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The effects of arbitrary external magnetic fields on the electronic properties of dilute mag-
netic alloys are calculated. Two-time thermodynamic Green's-function equations of motion
are applied to the s-d exchange model. We generalize Nagaoka's truncation procedure to fi-
nite field, conserving total angular momentum, and solve the resulting integral equations using
the analytic properties of the Green's functions and a numerical procedure. We calculate the
magnetoresistance, magnetization, and the spatial dependence of the conduction-electron spin
polarization. The calculations have been performed using values of the model parameters
corresponding to a Kondo temperature 16'K and a CuFe alloy system with an impurity spin
of 2 and with equal conduction- and impurity-electron g factors. Our results show a negative
magnetoresistance qualitatively in agreement with experiment, but with the field effects some-
what overemphasized. It is found that there is no sizable contribution of the conduction elec-
trons to the susceptibility, which is in agreement with the latest experimental results. Also,
the apparent disappearance of the local moment with decreasing temperature is due to an in-
crease in the spin correlation between conduction and impurity electrons, and not due to a
spin-compensating electronic cloud forming about the impurity spin. For high temperatures
and fields, significant effects of the exchange scattering still persist. There is a nonoscil-
lating component in the conduction-electron spin polarization which damps out in what amounts
to 10 lattice spacings for Cu. This is also in agreement with experiment in that no long-range
nonoscillatory component has been detected by host NMR studies.

I. INTRODUCTION

Kondo explained the anomalous rise of the low-
temperature resistivity of dilute magnetic alloys
by calculating in the second Born approximation
the correlations which account for the internal
degree of freedom of a magnetic impurity scat-
tering center. He used what is called the s-d
model which consists of an impurity spin embedded
in a Fermi sea of conduction electrons and inter-
acting via the contact-exchange interaction. The
second Born approximation yields a logarithmic
divergence of the resistivity as the temperature
goes to zero which is related to the sharpness of
the Fermi surface of the host metal. This non-
physical divergence has been removed by a variety
of techniques, one of which, that of Nagaoka, is
of particular interest. Nagaoka solved a truncated
set of two-time thermodynamic Green' s-function
equations whose solution did not contain the di-
vergence but indicated the onset of spin compensa-
tion of the impurity spin due to conduction-electron
spins condensing around it. Experimentally,
there is an apparent decrease of the local moment
as the temperature decreases and this has been
interpreted as due to spin compensation. Accom-
panying the spin compensation, Nagaoka found that
a correlation function related to the spatial extent

of the conduction-electron disturbance around the
impurity spin contained a negative term of the form
[sin2k„r/r], where k~ is the Fermi momentum
and x is the distance from the impurity site. The
indication of a spin-compensated state and the ac-
companying spin disturbance has stimulated various
theories of the ground state and calculations of the
spin correlations about the impurity. Fullenbaum
and Falk have calculated and compared various
spin-correlation functions using the variational
calculation of Appelbaum and Kondo, Nagaoka's
original formulation, and the exact solution of
Hamann's formulation of Nagaoka's theory by
Bloomfield and Hamann. All of these calculations
show a long-range negative definite component in
the spatial dependence of these correlation func-
tions of the form first found by Nagaoka. 3 Such a
disturbance should be seen in the Knight shift of
the host metal, and various attempts have been
made to interpret experimental data in this fash-
ion. The conduction-electron-local-moment
correlation functions calculated, (s(r) S), have
not included an external magnetic field. They
are nonzero even in the absence of a field, whereas
the true spin polarization, i. e. , the number of
electrons with spin up minus the number with spin
down as a function of z, is nonzero only in an ex-
ternal magnetic field.
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A calculation of the spin polarization and magnetic
susceptibility in a finite external magnetic field
has been done by Heeger et al. ,

' based on the
Appelbaum-Kondo~ variational calculation. NMR
and susceptibility measurements in CuFe were
also interpreted in these terms by Heeger et al. '
and Golibersuch and Heeger. " At high tempera-
tures (i. e. , greater than T», the Kondo tempera-
ture) and low field, a calculation of the polariza-
tion was done by Fullenbaum and Falk' in which
they find a modification of the RKKY polarization 3

at large ~. Another perturbation-type calculation
was done by Everts and Ganguly' who found a re-
sult in conflict with Fullenbaum and Falk. ' There
has been a perturbation calculation of the magneto-
resistance by Beal-Monod and Weiner' which
gives a negative magnetoresistance in good agree-
ment with experiment. ' Also, an S-matrix theory
of the magnetoresistance for arbitrary magnetic
fields was formulated by More and Suhl" with
qualitative agreement with experiment. A non-
perturbative approach to calculating the suscepti-
bility and true spin polarization in finite magnetic
fields was used by Klein. His calculation used
two-time thermodynamic Green's function and
the truncation scheme of Takano and Ogawa' in
which the impurity spin operator is broken up into
Fermion operators for purposes of truncation.
This is in contrast with Nagaoka's3 truncation
scheme where they are left intact and total angular
momentum is conserved in all thermal averages.

It is our purpose in this paper to calculate the
properties of the s-d model in arbitrary external
magnetic fields by using two-time thermodynamic
Green's functions and to generalize the Nagaoka
truncation procedure which conserves total angular
momentum. We shall calculate the magnetoresis-
tance, magnetization, and spin polarization, all
in a consistent fashion. We shall compare our re-
sults with experiment and with the other calcula-
tions mentioned above.

Section II contains the theory —the equation of
motion, the truncation scheme, the relevant inte-
gral equations, and the method of solution. A nu-
merical scheme was necessary in this case and
the details are given in the Appendix. Also, many
of the relevant properties and definitions are in
Tables I and II.

Section III contains our results, their compari-
son with experiment, and their comparison with

other calculations. We consider first the magneto-
resistivity, then calculate the thermal average of
the impurity spin and susceptibility, and finally
calculate the spatial dependence of the spin polari-
zation.

In Sec. IV we summarize our results and the
conclusions we draw from these calculations.

II. THEORY

Our Hamiltonian is

——Q (a'"+ 6"-)J e
(2)

The Green's function and various thermal averages
that are used are defined in Table I. The double-
angular-bracket notation in Table I corresponds
to the usual definition of retarded Green's func-
tions, i. e. , in terms of operators A and 8,

B»= tt(t) &[A(t), B(0)],), (3)

where the single angular bracket denotes statisti-
cal average, the + denotes an anticommutator,
and 8(t) is a step function. The equation of motion

0 afor the 6'"„„.and Spj,. are

t—6'-. = o(S )6-,6(t) + e-, s -,8 y

— 2„Z«(S')";.
i „))—2„Z«S'S";,i

„'.»
i 1

+ o Z o (&S oj c»yc» ~cj ))
1yo'

~ »»' = (e»'s —o'YA)e~g
Bt

J e s e e+&&Q«o S S'o;~ —S S'c,",
~
cy, )&

1

K= -yg, S + ~&-„,c"„,e-„,
ke

eQ (oc»+cjr+S + o»+op+S )y
8'e

where o = —o= +1 or 0, 0 corresponding to spin up
or down, respectively; e"„,=e„—og,y/2, where e"„

is the single-particle energy with the zero of en-
ergy being the Fermi energy; y = p. ~ H, where p, &

is the Bohr magneton and H is the magnitude of
the external magnetic field which is taken to be
pointing opposite the z axis. We take g, and g;,
the electron- and impurity-spin g factors, to be
positive so that the lower energy is associated
with the spins up. For electrons, ~„= Ig I ps
S H and Eq. (1) shows that spin up [positive &S')
or S, from Eq. (65) below] corresponds to spine
antiparallel to H having the lower energy. The
cg, and c„,are conduction-electron creation and
annihilation operators on states k and o; respec-
tively, and the impurity spin operator is S, such
that S'= S"+ iS'. J is the s-d coupling constant
and N is the number of unit cells in the lattice.

By using the method of double-time thermody-
namic Green's functions we have for the equation
of motion of the single-particle function g"„„.,

.8 0 a
i—9»», = 5»"„5(t) + &;, g»-„,8t 0
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+—g«(S'(cycyy —c;,cy, )+ 2a S'c;;cy, )cyz I c„,)) .
1u

(5)

Eq. (6d) is approximated as

(6e)

We truncate the chain of equations by factoring
the higher-order Green's functions which appear
on the right-hand side of Eqs. (4) and (5). In order
to do this we use the cumulant expansion tech-
nique. ' We set the cumulant Green's function
corresponding to our retarded Green's function
equal to zero. Thus, we neglect statistically
linked higher-order correlations and thereby ob-
tain an expansion for our higher-order Green's
functions in terms of those of lower-order and
certain time-independent thermal averages. Those
thermal averages obtained that do not conserve
particle number or angular momentum are set
equal to zero. Since the Hamiltonian. conserves
particle number and angular momentum, we know

that in an exact treatment these averages must be
zero. Furthermore, in addition to the sign at-
tached to each term by the conventions of the cu-
mulant expansion, we attach an additional sign
(-1)", where n is the number of interchanges of
creation or annihilation operators necessary to
bring the factored function into the same ordered
form as the unfactored function. Carrying out
this procedure the four higher-order Green's
functions needed are approximated as

0
((S cio cylt eke wk )) ( S Cl Cyp )gkk

-6„.&c;,.Ck,,)Sky-6 ii (S ci, ,ck,,)bky, (6a)
II

&(s ciycliic&t I ck, )) = &ciiicyii&Skk -&ciiicky& &ky, (6b)

&(S c;,cy,ck.iiI c-„,)) =(c;,c; &Skk. -&S ci ckii&gky (6c)

and

g f 0
((S cincyackeI crm» = -&cidc&r&spry -&S cilfckm&Sky

Q

2&S')& "'.&e'y &S'&« ' y. ' I ..» (6d)

Finally, the last term on the right-hand side of

Note that when the external magnetic field is zero,
(S') = 0 and up-down symmetry can be invoked to
reduce the above approximation scheme to that of

Nagaoka. For simplicity, we now specialize our
treatment to the case of impurity spin —,

' for which

(S')'= —,', S'S'= —S'S*= CS'/2,

and

s's'=-,'+vs' .
(7)

Inserting Eqs. (6) and (7) into (4) and (5) and using
the thermal averages and Green's functions de-
fined in Table I we obtain

8 0 a
4 kki = o&S )6kka6(t) + (ki+(pkki

et J, c J
+—(L-, --')g" (-n—. -k")h-

2N "' ' " 2N "'
J c

ja' (8)

kk' 6k'et 0

J
2N
J

+
2N

a
Oyg Og g

(nk,,—,) (8;+26'"„)

1 0(- k+ Lk ii
—CM„,k+ 2O'&Sk&nk ii) gk .

(10)A=—Q(Ly, -Ly, ) = 0
5

To show this, we consider

—S'= i[X, S'] = —i—Q(cktckkS —CkackqS )

(11)

Note that the energy shift Jo&/2N in Eq.'(9) is
expressible in terms of the net conduction-electron
spin density on the impurity site [see Eq. (70) and

Sec. IIIC]. The last term on the right-hand side
of Eq. (8) is equal to zero, viz. ,

TABLE I. Green's functions and thermal averages
defined for finite external magnetic field.

and take the statistical average to obtain
8 . J

(—S') =i—A
et 2N

(12)

8,-; =-&&.;.i "„-.»

Ckk =-«S'Ck1l Ctk

+k (r Z &ckI s ck s)
k

fe —=Q ( k iick+)
k

Mk~ = 2P & Ck.~ Ck, S')

gg
k
~Og

8'-=-g o'-.
k

py g g)y
kk

k

n —=Q (haik,
—nk, )

k

Since &eS*/sf& = e&S')/et and (S') is independent
of time, we have A=@.

Now we introduce the Fourier transforms

&(~) = (») ' f"dt e'"'8 (f&, (18)

8";;( ) = (~ -~., ) '(6;. /2'-(~/2&) [4' (io)+&'(~)]),
(14a)

6'ke(~) = (~ —k~. ) '[C&S'&6k~/»

+ (~/2Ã(L;, .--,')Sk(~) -(~/») (.;.-8~k(~)],
(14b)
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TABLE II. Fundamental functions and their symmetry
properties for finite external magnetic fields; z is the
complex energy.

——) (rr) 1- G](rr))
J

2N 2N
(16a)

F (z) =-p]., (z-z„;)-]

g', (z) -=p]-, lf(z„;)- G] (z- zz,)
'

f (&„,) is the Fermi distribution function.

G((z) —=Q], (ng, - G) (z z]"G)-'

G2(z) —=pf (nh, z) -[z —z](z+(7@'Y+'(&/2N)o&l

= C, (z+~g, y+ (Z/ZV)~~)

Z'(z) =-P;(z- ~„;)(z —z;.)-'

J 2

r;(rr) (
—=[&'(rr)] 1G](rr)(rr(G')- —, G'(ro))

(
+ P'(~)

l
1 —o &S'&F'(&)

2N
(16b)

where

A'(ro)=(1 —G](rr) 1 —— )"'(rr)G'(rd)
2N ' 2N

~ —1-—G;(rr) 2G](rr) —
1

E' r(r))'( )).
J J, ~ J

(16c)

Reality condition

[~(z+)]+=~(z)
[g'(z*)]*=g'( ).
[G'(z*)]+ = 6'(z)
[a'(z+) ]+ = Gq~~
[EQ( +)]+ ~(z)
0"(z*)]*=Mz)

[tg,g(z*)]*= tg, ~(z)
ho&(z+)]* = 9 &(z)

[@6 ( g) ]g @,(y (z)

Particle-hole symmetry
—Z'(- z) =Z'(z)

g'(- z) =g'(z)
C~Z(- z) = G', (z)
G2(- z) = G', (z)

—S'(- z) = E'(z)
—I (-z) =I '(z)

-tg, g(-z) =tg, g(z)
9',(-z) =9', (z)
g~(-z) = ~c,s(z)

:—pf (z —I(-+o M~ —2a &S'&n~)[z —z~+og& Y(J/2N')ot)] '
In order to proceed we need to obtain expressions

for the correlation functions used in these defini-
tions. All correlation functions which arise in the
truncation process can be written in terms of to((d)
and tzG((d) by using E(ls. (15) and the relation

&II+ &
= i f= do)f(~) (&&& l@&..(6-&& il »&.~6»

(17)
where f((o) is the Fermi distribution function.
Hence, using the definitions given in Table I and
the identity

&[+ II] &='f d(d («&II)»..« -«~l»&. ~s)

(18)

h-',p(~) = (~ —~f„+oyg, +oA«2N)-'

x(- (J/2N) (z —IPz+ oM~ —2o &S'&nIz)g„((o)

—(«2N)(nrz —l ) [&I(~)+»'(~)]) &14c)

we obtain [using the Plemlj relation of Eq. (85)
below]

nkG Q&CZGC](rG&
gl

= i f d(o [f((d) ——'] [9$((d+ i()) —Bz((0 —i())]+—',
Note that since we are using retarded Green's
functions, unless explicitly stated (d is taken &ust
above the real axis, -i. e. , &+i6 on the complex-
energy plane. Summing Eqs. (14) over k' and re-
ferring to the definitions in Table I, we can solve
for g-„, 8„-, and +-„ in terms of two "t matrices, "
VlZ. q

2m 9.„((o)= ((o —e-„,)
' [1+F'((o) t o((o)], (15a)

—2v(«2N)$], ((o) = ((o —a],G) tz((d), (15b)

and

(IOa)

I.„,=Q&S c-„,c.„. )
gt

= i f d(0 [f((d) ——,' ] [8"„'((d+ i5) 8]-',((o —i5)], —

(1()t )

O'M](G = 2(7+&S CzGC](rG&

= f= d [f( ) - z ] [o'I((o+ i5) - (PI(~ - i6)]

+-,'o&S') . (19c)
-2z(«2N)o -„((d) = ((d -~-„,)-'[t', ((o) —t,'( )],

(15c)
where in terms of the definitions of F ((o), G&((o),

Gz((o), E'((o), and P'((d) given in Table II we have

pre have used the fact that &S') = 0. Also we have
used the form [f((o) --,' ] because it is of definite
symmetry, i.e. , odd in &. Note that from the
spectral representation of g"„~ we find

r'(ro)=-GG(&'(rr)]'(1-& G]( ))(rr(s')-& G'(rr))
[9],],, ((d —i5)]*= 9-„'„.((o+ i5),

which implies that

(20)
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ta(++ i6) = to (v -i5) (21)

and, hence, that n„, is real. By assuming the same
relation holds for I,~ we are lead to the reality of
L„-, and Mp„as well as nI„(see the definitions of
the thermal averages in terms of the spectral rep-
resentation above). From the definitions in Table
II and by Eq. (1V) we see that this assumption is
self-consistent with Eq. (16). We call the sym-
metry condition of Eqs. (20) and (21) the reality
condition. Ne must next find an expression for
(S') in terms of ts((o) and tz((o).

In order to calculate (S*) we define

s = 5~Cf get, ~ (22)

and calculate the equation of motion for the Green's
function

j' -1
(&o —e;,) ~ —af~+oyg+o&&&

-1
o —a ((u —z" ) — (o —e. +o—&ke ke

and the definitions given in Table II to express

=Gz v —o —& = Gz&(&u+ogy), (Sia)

~ (-,' -I:„z+oMfz-2o(s')~-, ) p, J'

((o -~;,)
"" '2N'.

(31b)

By definition, to go from G f(~) to G f(up+ ogy) we
first reverse the sign of the spin and then shift the
frequency (d co+ Ogy. In these terms we finally
obtain

&(t) -=((s'+ s'i s-)) .
We obtain

(28) J ty ~ J'
2m' 4Q—h@= Gf (a-o —& -G'{&o)

2N p 2N

+yg, ((s'~ s ))+yg, ((s'~ s-)) . (24)

& [2ts(~) —t s(~)]

J P' (o —o-- tI, —P'((g)

a)((o) = (1+2(s'S ))[2z((u-yg)] ' .
Using Eqs. (V), (1V), and (25) we find

(S S'+ S s') = —,
' —(S')+(s'S )

= i J„deaf(ur)[&((u+ t5) —u((o —t5)]

= (1+2(s'S ))f(yg)

and hence the exact expression

(S') =(—'+(s'S )) tanh(yg/2kT) .

(25)

(26)

(2V)

Now from the definition of the Green's function
8„-'.„, in Table I and Eqs. (16) and (lV) we have

(s'S ) =Qt f„d(o[f((o) ,'][6„„(-(o-+f5)--8„-„(u)—i5)]

At this point, we specialize our calculation to the
case of equal g factors, i.e. , g, = g = g in order to
obtain a closed expression for (S'). After Fourier
transforming Eq. (24) we obtain

& [1+&'(~)tg(~)]

In addition, we have from the definition of ~ in
Table I and Eqs. (15a) and (19a)

&=/of(e&, ) -2 . Zo „d~[f(~)-l]I

x([E'(ro+H)] ts(e+i5) —[F'(&o-t5)] ts(&o-N)I

where the sum over o is taken in the order indi-
cated in the definition.

Next, we must obtain explicit expression for
G&(sr), Gz(v), E(v), and P(&u) by using Eqs. (19)
and the definitions in Table II. For example, con-
sider G, (z), where now z denotes that we are any-
where on the complex energy plane. Using (19a),
(15a), the definition of G~(z) and E(z) in Table II,
the partial fraction expansion

Usmg Eqs (14c) and (15) we obtain

g~~ty —1 J
kk 2g 2Ã

P„-[(z —~f„) (u) —e-„,+ t5)]-'

= (z - ro) '[E(ro a t5) -F(z)],

and noting that

(&u —ef, + t5) ' —((o —e„-,—i&) '= 2wt&(ar —e"„,),
85

we obtain(n.-r —z ) [2ts(~) - tz(~)]
2w .„(&o—ep, ) (v —el~ + oyg, + onJ/2N) Gf(z) = g'(z) —9 s(z),

(29)

~ [-,' -I I-,+ oMg~-2o(s')n.„z][1+E'{&o)ts{(o)]
((d —Ejq) ((0 tfz+ cygne+ 0+eT/2+)'

For the case of equal g factors, i. e. , g, = g~ =
g& we

can use the partial fraction expansion
e( ) Qf('zfe

(z-ef, )
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and

0'o z) = d~[f(~) -2]
2wi -" '

(z —ur)

&&/[F'(&u+ i6) —F'( z)]F'(&u +i6)t o(ur+i5)

—[F'(ro —i6) —F'(z)]F'(ur —iY) t G((o —i6)}.

(38)

N =2 f „d~;p(&-„)f(ep) = vpoD . (44)

and

F'(z) = -F'(- z) (46)

We note that this density of states is even in &-„

(particle-hole symmetry) and in this case we ob-
tain the symmetry relations

G;(z) = Gf (z+ og, y+ don/2X) (39)

In a basically similar fashion, using the definitions
of the sectionally holomorphic functions

d'd [f(~) —z]
2vi -" (z —rv)

x{[F'(v+ih) —F'(«)] t o z(M + i&)

—[F'(~ —tr) -F'(z)]t;,(~+ t6)}, (40)

where the subscript G, E means that either to(z) or
tz(z) has been used, we obtain

(d/2&)&'(z) = (&/8&)F'(z) -@"(z) (41)

P'(z) =—Fz z+ og.y—+—ob, -2o {S')Gz(z)2N 4N ' 2N

The subscript G on vapo(z) means we use tG(z) in
Eq. (38). We note that po(z) is a sectionally holo-
morphic function, i. e. , discontinuous across the
real axis but analytic in the upper or lower half-
plane. This is because of the basic analytic prop-
erties of Cauchy integrals of this form. We can
obtain G z(z) by reversing the sign of the spin and
shifting the frequency as described in Table II,
Vlz, y

g'(z) = g'(- z) (46)

Our Hamiltonian has this particle-hole symmetry
and our truncation scheme preserves it so we also
have the relations

ta, «(z) = —to.z(- z)

yc(z) = q G(-z),
4G, «(z) 4c,z( z) y

(47a)

(47b)

(47c)

F;(z) = wpoD/(z+ —,'og,y+ iD)

F'(z) = «pe D/(z+ 'og.y —iD),-
(48a)

(48b)

where the + subscript notation denotes that z lies
in the upper half-plane (uhp) or lower half-plane
(lhp), respectively. Using this representation of
the sectionally holomorphic function F~(z), Eq.
(45) now becomes

which are self-consistent. This can be seen by
assuming the relations (47) and inserting them
back into Eqs. (36) and (38)-(42) to obtain the other
symmetries and then showing that this is consistent
with the definitions of to z(z) in Eqs. (16). These
symmetry relations are tabulated in Table II.
Using Eq. (43) and the definition of F'(z) in Table
II we obtain

J
+ @& z+ og;p+ —0'~ —24G z+ 0'g ~p+ 2

0'~ F:(.) = -F'(- z) (49a)

(42) F'(z) = -F'.(- «) . (49b)

We point out here that all of the functions defined
have the self-consistent symmetry of Eqs. (20)
and (21), i.e, [Oo(z*)]*= Co(z), i. e. , what we
have called the reality condition holds.

At this point, in order to evaluate the basic
functions F'(z) and g'(z), we must introduce a den-
sity of states p(&g) so the sums on k can be done,
Vlz.

y

we also have

F;(z) —F'(z) = (2/vip, )F',(z)F'(z)

= —2vip (z + —,'og, y)

Using this notation we have

F'((u + i6) =F;(cu)—
dE jp(Kg)

We use a Lorentzian density of states

p(~g) = poD'/(eg+ D'), (43)

where co is the real frequency (we shall use this
+ subscripting notation again below). The other
basic function g'(z) can also be evaluated now using
the Lorentzian density of states, viz. ,

where po is the density of states at the Fermi sur-
face, &g= 0, and D is the bandwidth. By definition
of the number of electrons in the conduction band
we have

g'(z) = dep(( + 2og,y)
f(&) --.'

Using the partial fraction expansion
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p(h+ Wg,y) poD
z -$ 2i z+ go'ggy —lD

X
5+ 2'.y

——tD)

1
z+ 2og,y+iD $ —z $+ —'og y+iD J

'

(53)

we obtain

ables us to express p~(z) in terms of egz) as
follows: First, note the partial-fraction expansions

&'.( )/( — )=+'.( )(( — ) '+[&',( )/ poD]j

(56a)
and

R(Id)/(z —~) = &'(z) {(z—~) '+ [&'(Id)/zpoD]] .

By inserting these expressions into Eq. (40) and
using Eqs. {48)and (50) we have

If(1 &
- lI « f' NII - ll «1211t '

J „$+—,'og, y+iD $ —z

(54)

e,', ~(z) = . E;(z) 2
. d(o ' E;(Id)t', ,o((o)

f(~) -2
gzpo 27t z . z

+&,(z) . ~ d~[f(~) —k]2wzg ~

Integrals of ihe form of those in Eq. (54) are done
in the Appendix of the paper by Bloomfield and
Hamann; taking over those results, we obtain

t ',.c(~) t '.o(~)
1 ~ 1

Q7+ ~0'pep+ zD 40+ ~vge
(5V)

g'(p) = - p (p y —,pgy)g — pgp ym p)
1 g

1 ~l,
I I

1 B ys P,g)y
2m' 2 2mkT

1 ~1 yy ——,wg.y)2 2gkT
(55)

and, by specializing,

4yg / D 1 'y FpoD dIpI [f(Id) 2]t y.g(IgI)
4'y, g(+zD —2o'gp'l = +

21M pp ((0+ 2IFggy + iD)

d~[f(~) —21
woo

which is also a sectionally holomorphic function
where the +(-) subscript goes with sgnIm z=+(-)
and where III{z) is the digamma function. ' (Im de-
notes the imaginary part and sgn denotes sign of. )

The use of the Lorentzian density of states en-

t +.I.(Igl) t -.a(1yl) (58)
(d+ yoga'+ zD 4)+ yoga' —zD

where the + {-)subscript denotes that z lies in the
llllp (lllp) Rlld goes with + (-) 'ED. Uslllg Eq. (58)
we have the expression

Z', (z)C;,(iD ——,'og.y) +S'(z)C,, (- tD ——.'og,y)

zpoD dId [f(u&) ——,]t', o(a&) +, zpoD dId I[f(&) —z]t .a(Id)

21' (Igp+ zeggy+iD) 2zt ~ (IgI+ z&ggy- &D)

(59)

Now using the same partial-fraction expansions,
Eqs. (56), we can expand y~(z) of Eq. (38) as

q,',g(z) = [&',(z) —&'(z)1

[f(~) —-']&:(~)t:.G(~)
2rz 8 —QP

,Z.(, ~poD "d~ [f{~) z]t ', &(~)— .
2zt (Id+ ~oggyyiD)

J.(, vpoD "d~ [f(~) —2']t'.G(~)
211i (&d+ 2',y —iD)'

(60)

So llslllg Eqs. (60) (59) Rnd (5'7) we flllally obtRill

p:,o(z) = +:(z)e', c(z)

—P'.(z)@',c( tD 2~g,y)-+ I"(—z)@'.,o(+ iD hog, y)] . —

(61)

This means that by using the Lorentzian density of
states we can eliminate Clo(z) and rewrite Eq. (36)
as

G;,1(z) = g,'(z) —&',(z)@,',g (z)

+ F:(z)e' G(-iD ——2ag,y)
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+ &'(z)4".,g(iD —zogp) (62)

=2 lim [gg,(z)j

D —pig,y=-—Imp —+
2 2gkT

(63)

where we have used Eqs. (55) and (44) and the
pxoperties of the digamma function. Now from
Eqs. (58) and (44) and the symmetries (4V) and

reality conditions (tabulated in Table II) we obtain

1 1 D - —,'gg, y6= —2N —Im 4 —+
2 2gkT

—2Re@.' ())) —-',Ir,y)I, (64)

where Re means the real part. There is a close
connection between ~ and the total integrated con-
duction-electron spin density S„viz. (see also
Section IIIC),

2S = Q o' (cf( cj )
fr,a

Zai f d~=f(w)[(lL (~+ ill) -8 L(~ —()))),

(65)

where we use the same 0 sum convention as for Eq.
(33). We now notice that because we have used a
Lorentzian density of states

1 s,{
[F'(

(z -ff, ) Sz

and inserting the definition of gt„-(~ ai5) from the
solution of Eqs. {14), i.e. ,

~-(z) =— + z
e 1 1 to(g)

2v z —e-„, (z —z-„,)' (67)

we obtain

2S.=Z of(ef. ) -2 .
N Z «~ [f(~) —s]

1

(fan
W~ g ~00

x([E;((d)]'f ', o((d) —[F'(&o)]' f', o((~)] . (68)

Defining the Pauli paramagnetic part

(69)2S„=Pcrf(&„.,)

and the rest of S, as the interaction part S„and
using Eqs. (33) and (68), we obtain

6=2S, +2NS, )

Note that the singular terms cancel so G', |(z) is
analytic in the uhp (lhp) and represents a sectional-
ly holomorphic function.

At this point we can also evaluate 6 from Eq.
(33). Note that

Zof(zi. ) = 2 (" du) [f(~) —ajp(~+ 2a.~)
Rfy ce

~

1 D —w'g, y (71)

lim f z(g) = 6 (1/g)

If we define

as z- ~. (74)

we can define a new function 4 ~(g), which is the
same as that defined by Eq. (40) but with f o(z) re-
placed by f,'(g). Then by using Eqs. (50) and (52)
we obtain

4', (z) = 4;(g)+ (Z/Dr) o(S')g'(g) . (76)

We now have a closed set of integral equations.
We have the Cauchy integrals C,' g(g) of Eqs. (40)
and (V6), the basic functions E'(g) and g'(z) of Eqs.
(48) and (55). The integrals must be evaluated
using Eqs. (16) and {V5) for the f matrices. Also
the integral of Eq. (28) must be evaluated using
Eqs. (32) and (70) to obtain (S') and b, (note the
self-consistent conditions coming in at this stage
in evaluating b,). Finally, the f matrices are then
calculated by using Eqs. (V6), (62), (3&), (41), and

(42) in terms of the basic Cauchy integrals. Be-
cause of the nonlinear nature of Eqs. (16) and be-
cause there are products of integral operators in

the numerators and denominators, we were unable
to solve the resulting coupled nonlinear Hilbert
boundary value problem. In zero magnetic field,
E =I' and t"&= Ca, therefore, terms cancel in the
numerator and denominator and St~= 2tG. This
case has been solved by the Hilbert method. '

To solve our integral equations in nonzero fieM
we have essentially converted the problem into a
set of simultaneous nonlinear equations for the t's
evaluated at a finite number of points along the
imaginary axis. This technique has been previously
discussed by two of us. The details of its appli-
cation herein are contained in the Appendix. We
have carried out the calculations using parameters
appropriate to systems like CuFe, i. e. , an anti-
ferromagnetic coupling constant J & 0 corresponding
to a Kondo temperature TED=16, &~=4. 7 eV, and

the bandwidth B= 1 eV. As indicated above we

S„=2Ree',c(fD-~ag,y) .
In order to exhibit more clearly the properties

of our basic Cauchy integrals 4 o g(z) defined by
Eq. (40), we examine the asymptotic behavior of
t$(z) and tz(z) defined by Eqs. (16) by analytically
continuing ur -z. We note that the basic properties
of two-time Green's function insures that these
t matrices are sectionally holomorphic and we see
that

limfo(g)= —(J/2N)o(S')+6(1/g) as z-~, (V3)
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have considered only the spin- —,
' case and we as-

sumed equal g factors for impurity spin and con-
duction-electron spin, g& =g, = 2. From the solu-
tions of this set of equations we are able to calcu-
late all of the quantities of physical interest. Our
method and results are presented in Sec. III. ~

sistivity and Hall coefflclent given by
2 . 3 -1pr= or (or + ore) (84)

III. RESULTS

A. Resistivity

The longitudinal conductivity is given by o

goo s 0

o, = ——,'e'
I d«p(«)v'(«) P ~,(«), (VV)

9&

where p(«) is the density of states given by Eq. (48),
v(«) is the electronic velocity, r,(«) is the relaxa-
tion time for an electron of spin o, and f '
=—f(«+ oag,y) is the Fermi distribution function.
Note that each spin distribution obeys its own trans-
port equation and, therefore, has its own relaxa-
tion time and equilibrium distribution. At low tem-
peratures sf'/s«has its peak at « = —&g,y because
of our convention that spin-up electrons have 1ower
energy. The relaxation time for low impurity con-
centration is given by

~.{«)= np, {2CZim [-p,f,'(«+ f6)])-'

= l. 06V x io-"{CDlm [-p,t,'(«+ f6)]]-', (V8)

where we have made use of Eq. (44) for ¹ Here,
C is the fractional concentration and D is the band-
width which we take as 1 eV in these calculations.
The density of states at the Fermi surface is taken
from free-electron considerations and is given by

&r= &~(I+ &or t) +g, (l+ ~ox', ) (86a)

0're = (ooo, t,(l '+ (uo v, ) + u)oo, t, (l'+ nor, ) . (86b)

Vo= eH/mc is the cyclotron frequency, o, , , 1s given
by the appropriate part of Eq. (VV), and r, , , is
given by Eq. (VB) with «= v-,'g,y, respectively. In
order to shorten the calculation done here and yet
retain the physica1. effects of the field on exchange
scattering, we set V= 0, no potential scattering,
so that p~= pl = p and B is a constant. Then, making
use of the particle-hole symmetry given in Table
II we have

p = m[2''~, (- —,'g,y)] ' .
In the calculation of More ' potential scattering
was included and a T- and B-dependent Hall co-
efficient was obtained.

Figure 1 shows the results for the resistivity
ln the fOrm

piV/Dg = 0. 1866x lo'Im[- p,t,'(- —,'g,q+ f6)] (88)

as a function of temperature T for a number of

(2 ~3/2 1 j2
= 2. 82 x IO' (eV) -'

(V9)

(80)

with m as the free-electron mass. These values
of the parameters are used throughout this calcu-
lation. The square of the electronic velocity is
given by

v'(«) =2(«r+ «)/ m(SwD+ 2 )/«m. (81)

At the temperatures of interest, the sharpness of
the Fermi function relative to the slow vax'iation
of the rest of the integral in Eq. (VV) means that
to a good approximation we can write the resis-
tivity as

0.2

pg = og '= (m/&e') [~ (- rg,r)+ ~(2g.r)] '. (82)

If an impurity potential scattering term had been
included in our original Hamiltonian, for example,
a point potential scattering texm of the form

V~ cg,cp,
frR'c

(88)

it would have the effect of breaking the particle-hole
symmetry. There would also be a transvexse re-

O.l I

l.o
K

Io.o

T, 4K

I I I

Ioo.o

FIG. 1. Resistivity p as a function of temperature for
a number of external magnetic fields, H is the number
of unit cells in the lattice and C is the impurity concen-
tl ation.
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FIG. 2. Resistivity p as a function of external mag-
netic field for a number of temperatures.

values of the external magnetic field. Figure 2
shows the same results as a function of the exter-
nal field H. Note that the Kondo temperature T~
= 16 'K. Both Figs. 1 and 2 show that the applied
magnetic field tends to suppress the anomalous
resistivity which results from exchange scattering
below T~. The "freezing out" of the spin-flip scat-
tering process can be understood by considering
two competing mechanisms. The initial rise of
the resistivity as the temperature decreases
through T~ results from an enhancement of the
spin-flip scattering process due to a decrease in
the thermal fluctuations of both spin systems. For
H= 0, only this mechanism obtains. However, in
the presence of an external H field, a further de-
crease in temperature enables the Zeeman split-
tings to significantly influence the population dis-
tribution in each spin system. At sufficiently high
values of H/T, this population difference between
the spin-up and the spin-down state will become
sufficiently large and inhibit the spin-flip scatter-
ing process. The scattering of conduction elec-
trons from spin up to spin down is inhibited by a
depopulation of the spin-down impurity-spin en-
ergy level by the field, and the scattering of spin
down to spin up is inhibited by a depopulation of
spin-down conduction-electron levels. Comparing
Fig. 1 to the experimental results of Monod' for
CuFe, for which TE=16 K, we note that the cal-

-20
I

-l0
I

QJD
kT
0 20

I

120 kG

FIG. 3. Imaginary part of the t matrix t~ for spin-up
electrons at 5 K as a function of the real frequency
for a number of external magnetic fields; ~ =0 corre-
sponds to the Fermi energy.

culated field dependence of the resistivity is too
strong, i. e. , the negative magnetoresistance is
too large, especially at lower temperatures. This
is apparently the result of the truncation process.
A perturbation treatment of this problem leads to
logarithmic divergence of all orders and the Na-
gaoka truncation in effect only sums up the leading
logarithmic terms. The higher-order terms
that must come in at lower temperatures are ne-
glected. As the truncation scheme used in this
calculation is a simple generalization of Nagaoka,
it is expected to suffer from the same defects.
However, the expression for (S') in Eq. (2V) is
exact. Thus, we expect the field effects to be
somewhat overemphasized to the extent that our
truncation approximation does not allow the cor-
relation function (s'S ), which is used in the ex-
pression for (S'), to become as negative and as
large as it should. On the other hand, for low
fields and very low temperatures (s'S ) becomes
too large as is discussed in Sec. IIIB. The many-
body effects may be seen in Fig. 3 which shows
Im [pot '(sr)) as a function of ~D/kT for T = 5 'K
and a number of fields. The H=OG curve is ob-
tained for the Nagaoka truncation scheme; third-
order perturbation theory would give a negative
divergence instead of a negative trough. As the
field is increased the trough moves to the left and
the many-body effects can be seen to influence the
line shape near the Fermi level, co = 0. The effect
is to retard the higher-field curves from departing
rapidly from the H= OG curve. This tends to make
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FIG. 4. Thermal average of the impurity spin (S')
as a function of the external magnetic field for a number
of temperatures.

the negative magnetoresistance smaller and pre-
sumably it is this effect that is underestimated by
the truncation scheme. However, the calculated
magnetoresistance qualitatively follows experi-
ment and it is expected to be quantitatively more
valid for low fields except for very low tempera-
tures as discussed below. The recent singlet-
ground-state calculation of Ishii 8 yields a magneto-
resistivity similar to our results in Fig. 2. The
complex behavior in More and Suhl's curves' re-
ferred to by Ishii is a result of their numerical
approximations. "

B. Magnetization

ample, . at 1'K and 100 G, ourcalculationeasilycon-
verged to (S') = 3.2 x10 4. At 0. 1 'K and 100 G, an

initial zero- (S*)yielded (s'S ) = —0. 699andupon
iteration we find a relatively large negative (S')
(-0.013). Oscillations in (S') above and below
zero occur and no convergence obtains. (See the
Appendix for a discussion of our iterative proce-
dure. ) This nonphysical result follows from Eq.
(27) if (s'S ) & —0. 6, and can already be forecast
from Zittartz's zero-field low-T calculation which

yields (s'S ) = ——,. Dividing by JL/N and taking

the zero-field limit of Eq. (32j gives Zittartz's for-
mula. Also note the high-field high-temperature
saturation levels (s'S )-- —0. 138, which indicate
that high fields and temperatures do not completely
eliminate the exchange scattering effects which
tend to reduce (S').

The results for S,&
are shown in Fig. 7 as a func-

tion of field for various temperatures. Note that
it is negative; this tends to reduce the conduction-
electron spin alignment with (S *) (which points
up). Its magnitude increases as the temperature
is lowered and the field is raised. Also for the
same temperature and field ranges, it is about an
order of magnitude less in absolute value than
(S'). This can be better appreciated by a calcu-
lation to first order in the coupling constant, the
relevant parameter being +JN= —0. 14429. Con-
sider Eq. (V2) and take the dominant part of to(&u)
from Eq. (16a),

0.0

The excess magnetization over that of the pure
sample is given by

-0.l—
100'Kq

M = p, ~(g, (S') +g,S„), (89)

where (S') is given by Eq. (27) and S„by Eq. (V2).
The results for (S') are shown in Fig. 4. Since
Eq. (27) is exact, the effect of the exchange scat-
tering is only felt through the correlation function
(s'S ). The results of our calculation for (s'S )
are shown in Figs. 6 and 6. We note that (s'S ) is
negative and becomes, in general, more negative
the lowers the temperature and field. There is a
reversal of this trend at higher fields when the
temperature is lowered as is evident in Fig. 6.
This may be attributed to the absence of thermal
fluctuations at low temperatures. The strong di-
rect coupling of the localized spin to the field is
then dominant and the spin-spin scattering is sup-
pressed. At low fields, our theory breaks down
as the temperature goes below 0. 5 K. For ex-

A
I

+) -02

V

-0.3

-0.4 ' I

50
H, kG

I

loo 150

FIG. 5. Correlation functions (s'S") as a function of
the external magnetic field for a number of temperatures.
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(90)

which is the same as the high-energy limit given
in Eq. (73), and insert this into Eq. (40) for 4, G

(fD ——,'g,y) to obtain

d(o Lt'((u) ——,
'
jS„=2 Re (S') . ,

*
p( ~ + —,'g,y))„za —2g~y - co

= —(S') Reg,'(iD —zg,y)

JpoD g 8$(-,'+ z/2vkT)

0—

-0.5

-1.0

= (Jqo/2N) (S ')
g~+1/2fg y8

(~&)

Ol

O

-1.0

where we have used Eqs. (48) and (52) and, in the
last step, the asymptotic expansion of the digamma
function. This result and the results shown in
Fig. 7 indicate that the conduction-electron contri-
bution to the bulk impurity susceptibility is smaller
by about an order of magnitude thanthe impurity
spin contribution. Also the form of (S') and the
size of S„ indicates that the reduction of effective
moment is mainly due to a failure of the local spin
to align in the field because of the strong spin cor-
relations between impurity and conduction electrons
and not due to a spin-compensating conduction-elec-
tron polarization cloud surrounding the impurity.
This is in agreement with the calculation of Klein. '

We may compare these results to previous cal-
culations and to experimental data. In the CuFe
alloy system, Heeger et al. have compared the
temperature dependence of the excess suscepti-
bility obtained from bulk susceptibility measure-
ments with that inferred from the Fe' Mossbauer
data. At temperatures well above T~ the impurity
hyperfine field B„,scales with the excess sus-

-2,0

-2.5 l

50
I

IOO

H, kG

I

150

FIG. 7. Interaction part of the total integrated con-
duction-electron spin density S«as a function of exter-
nal magnetic field for a number of temperatures.

ceptibility X, „but below T~ it deviates markedly.
These authors argued that at high temperatures
only the bare impurity susceptibility is present
and the above-mentioned data in this temperature
region gives a reliable measure of the slope of
Hf t versus X, , This slope is then used below
TE to predict y, m, „„,from the Mossbauer data.
They find that at very low temperature gamp Mosg ls

-O.I—

-0.2—

A
I
V)
+" -OS 20kG

l5 kG

FIG. 6. Correlation function
(gS ) as a function of the tem-
perature for a number of exter-
nal magnetic fields.
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FIG, 8. Two quantities proportional to the external
field H divided by the excess magnetization, H/( |',S')
+S~;), and H divided by the impurity magnetization,
H/ (Sg), as a function of temperature for a low field
H =100 G and a high field H = 30 kG; a Curie-Weiss law
extrapolated from the high temperature yields a Nedl
temperature of -13.5'K to compare to a Kondo tem-
perature of 16'K; the low-temperature detail is shown
in the insert.

approximately half the excess susceptibility X, ,
obtained directly by susceptibility measurements
and thus infer that the conduction-electron con-
tribution to the total excess susceptibility is equal
to the local impurity susceptibility. They also did
a calculation based on the variational model of
Appelbaum and Kondo from which they obtain an
S„ofthe same magnitude and sign as (S') in dis-
agreement with the results of the calculation done
here. On the other hand, low-temperature devia-
tions between the impurity hyperfine field and the
excess susceptibility have also been found by
Narath, Brog, and Jones3' in MoCo alloys. How-
ever, in this case the deviations are a monotonic
function of the impurity concentration and may be
expected to result in some way from impurity-im-
purity interactions. Also Stassis and Shull mea-
sure the impurity magnetic moment by polarized
neutron scattering in CgFe and conclude that the
magnetic scattering amplitude data has, within
experimental error, the same temperature depen-
dence as the bulk susceptibility measured on the
same samples. This would indicate only a small

conduction-electron contribution in agreement with
the calculation done here. The predicted positive
resonance shifts by Heeger et al. are contradicted
by the Narath and Gossard NMR observations on

Au(Ag)V alloys. They conclude that there is a very
small reduction in the impurity spin susceptibility.
These results are also consistent with our theory.
Also, as evidenced by the calculated high-field
and high-temperature saturation value attained by
(s'S ) (see Fig. 6), an assumption of complete
suppression of exchange scattering effects at high
temperatures, i. e. , T» T~, is questionable.
Ishii 8 in his recent zero-temperature variational
calculation in which he treats the magnetic field
as only interacting directly with the localized spin
finds the result in Eq. (91) for the total localized
spin [see Eq. (101)]; he also points out that the
calculations in Ref. 10 are in disagreement with
this.

Figure 8 presents our results for equal g factors
for 2H/peM (which is related to the bulk y, ,) and
H/(S') (which is related to X, , M,„)as a function
of temperature for H= 100G and H= 30kG. We
see that for high temperatures, M follows a Curie-
Weiss law of the form H(T+ T,) with T,=13.5'K
to compare with a Kondo temperature T~= 16 'K.
Below T~ we note deviation even for H= 100'C.
These deviations might be described by H/(S') - T"
with x& 1. There is experimental evidence for
this trend, 3 at least for fields H & 1 kG, namely,
that below 1 'K, x= —,'. In our calculation, this
trend increases with the field strength. It has been
suggested that such behavior is due to the formation
of impurity clumps, " but our results indicate that
it may be inherent in the single impurity problem.
We also find that below Tr, (S') increases faster
than linear, approaching saturation more rapidly.
It is interesting to note that when Osaka calcu-
lated X at zero-field from Suhl's theory, his re-
sult was identical to Hamann's as is to be expected
from the equivalence between the Nagaoka and
Suhl theories. These calculations differ from ours
and those of Shastry and Ganguly3 who used the
solution to calculate the zero-field susceptibility.
They found x=0. 6 and curves similar to our low-
field curves.

C. Electron Spin and Number Density

The conduction-electron density for spin 0 as a
function or r, the radial distance from the impurity
site, is given by

p,(r) =N '+exp[i(k-k') r](cf,.cg, ) . (92)
H'

Using the definition in Table I and Eq. (17), we
have

OO

(Ckiscka) k

deaf((d)[gk~((d

+ i6) 8k~((d H)]

(93)
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where from Eqs. (14a), (15), and (16a) we obtain

gjj = [2Ã(QJ —6 )) [6gg. + ((d —tg ) P o((d)) (94)

thus we can define

(95)m. ~, .~+,
k ke

and using this definition and Eq. (18) we can express
the electron density as

&p.(~) =&f(&f.)- v 'g„d~[f(~) -2]

x Im[m', (~+i6, k)f'o(~+ i6)].

We can perform the angle integration in Eq. (95) to
obtain for toe free-electron case

From Table I and Eqs. (68), (92), and (93) we
find relations between the spin density at the origin,
the integrated electron spin density, and 6:
p.(0)=(1/x) Zn&. , ~=x[p,(0) —p, (o)],
2s,.=x[p„(0)—p„(o)], 2s„=p...(0) —p„,(o)-=&p(0).

(101)

Asymptotic expansion of the digamma function for
low temperatures and nonenormous fields yields from
Eq. ('ll)

S„=N(~ ' arctan(gy/2D)+ Pgykr[4D'+ (gy)'] ')
= 0. 5 p(g y.

Then the field-dependent energy shift [see Eqs. (14c)
and (39)] from Eqs. (Vo) and (91),

1
m, ((o+i5, r)= 2'

sinks 1
kx ((u+ i6 —&f +-', oyg) gy+ —&=gy 1+0 5 0 + ' wD(S') .

(97)

We then change variables assuming that the main con-
tribution to the integral comes from the energy
region around the Fermi energy &-„=0. %e use

k = [2 m(c~+&,))"'=k~[1 (+a,/2&„)], (98)

where kz=(2mez) ~ and e„, D«E~. After substi-
tuting our Lorentzian density of states p(&-) d&„- for
k dk we have

m, ((u+ R, r)

sin[k~r(1 + e/2&„)]
(c'+Da)(1+ a/2a~)((o+i5 —a+2oyg)

(99)

%e evaluate this integral by contour integration ex-
pressing the sine function in terms of exponentials
and closing the contour in the upper- or lower-half
complex a planes where appropriate. Using the
fact that in the free-electron case D/2&+ = 1/3m, we
have

F:((u) . k~r
m, ((a+i5, r) = — '. exp -i kI r-

2ikgx 3m

+ .- exp(ik~r) exp —
3

E'((g) . ' k~t'
2zkpr 3m

i k&~(~+koyg)
(d exp

{100}

where F',(&o) is given by Eq. (48). This expression
is then used in Eq. (96) where the integral is eval-
uated in a manner similar to that described in the
Appendix.

The last term resulting from S„(or the interaction
part of the spin density} dominates this expression.
Thus, the energy shift depends most strongly on

5p(0) which is proportional to the density of electron
states at the Fermi surface times the dominant part
of the f matrix in finite field [see Eqs. (90) and

(»)].
Our results for the spin density 5p(~) and charge

density (neglecting the uniform background) are
given in Figs. 9 and 10. Figure 9(a) shows an
example of the spin density times (k~r)3 as a func-
tion of k~r for T = 10 'K, II = 150kG and Fig. 9(b)
shows the corresponding charge density. Figure
10 is a graph of the envelope of the positive and

negative maxima of the spin-density curves times
{kyar) normalized by(S') for various temperatures
and fields. The curves A. and D are for T = 1 'K,
H = 100G or 1kG as the curve for the two different
fields are indistinguishable. Likewise, the curves
B and E are for T=10'K, H=100G and C and F
are for T=10 K, H=150kG or T=100 'K, H=

100G or 150kG. Qualitatively, the temperature
and fieM dependences of the spin density are the
same as those of (8') -increasing in strength as
H increases and T decreases. The extent to which
these curves do not coincide indicates extra tempera-
ture and fieM dependence apart from that of (8').
A number of the features of these results can be
seen to arise from certain terms of Eqs. (100) and
(96). The square of m, is the immediate source of
the long-range oscillatory terms such as (kryo)
cos(2k~x), as well as exponentially damped terms
such as (k&~) 'exp(-kryo/3m) sina(k~~). The &o inte-
gration of Eq. (96) modifies these simple dependencies
in two ways. First, we obtain a temperature-depen-
dent damping, exp( —A), where A, is proportional to
kz, re T/ez, as can be seen by considering the poles
of [f(&o) --,'] on the imaginary axis close to &o = 0.
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FIG. 9. (a) Spin density times (k+x)2 as a function
of k~r for temperature, T =10'K and external magnetic
field, 8=150kG; {b) charge density times (kzr) as a
function of k~~ for the same temperature and field.
IFor 100 G, curve (b) is essentially the same, while
curve {a) is scaled down by {8~)ratio =5xlo .j

For the values of 0&k~x &80 and 1' consideredhere,
this damping is negligible. Second, the (k&,r)
dependence is altered. A perturbation treatment of
our formalism for small Z/lV and for k2'«sr yields
the RlMY'a result (S')(tv) a cos{2k&,r) for the
spin density and the result (S') (kryo') sin(2k+&)
for the charge density. However, our numerical
calculation yieMs results intermediate bebveen
(kr& ) and(k&, & ) a. We have the dependence (kyar) "~,
where pg =0.55 for cux'vesARndDin Fig. 10, ~=0.67
for cuxves 8 and E Rnd n = 0.80 for curves C Rnd

F, n decreasing as T and B are lowered. It is in-
teresting to note that, if this effect is real, it implies
that the interaction between two magnetic impurities,
via the electron spin-density overlay, increases as
T decreases.

We obtain a negative definite component in the
spin polarization as seen in Figs. 9(a) and 10. This
is damped out by the term in Eq. (100), exp(-k&, r/
3s). The negative definite component essentially
disappears at k~~= 25, which for Cu corresponds to
about 10 lattice spacings. Other densities of states
or band structure would change slightly the numeri-
cal factor D/2' (equal to 1/3n here), which deter-
mines this range. Contrary to the long-range
sinusoidal behavior which reflects the sharpness
of the Fermi surface, the short-range character
of the negative definite part of the electron spin-
density results from the bandwidth D, satisfying

l.O
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FIG. 10. Relative maxima of the spin density times
(k&~) normalized by (Sg} as a function of kzx for various
temperatures and fields: (A and 0) T=l'K for H=1006
or 1kG (curves for the two different fields are indistin-
guishable); (8 and E) T=10 K for H=1006. (C and F)
X=10'K for H=150kG or &=100'K for H=1006 or
H= 150 kG.

The charge-density oscillations have, however,
only sinusoidal behavior and even though p, (&') and

p, {r)separately are H and T dependent, the charge
density has little H and T dependence. This charge
density is the result of the local inhomogeneous
effective magnetic field provided by the impurity
spin which changes the density of states locally.
As seen from Eqs. (68) and (101) and the symme-
tries in Table H, the charge density [p„;(0)
+ p„;(0)= 0] exactly vanishes at the impurity site
for all values of H and T. This is the same result
found by Ishii. 38

The results obtained here disagree with the cal-
culation of Heeger et al. '0 which predicts a long-
range Donoscillatory component in the spin polar-
izRtion, Theix' splD polarization hRd R long-x'RDge
component that was of the same form as the various
correlation function calculations, 3'6 i.e. ,
[sin(2k')/r] . Any nonoscillatory long-range
component such as this should show up in a shift
in the host NMR results. Experimental results on
Au(Ag) V by Narath and Gossardaa indicate no
such shift exists. Later experimental work by
Golibersuch and Golibersuch and Heeger on CuFe
also shows Do shift. The fact that any nonoscillatory
component in the spin polarization is undetectable
in the host NMR indicates that it is short range
and this is in agreement with our calculations.
This agreement indicates that this particular ex-
periment will not differentiate between the validity
of the 8-d and virtual state models as previously
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thought. 3~ Calculation with the virtual state model'0

gives no nonoscillatory spin-polarization contri-
bution and our calculation with the s-d model
gives the nonosciQatory component too short range
to detect. Also both models give charge-density
oscillations.

IV. CONCI. USIONS

We summarize the main results and conclusions
of this payer as follows:

(a) A comparison of our magnetoresistance re-
sults with experiment' ' ' is favorable but indicates
that the low-temperature high-field effects are over-
emphasized in our calculations. This is probably
due to the truncation approximation applied to the
equations of motion.

(b) Our results for (s'S ) indicate that signifi-
cant effects of exchange scattering persist even at
high temperatures and fields. For lorn fields as
T-0 we find unphysical values for (s'8). This
is a defect in the decoupling procedure which al-
ready showed up in the zero-field calculation of
the specific heat 4 and susceptibility. ~0

(c) The fact that we find 8„ to be an order of
magnitude less than and opposite in sign to (8') in-
dicates that there is no large contx ibution of the
conduction electrons to the impurity susceptibility.
This is in agreement with the latest experimental
results3~~3. We also conclude that the apparent
disappearance of the effective moment as tempera-
ture is decreased is due to the stxong spin corre-
lations between the impurity and conduction elec-
trons and not due to a spin-compensating conduc-
tion-electron polarization cloud. This is in agree-
ment with the calculation of Klein. ~

(d) Our plots of magnetization in the form H/M

given in Fig. 8 show an extrapolated Curie-Weiss
behavior with a Nehl temperature T, =13.5 'K to
compare mith a Kondo temperature T~ = 16 'K.

Thex'e is aloe-temperature, 7 & 7&, deviation from
the Curie-%eisa behavior in the direction of in-
creasing susceptibility which increases with field.
This behavior appears to be inherent in the single
impurity model and cannot be due to impurity
clumping.

(e) Our results for the spin polarization show
that there is no long-range nonoscillatory compo-
nent that could be detectable by host NMR experi-
ments. The nonoscillatory component is expo-
nentially damped by a factor that depends on the
ratio of the conduction-electron bandmidth to the
Fermi energy. The charge density is purely os-
cillatory, is essentially independent of T and II,
and vanishes at the impurity site.

ACyNOKI. EDGMENTS

APPENDIX

The Cauchy integrals that have to be evaluated
are all of the form

I=J d(~ [f(v)- —,'][v((u+ in) v((~ —-je)], (Al)

where v(z) is a sectionally holomorphic function
represented by y, (z) as in the theory section. 1n
order to do this we use the procedure of Bloomfield
and Sievert 0 and express the Fermi function in
terms of digamma functions and then expand these
digamma functions by using their recursion rela-
tions and asymptotic exyansions. We obtain

The authors would like to thank Professor A.
Heeger, Dr. C. Stassis, Dr. K. Brog, and Dr.
M. L. Glasser fox many helpful discussions. Also,
me mould especially like to thank Dr. K. Petzinger
for critical comments on our truncation scheme and
our method of calculating (8').

1 imA1 1 1 2N+ 1 ix
D J -" *" „,x —ix(kT/D) (kx —() k(x —iP) 6 D x —iP kxi(kT/D) k kx(kT/D))

1 imkT 1 1 2N+ 1 ix
„,x ~ ix(kT/D)(kx —() k(x ~ iP) k D x+iP kxili )T/Dk kx(kT/D))

(A2)

where x= (d/D and P = v(kT/D)(2P+ 1). Note that the
terms of the asymptotic expansions retained have
a single and double pole at + iP and we have dropped
the next term [120 (xaiP)'] ' and those having high-
er-order poles. The error made by representing
the Fermi function on the real axis in this manner
can be estimated for any value of N, the number of

isolated single poles, and temperature T by evalu-
.ating the fourth-order pole term at x= O. It can be
seen that as the temperature decreases the loga-
rithmic term becomes dominant. The contour of
the first integral on the right-hand side of E(l. (A2)
can be distorted into the uhp where we know the
position of all the poles and branch cut and where
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y. (z) is analytic. We treat the second integral in
the lhp likewise. The integral around the branch
cut may be reduced to eliminate the logarithm as
shown in Ref. 20. There are then two cases of
interest; the case where

y, (z)=[y (z)]* (A3)

(A4)

and y, (z)+y (z) = 2Rey, (z) giving the final result

.ar a' TI= —27ji—Q 2Rey, iw—(2n —1) +Rey+ (iP)

.4ga kT 8y, z

—2i dhRe y, ix (A6)

y. (z) = —[y (z)j '
so

&y. (z) &y (z)
Bz g ,~ Bz g

(A7)

y, (z) + y (z) = 2f lm y, (z)

giving the final result

(As)

f=2v&—+2flmy, fw—(2n —1) ++my, (fP), O'7 . . A' T
D „j ' D

He + 2 dxImy, gx .

(AQ)

The integrals in Eqs. (A5) and (AQ) were sepa-
rated into three integration regions. The first,
being from the point P to a point corresponding to
an energy several bandwidths farther along the axis,
is mapped to an interval -1 to 1 by a logarithmic
mapping and then the integral represented by
Gaussian quadrature. This logarithmically mapped
region is to provide a distribution of points that
join smoothly onto the isolated points even at low
temperatures. The second region, from the end

of the first region to a point corresponding to sev-
eral factors of 10 tj.mes the bandwidth, is mapped
linearly to -1 to 1 and again Gaussian quadrature
is used. The third region, from the end of the
second to ~, is done by I.aguerre quadrature.

The integrals to be evaluated using the above
considerations are 4'~ z(z), C; z(z —o (g;y+ 8&/2')),
C'; z(z —og,y), their first derivatives at z=iP, the
special points @'(iD —zog, y) and a derivative term
X' used to avoid the indeterminacy in the expres-
sions for G„Gz, etc. For example, see Eq. (62),
when z ~crg~y- za, we obtain a term

which j.s treated as another function to be evaluated
self-consistently. The process of evaluating the
above functions is started by inserting their zero-
field values determined from the exact solution to
the resultant Riemann-Hilbert boundary value
problem. ~4 Then the process is iterated until con-
vergency for a finite but small external field. These
results are used as a starting point for a higher-
field calculation, etc. In this way we can obtain
results for arbitrary fields and temperatures. The
quantities of physical interest are calculated at the
same time after convergence is obtained at each
field value. The error after each iteration was
calculated as the sum of the squares of all relative
errors in the functions enumerated above. When
this error was less than 10 ', then (8') was com-
pared with its value at the last iteration. When
the error in (S*) was less than 0. 0005, the process
was considered to have converged and the quantities
of physical interest then calculated.

The above procedure was carried out for T= 1,
5, 10, 30, 70, and 100'K and for magnetic fields
up to 150 kG; the results are presented in the
figures contained in the text. The number of iso-
lated pole points chosen was such as to represent
the Fermi function to eight place accuracy. The
number of integral quadrature points used varied
with the temperature and field and was as high as
80 for T= 5'K. At temperatures below 5'K and
fields above 2 kG the convergence time becomes
very long and puts a practical limit to the extent
of our calculations as indicated in our results.
Also we were constrained to simple iteration by
machine memory limitations. See also the remarks
in Sec. IIIB.
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The nonperturbative expression for the static correlation function, (S' (r) ' S ~), formulated
in an earlier publication, is computed nuxnerically. Our calculation shows that for large dis-
tances (k~~ &r &D/Tz) the static correlation function damps down much faster than 1/r2. This
is in disagreement with the large-distance —

I a I [(sink&r)/k~] behavior predicted by some
recent calculations.

I. INIRODUCIION

The static correlation function (henceforth refer-
red to as SCF) in dilute magnetic alloys has been
subjected to extensive theoretical investigation in
the last few years. The SCF is of considerable
physical importance, as a spatial average of this

function describes the impurity contribution to the
magnetic susceptibility in dilute alloys. In a re-
cent publication, Fullenbaum and Falk' have ex»
amined the SCF on the basis of Nagaoka's theory~
as well as the singlet-state theories due to Heeger
and Jensen and Applebaum and Kondo. They found
that for low temperatures the dominant behavior of


