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The nonperturbative expression for the static correlation function, (S' (r) ' S ~), formulated
in an earlier publication, is computed nuxnerically. Our calculation shows that for large dis-
tances (k~~ &r &D/Tz) the static correlation function damps down much faster than 1/r2. This
is in disagreement with the large-distance —

I a I [(sink&r)/k~] behavior predicted by some
recent calculations.

I. INIRODUCIION

The static correlation function (henceforth refer-
red to as SCF) in dilute magnetic alloys has been
subjected to extensive theoretical investigation in
the last few years. The SCF is of considerable
physical importance, as a spatial average of this

function describes the impurity contribution to the
magnetic susceptibility in dilute alloys. In a re-
cent publication, Fullenbaum and Falk' have ex»
amined the SCF on the basis of Nagaoka's theory~
as well as the singlet-state theories due to Heeger
and Jensen and Applebaum and Kondo. They found
that for low temperatures the dominant behavior of
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the SCF is given by —
~ a~ [(si nkzr)/k rx] 2at large

distances (kzx»1). Here kz is the Fermi momen-
tum and a is a constant. On the contrary, by iter-
ating Nagaoka's decoupled Green's function we have
found, apart from some oscillatory terms involving
Si and Ci functions, a nonoscillatory ( —const Z /2)
term in the second-order expression for the SCF.
This nonoscillatory term was shown to be responsi-
ble for the well-known Kondo-type Iog(ez/T) singu-
larity in the susceptibility. ' ' ' More recently,
Keiter has investigated this correlation function
using a graphical perturbation technique. Keiter's
leading two terms are in complete agreement with
our perturbational calculation. The very-long-range
[(sinkage)/kzr) ] contribution to the SCF was also not
found by Keiter.

One of the authors has derived a nonperturba-
tional expression for the SCF based oh Nagaoka's
theory which is valid at all temperatures. It was
also demonstrated that in the high-temperature lim-
it the nonperturbational expression for the SCF re-
produces the perturbational results. ' Unfortu-
nately, the nonperturbational expression involves
certain integrals containing t matrices which, to the
authors' knowledge, are not possible to carry out

analytically. The existing controversial theoretical
results for the SCF, particularly at large distances,

II. NONPERIURBAIIONAL FORMALIS OF STA"IIC CORRELATION

Based on Nagaoka's theory, the SCF (5"(r) S™)
can be expressed as

[&S"(~) S™)=3 Z f'„"d&uf (&u) [-2 Iml'ff. (ur)]
k k

where

~ e""-""

r«, (~) = &c,.,s, + c,. ,s
~
c„,). (2)

Our notation is the same as that of Nagaoka. After
performing the e integration in (1), the SCF can be
expressed in terms of two basic functions, G„(~)
and y„' ((o), as'

prompted us to carry out a detailed numerical cal-
culation of the spatial behavior of the SCF in the
nonperturbative regime (T & Tr) and to compare the
results with different existing calculations. The
paper is organized in the following way: In Sec. II
we give a brief derivation of the nonperturbational
expression for the SCF based on the Bloomfield-
Hamann'3 solution for the Nagaoka equations. In
Sec. III we give the results of our numerical analy-
sis of the SCF and compare them with different cal-
culations.

(S"(x)~ S™)=—f p e"""' '[2m(e, —e,.)] ((I/spy)Re [JG„(e„)—g„(e„)—&G„(e,.)+&f&~(e„)]
x Tp!

+ (Jm/2N)[mp. —S(S+ 1)] [f(c~.) —f(c~)]+ (J/4Ny)[m„. —S(S+ 1)]

x 1m[kG„(e„)—p„'(e~) —JG„(e,, ) + 0„'(e,, )] j (3)

where

n, (&o) = —,
'
[f((o)+ —,']+ (2vy)

' Im(f)„'((o),

m((o) = (2/w y ) Re[kG&(ur) —y„'((o)],

(4)

(6)

1 (v+ D) (ur —D) 1""'"'=' 2'" (2. T) ~ 2 '2. T
(6)

P~(&a) = -(I+6+y [X&(&o)+S(S+ 1)va]'~2 e '"]
(7)

In writing Eqs. (6) and (7) we have made use of the
Bloomfield-Hamann solution for the Nagaoka theory.
P(&o) is the digamma function and the expressions
for X„(&u) and e '" can be found in Ref. 13. The non-
perturbational expression for the SCF given by Eq.
(3) is derived using the singular, nonlinear integral-
equation representation of Nagaoka's decoupled
Green's-function equations. It is to be noted that
the above expression for the SCF does not depend on

a specific solution of the integral equation.

IH. Nt.JMEICCAL RESULTS AND DISCUSSIGN

We now proceed to compute Eq. (3) using Eqs.
(4)-(7). In the calculation of the digamma function

we have made use of the asymptotic expression

g(Z) - Inz — — —g "2„ (8)

where the B„'s are the Bernoulli numbers. In car-
rying out the k summations we have taken a Lorent-
zian density of states for the conduction band of
width 4X10 K; the Kondo temperature T~=18 K;
the coupling constant y= —0. 13533; the magnitude of
the impurity spin S= —,'; and the Fermi momentum k&
= 1.57 &&10 cm. To ensure the accuracy of our cal-
culation we have divided the % summation regions
into many parts with appropriate intervals. The
calculation of the function G„(&o) given by Eq. (6) is
straightforward. The calculation of the function
p„'(&u) is somewhat complicated, as it involves the
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FIG. 1. The ~ dependence of ImfII)z(~) and Repz (~).

phase factor e '". The results of our calculation
for Imp„(&o) and Ref„(&u) are plotted against &~ for
T && T~ in Fig. 1. The double-peaked characteristic
of Img„'(up) is absent for T) T». For low tempera-
ture Qz(ur) has a sharp peak near the origin. For
T» T„, Q„'(~) is practically structureless. The
structure of &f&z(&o) is confined within a very narrow
energy region (-200'K). Once G„(v) and Qz(&u)

functions are computed, the calculations of n„(e)
and m„(&u) are trivial. Finally, we calculate the
SCF [referred to in the figure as P(r)] given by Eq.
(3) for different distances from the impurity. The
spatial dependence of the SCF for temperature
T=5'K is shown in Fig. 2. In order to compare
our results with those of Fullenbaum and Falk~ and

others, ' we have plotted the function —
I a I [(sink„r)/

k~r] normalized to our value at k~r= 8. 5. It is
evident from our calculation that the static correla-

FIG. 2. Spatial dependence of the static correlation
function p{r) for T = 5 K. The solid curve is given by the
present calculation and the dotted curve is a —f(sink~)/
kyar]2 plot normalized to the present value at k~r = 8.5.

tion function is an oscillatory function with respect
to distance from the impurity, having a very large
amplitude in one half-side compared with the other
half. However, near the impurity, P(r) has a small
but finite amplitude on the positive side. Our calcu-
lation shows that for large distances, P(r) damps
down much faster than I/r . Therefore, we con-
clude that the very-long-range -[(sink»r)/k»r] be-
havior of the SCF in dilute magnetic alloys for dis-
tances k»' & r& D/T» predicted by Fullenbaum and
Falk and others is in direct disagreement with
our numerical calculation for the nonperturbational
expression for the SCF as well as with systematic
perturbational calculations. '
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