname{Im} \phi_A^1(\omega)$ and $\operatorname{Re} \phi_A^1(\omega)$ are plotted against ω for $T \gtrless T_K$ in Fig. 1. The double-peaked characteristic of $\operatorname{Im} \phi_A^1(\omega)$ is absent for $T \gtrsim T_K$. For low temperature $\phi_A^1(\omega)$ has a sharp peak near the origin. For $T \gg T_K$, $\phi_A^1(\omega)$ is practically structureless. The structure of $\phi_A^1(\omega)$ is confined within a very narrow energy region (~ 200 °K). Once $G_A(\omega)$ and $\phi_A^1(\omega)$ functions are computed, the calculations of $n_k(\omega)$ and $m_k(\omega)$ are trivial. Finally, we calculate the SCF [referred to in the figure as $\overline{p}(r)$] given by Eq. (3) for different distances from the impurity. The spatial dependence of the SCF for temperature T = 5 °K is shown in Fig. 2. In order to compare our results with those of Fullenbaum and Falk³ and others, 4,6 we have plotted the function $- |a| [(sink_F r)/$ $k_F r$ ² normalized to our value at $k_F r \simeq 8.5$. It is evident from our calculation that the static correla-

*Research sponsored in part by the U. S. Atomic Energy Commission under contract with Union Carbide Corporation.

¹H. U. Everts and B. N. Ganguly, Phys. Rev. <u>174</u>, 594 (1968).

- ²B. N. Ganguly, Phys. Rev. <u>177</u>, 720 (1969).
- ³M. S. Fullenbaum and D. S. Falk, Phys. Rev. <u>178</u>, 763 (1969).
- ⁴S. M. Bose, T. Tanaka, and J. Halow, Phys. Rev. <u>180</u>, 537 (1969).
 - ⁵E. Müller-Hartman, Z. Physik 223, 277 (1969).
 - ⁶T. Gavan and B. G. S. Doman, Phys. Letters 29A,

FIG. 2. Spatial dependence of the static correlation function $\overline{p}(r)$ for T=5 °K. The solid curve is given by the present calculation and the dotted curve is a $-[(\sin k_F r)/k_F r]^2$ plot normalized to the present value at $k_F r \simeq 8.5$.

tion function is an oscillatory function with respect to distance from the impurity, having a very large amplitude in one half-side compared with the other half. However, near the impurity, $\overline{p}(r)$ has a small but finite amplitude on the positive side. Our calculation shows that for large distances, $\overline{p}(r)$ damps down much faster than $1/r^2$. Therefore, we conclude that the *very*-long-range $-[(\sin k_F r)/k_F r]^2$ behavior of the SCF in dilute magnetic alloys for distances $k_F^{-1} < r < D/T_K$ predicted by Fullenbaum and Falk³ and others⁴⁻⁶ is in direct disagreement with our numerical calculation for the nonperturbational expression for the SCF as well as with systematic perturbational calculations.^{1,2}

623 (1969).

- ⁷Y. Nagaoka, Phys. Rev. <u>138</u>, A1112 (1965).
- ⁸A. J. Heeger and M. A. Jensen, Phys. Rev. Letters <u>18</u>, 488 (1967).
- ⁹J. Appelbaum and J. Kondo, Phys. Rev. Letters <u>19</u>, 906 (1967); Phys. Rev. <u>170</u>, 542 (1968).

¹⁰D. J. Scalapino, Phys. Rev. Letters <u>16</u>, 937 (1966).
 ¹¹D. R. Hamann, Phys. Rev. Letters <u>17</u>, 145 (1966).
 ¹²H. Keiter, Z. Physik <u>223</u>, 289 (1969).

¹³P. E. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856 (1967).