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Magnetic properties of narrow-hand solids are considered by calculating the spontaneous
magnetization and susceptibility as a function of temperature of the Hubbard Hamiltonian,
which should be applicable to them, in the limit as the ratio of interaction to hopping energy
approaches infinity. Results are found for those lattices shown rigorously by Nagaoka to have
a ferroxnagnetie ground state. The calculation is performed by a diagrammatic expansion of
the partition function in which the choice of diagrams to be summed dominates the expansion
in the limit of temperatures much less than the hopping energy. The model is expected to be
applicable to the transition-metal disulfides Fe& „Co@2 and Col pfi„S2 (0 & x& j.), and the results
of this paper are compared with experiments done on these compounds.

I. INTR()DUCTION

Jarrett et al. have observed that the compounds
Fe, „Co,Sz (x goes from 0 to 1) appear to have
metallic electrical conductivity and at the same
time magnetic properties of a ferromagnetic local-
ized spin system. That is, these compounds are
ferromagnetic, they obey a Curie-Weiss law for
temperatures above their Curie temperature, and
the saturation moment agrees with the moment
calculated from the measured Curie constant.
Furthermore, the saturation moment is just

(1 —x)8v, +xso, for Fe, „Co„s~

(1 —x)S,+x8„, for Cog „Ni„82

for most x between 0 and 1, where S~„etc., repre-
sent the free-atom magnetic moments for the re-
spective atoms in the appropriate crystal field for
these compounds. Evidence is presented in Ref. l
that there are two narrow partially filled bands
(bandwidth -1 eV or less) which are responsible for
both the electrical conduction and magnetic proper-
ties.

It was shown, using the exact results of I ieb and
Wu, that a near-neighbor hopping Hubbard model in
one dimension exhibits localized spin beha. vior for
interaction energy infinitely greater than hopping
energy even for a less than half-filled band (which
exhibits metallic conductivity). In this paper, the
temperature and field dependence of the magnetiza-
tion of the three-dimensional Hubbard model with
infinite interaction is investigated. It can be shown
using a canonical transformation' thai the Hubbard
8amiltonian

3C=QA((C C~~+ Ugn, ng,

in the infinite-U limit reduces to

(2)eral =~& ~y~ ge&ge ~

fj
Here, C&, is the annihilation operator for an elec-
tron of spin o in the Wannier function on site j, U

is the interaction energy, A, &
is the hopping matrix

element,

a = Cuff C)a

a„=(1-n, ,)C;, .
Equation (2) only allows electrons to hop onto a site
not occupied by another electron of either spin.
Nagaoka' has shown rigorously that the system de-
scribed by Eq. (2), restricted to near-neighbor hop-
ping, has a ferromagnetic ground state if it contains
one electron less than the number of sites, for sim-
ple-cubic and body-centered-cubic lattices, and for
hexagonal closed-packed and face-centered cubic
lattices for A, , the near-neighbor hopping matrix ele-
ment, greater than zero. In this paper the magne-
tizationand susceptibility of this system will be cal-
culated as a function of electron density and tem-
perature.

We proceed by evaluating the partition function
as follows:

where I {i},n{i})denotes a Slater determinant of N,
Wannier functions (N, is the number of electrons),
{i}denotes the locations of "holes" (i.e. , sites not
occupied by an electron of either spin), @{i]repre-
sents the set of spins of all electrons on sites not
belonging to {i},and K„, is given by Eq. (2). If the
exponential is expanded in a Taylor series in powers
of P, Eq. (4) reduces to

Z= Q Q~„({i];+{i})—,(Pf)" (5)
ii}n(i} n

for near-neighbor hopping. A„({i},n{i})is the num-
ber of paths of the N, -N, holes, where N, is the
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number of lattice sites, which together involve n
near-neighbor hops which either take each "hole"
around in a closed path ending on the site on which
it began or interchange positions of two or more
holes. (A is negative for the "exchange" paths. )
At the same time the paths must return the electron
spins to the configuration denoted by o.(i). All terms
in Eq. (5) will be found to be positive if "hole" den-
sities are small, because for simple-cubic and
body-centered-cubic lattices only even n contribute;
for the other lattices considered by Nagaoka there
are also only positive terms if h is taken & 0. Since
we will be considering the regime in which KT «h,
we will see that high orders (i. e. , large paths) will
tend to dominate Eq. (5).

In Sec. II, we will evaluate the partition function
in this way for the trivial case of a spinless free-
fermion system, i.e. , Eq. (1}without spin and with-
out the interaction term. Since this problem has an
exact solution, we can use it to test the method.
We may then apply what we learn about the physical
significance of the various paths that contribute in
this problem to the more interesting problem of
finding the magnetization predicted by Eq. (2) with
spin. This problem, the contribution of this paper,
is solved in Sec. III. In Sec. IV, these results are
compared with experiment.

II. SPINLESS FERMION PROBLEM

Let us first consider the spinless problem for a
nearly filled or nearly empty band. Here, we will
not restrict h;, to near neighbors but will consider
the general case. For this problem, Eq. (4) be-
comes

z=Qg({f)~ —,(-P)"(Qa,,ct c,)"~ff)), (6)
(t) n n I

where the number of electrons (or holes) located at
the sites (l) is taken to be much smaller than the
number of sites in the lattice. Then, since for
most terms in the summation over (f), the electrons
(or holes) are always quite far apart, the nth order
term in Eq. (6) consists predominantly of closed
paths in which each electron (or hole) is taken from
its site and returned in the end to its original site.
The numbers of sites in the paths of the various
electrons (or holes} will be denoted by (n~) = n&, n2,
. . ., n„. Using the fact that the number of ways of
distributing n hops of the electron (or hole) among
the set fn&) is

n /n1 ) ~ ~ ~ ) nNt I I
e

and writing h;, as

1„=(N.) 'g„-~(k)e'"'"~ "~',
the nth order term of Eq. (6) is found to be

Ne~=riz ——' ""
', I'1,(k, , , )

p=1ffp N, npt )

x Z exp2kp, (
' (Rp )

—%p (, ~), (7)
Rp, lp

where N, is the number of electrons (or holes),
5~ „,, =5~, for all p, and k~, is k associated with
the l~th hop of the pth electron (or hole). Then, on
summing over the 8's, Eq. (7) becomes

Ne
& = II g (- p)"~, e(~,)"~

np!

Ne

exp[-PQ e(k~)] .
1~ If2' ' ~N p=1

e

(8)

This is the partition function for a noninteracting
spinless system if the Pauli-exclusion principle is
neglected. Equation (8) is a valid approximation
if the mean number of lattice sites between electrons
(or holes), which is of the order of (N,/N, )"', is
much greater than unity.

As the electrons (or holes) become more concen-
trated, their paths can no longer be considered to
be noncrossing. We then must also consider paths
in which different electrons (or holes) exchange
places. Collision paths (i. e. , paths in which two
particles arrive simultaneously on the same site)
are included, because by including exchange graphs,
the anticommuting property of the C operators auto-
matically cancels the contribution from such graphs.
The contribution due to such exchange paths, which
must be added to Eq. (7), looks like Eq. (7) multi-
plied by -1, with the restriction on the summation
over g~ „)changed as follows:

Rp gp+$ Opt g y

Rpt g$., = Q.l

where P 4 p and P 0P . When summed over the
8' s, we get the negative of all those terms in Eq.
(8) with two or more k's equal. When this contribu-
tion is added to Eq. (8), it cancels all terms in Eq.
(8) with two or more equal k's leaving

Ne

exp[- PQ e(k,)], (s)
p=1

g= L
"1 "2'' ' ' "Ne

III. NARROW-BAND SYSTEM WITH SPIN

The first step in the calculation of the partition
function using the effective Hamiltonian of Eq. (2) is
the enumeration of the various hole paths which
contribute to order n in Eq. (5).

All possible paths connecting near-neighbor sites
in a three-dimensional lattice and returning to the
origin can be constructed out of two types, which
we will call a "loop" and a "line. " A loop con-
sists of any closed path which returns to its start-

the well-known partition function for a noninteracting
spinless Fermi system.
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ing point. A line is a path which starts at some
point in the lattice, ends at any point, and which
must be traversed once in each direction by a hole.
A line may connect loops to produce reducible
graphs in the language of Abrikosov, Gor'kov, and

Dzyaloshinski. ' In most cases, a loop will be a
low-symmetry loop, using the language of Ref. 2.
Spins are randomly distributed on such a loop.
This means, for example, that if a loop is simple
(does not cross itself}, a hole must move around
the loop as many times as there are electrons on
the loop in order to return the spins to their origi-
nal configuration, since each time around the loop
the hole cyclically permutes the loop's electron
spins by one lattice site. It was shown in Ref. 3,
however, that there are also high-symmetry loops
for which the hole need not travel as many times
around the loop as there are electrons to return
the spins to their original configuration. These
loops have the electron spins on them ordered in
such a way that when they are cyclically permuted
a fraction of the way around the loop, the loop has
returned to its original spin configuration. The
order n to which a particular path contributes is
equal to the number of hops of the hole around the
path necessary to return the electrons on that path
to their original spin configuration.

Let us now determine which type of path gives the
largest nth order contribution to Z in Eq. (5). It
has already been mentioned that for KT «h, terms
with n»1 dominate in Eq. (5). By definition, a
line of p sites always contributes 2p hops to n. A

simple low-symmetry loop of p sites contributes
P(P —1}=P hops. A self-crossing low-symmetry
loop of p sites must be traversed at least p(p —1)
times and there will be restrictions on how it may
be traversed, thus reducing the number of such
paths. A ferromagnetic loop (i. e. , a loop having
electrons of the same spin on all its sites} is the
highest-symmetry loop and always contributes an
order p. The number of lines of p sites is equal to
the number of near-neighbor hopping paths of p
sites, which is z, where z is the coordination num-
ber of the lattice. The total number of loops of p
sites is, on the basis of random walk theory, -z /
p . For a given order n, a low-symmetry loop
will give a smaller contribution than a high-sym-
metry loop. The reason for this is that a given con-
tribution n& to the number of hops from a high-sym-
metry loop comes from a loop with more sites than
a corresponding low-symmetry loop giving the same
contribution n, . Since we have seen that the num-
ber of loops with p sites increases with p for large
p, we will find that there are many more high-sym-
metry loops contributing a given ~, hops than low-
symmetry loops, for large n, .

In general, the number of loops of a particular
symmetry, which can be drawn, depends on the to-

tal spin of the state being considered in the summa-
tion in Eq. (5). It will now be shown that ferromag-
netic loops dominate over all loops in Eq. (5) for n,

For M spin-up electrons and a total of N, elec-
trons, the total number of ferromagnetic paths of
order n, assuming random distribution of spins, is
- (N,/N, )"[(M/N, )"+ (1 —M/N, )"]z"/n for n» 1.

(10}
The bracketed quantity is the probability of making

n hops onto sites of the same spin. Equation (10)
gives a minimum contribution of 2(2z)"n ~~z for
M/N, = ', . The—high-symmetry loops can be labeled

by an integer q, which is the number of electrons
in a unit cell which repeats itself on the loop.
Therefore, q is the number of times the loop must

be traversed. For a ferromagnetic loop, q =1.
The case q = 2 is the antiferromagnetic loop, etc.
The total number of loops lf lower than ferromag-
netic symmetry give a contribution of less than

n~/~

P z~~&(q/yg)~ &z ( ~& &&z&&(2/n)s&& (11}
0=2

where q is the number of times the path must be
traversed to return to its original configuration.
(Of course, this summation is restricted to q such
that n/q is an integer. ) This contribution is much
less than the number of ferromagnetic loops given
in Eq. (10) for n»1. [Single lines are included in
Eq. (11) as q =2 loops. ]

Next, we must consider multiply-self -crossing
loops. A graph of the type illustrated in Fig. 1

will not contribute, in general, unless it is ferro-
magnetic. The reason for this is that it contains
loops which cross themselves more than once, and

since such crossings reorder the spins on the loop
for every trip of the hole around the loop, it will
be impossible for the hole to return the spins to
their original configuration in any finite number of
times around the loop (for n»1). The only multi-
ply-crossing loops which do contribute are of the
form illustrated in Fig. 2. This loop has several
distinct noncrossing loops. Motion of the hole
around the path does not reorder the spins on any

loop or transfer spins from one loop to another.
Thus, each loop may be traversed by the hole as
many times as necessary to cyclically permute the
spins on it back to their original configuration with-
out interfering with any other loop. Some of the

FIG. 1. This is a multiply-cross-
ing "hole" path. The arrows denote
the direction in which it is traversed.
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loops on such a path may be ferromagnetic and
others not. If of n, hops taken up by this path, n'
hops belong to nonferromagnetic loops, and the re-
mainder belong to ferromagnetic loops, the total
number of such paths is found to be less than

tion from highly improbable distributions of elec-
tron spins, in which large numbers of electrons of
the same spin lie close to each other. Thus, we
assume up- and down-spin electrons to be random-
ly distributed and make a random-phase assumption
by replacing the summation

„g exp[i(kp& ,& -kn, .-r )'Rp, & ]
Rp gp

(Is)

&2 &3 /4

for large n. Here

i)3/2 &))'/2

is the total number of loops conta. ining n'/2 sites.
The contribution of low-symmetry loops contributing
the n ' sites is clearly less than this number. Then,
for large n, Eq. (10) is clearly much greater than
the sum of Eqs. (11) and (12), and hence, ferro-
magnetic loops dominate over all other loops.
There could, however, be significant contributions
from the paths considered in Ref. 8, which consist
of several lines which have one end passing through
the origin. The magnetic ordering, however, is
due mainly to the ferromagnetic loops. The contri-
butions from the ferromagnetic loops and the paths
considered in Ref. 8 to the band edge should be
nearly equal for the face-centered cubic lattice for
random spin ordering. If we include further than
near-neighbor hopping (this is like increasing the
effective number of near neighbors), the ferromag-
netic paths will at some point always tend to domi-
nate. Hence, we will only include the contribution
to ferromagnetic paths.

Let us now evaluate the partition function from
Eq. (5), including only ferromagnetic paths. (The
same arguments apply to exchange paths. ) Follow-
ing the development in Sec. II for the spinless case,
we obtain Eq. (7), with the exchange path contribu-
tion subtracted from lt, except that Rp, lp ls now

only summed over sites having the same spin. For
each hole we get two contributions, one for sum-
ming over spin-up sites only and one for spin-down
sites. Their respective contributions depend on
the total magnetization of the system. The result
must then be averaged over all possible locations
of spin-up and spin-down electrons and initial loca-
tions of holes. If N/, /N, is not so small that all
holes lie in the band tail, we neglect the contribu-

FIG. 2. This is a multiloop
path in which each loop does not
intersect itself. Again, the arrows
indicate the direction traversed by
the "ho).e".

either with M if we are summing %~, over spin-up
sites, or with N, —M if we are summing it over
spin-down sites multiplied by the Kronecker delta
5(k~. .. k~, ). Performing these operations, the
partition function is found to be

Nht =0 kglk2 ' '
Nht

~t

Nht+ 1 Nht+2
'

Nh

(i4)

and

h q P f 1 ek-(&(k6( &~ &//~ N- &)))-&&

p ~u Na kQ
(16)

9 M—PH= ln q= —ln
e

I ~ M
Z t f —&(k)—

2N, N,

N, -M
/(- e()&)

' ))~(%),
a

where H is an applied magnetic field, m = 2M —N„
the magnetization, and where

f(//) [eB(x-u& y 1]-&

Below the Curie temperature, Eq. (17) becomes
for H=O,

M
m = —N, tanh — Z &, f —&(k)

4 NG NG

-/(-~to ' ~(i)
N, P (18)

where N, = M and N, =N, —M, and where Nht is the
number of holes taking spin-up paths.

It will be more convenient in the discussion that
follows to use the grand canonical partition function
defined as follows:

q=Z '"' z =-II(I+ """""'"""') N
Nh

Nh ka

(i6)
where u is the chemical potential of the holes.
From Eq. (15) we find
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FIG. 3. Spontaneous magnetization m per site plotted
against T. m is dimension1ess, and T is in units &/K.
D =N, /N. .

m =~,sr/(zr ze), - (19a)

—Z„-e(k)'f' —,'~(I )~, (1Ob)
jN 1 ~~, I ~ N

The solution of this equation gives the spontaneous
magnetization. It is easy to see from Eg. (18) that
the system will order at sufficiently low temper-
atures reaching a saturation magnetization of N,
as T approaches zero. Above T„we find by lin-
earizing the right-hand side of Eq. (17) in the mag-
netization that

f s(&) p [e g(x-u)/(e 8(x-I) I)2]

For sufficiently high hole densities, K8 given by
Eq. (19b) becomes a constant and is given by

ze = -', (lv,/x. )e,'p(e„),
where p(e~) is the density of states for the nonin-
teraoting system, and -', (N, /N, )e„=u. Hence, for
sufficiently high hole densities, the spin suscepti-
tHllty system obeys a Cul ie-%elss law above the
Curie temperature, and at low temperatures the
system orders ferromagnetically, with all spins
aligned at zero temperature.

Although the justification for taking ferromagnetic
paths was based on an argument assuming near-
neighbor hopping only, the argument should hold
for a longer range hopping integral, too. Extending
the range of the hopping integral is like increasing
the effective number of near neighbors. Let us
now evaluate the susceptibility, Curie temperature,
and magnetization as a function of temperature for
a simple model of the electronic structure in which

p(6) ls taken to be given by
1

p(&) = 1/2 & for —b & & ~ 6

and zero otherwise, where 4 is half the bandwidth.
The spontaneous magnetization as a function of
temperature, the Curie temperature as a function
of density, and Ke as a function of temperature
and density have been obtained by solving numeri-
cally Eqs. (18) and (19b) simultaneously with Eq.
(16). The results are shown in Figs. 8-6. The
magnetization is found to fall off from its saturation
value quite sharply at first, and then fall much
more gradually to zero at the Curie temperature,
as seen in Fig. 3. Similar results were found for

O.IS-
NII/Nf1= 0.IO T -"O.OP.

O. I2

0.08—

0.04- 0,04

0
0 O. I

T
0.2 0

O. I

Nh/Nf1
0.2

FIG, 4. 8 against T, both in units of 6/K. FIG. 5. 8 versus N„/N„8 in units of &/K.



J. B. SOKOLOFF

0.!0

0.08-

0.06

FIG. 6. Te versus N~/N~; Te in

unit'8 Of +/+

0.02

Oi
0 0.2

hole densities other than the one illustrated in Fig.
3. From the behavior of K8 in Pig. 4, we see that
the system does not have a Curie-Weiss suscepti-
bility at low hole densities, i.e. , for densities to
the left of the peak in the Tc versus N„/N, curve.

The method described in this paper is probably
only accurate in the fairly low-hole-density regime.
As the hole density increases, the Curie temper-
ature reaches values at which the ferromagnetic
paths should no longer dominate. Also, at higher
hole densities, since the exchange contribution is
large, paths other than ferromagnetic paths become
more important. At still higher hold densities,
the approximation breaks down because there are
so few sites available for a hole to hop onto that it
no longer makes sense to speak of holes hopping.

The physical description of the magnetic ordering
in this model appears to be that magnetic ordering
occurs because the hold band is narrower in the
paramagnetic state than in the ferromagnetic state.
Thus, the holes have lower energy in the ferromag-
netic state.

IV. COMPARISON OF THEORY VfITH EXPERIMENTS ON
TRANSITION-METAL DISULFIDES

Transition-metal disulfides are actually believed
to be described by a two-band model. Consider
the following two-band Hamiltonian in which only
intra-atom1e Coulomb and exchange 1ntegrals are
included:

X= Z h„Ct~, C~„+U X (n;, n), + Z n~, n;g, )
fj ie ee'

age a88

C fe e C Axe ' C fBe ' C N e s
ee'
el'

where U and J are the intra-atomic Coulomb and
exchange integxals, respectively, and & and p label

the orbital (there are two relevant orbitals per site
corresponding to the two e orbitals of the metallic
ion). If we assume that the number of electrons is
less than the number of lattice sites and U is much

greater than h&&, the Hamiltonian describes a sys-
tem in which electrons hop between sites which can
only contain either 0 or 1 electron, as in the one-
band model. The difference is that for this Hamil-
tonian if U and J are taken to be large but not infi-
nite and U»J, there will be an effective ferromag-
netic-exchange interaction due to admixture of
states containing two electrons on a site. By con-
trast, in the one-band model in the large U limit,
there is an effective antiferromagnetic exchange.

According to this model, the system shouM be
a ferromagnetic insulator when there is exactly
one electron per site. (This should correspond to
CoSz. ). However, CoSz is observed to be a ferro-
magnetic metal. A reasonable explanation of this
is that in the compound Pe& „Co„82as x goes from
0 to 1 (i.e. , as the number of electrons per metal-
lic site goes from 0 to 1), the ratio k/U increases,
and somewhere near x=0.95, h becomes compar-
able to U and the theory discussed in this paper no
longer applies. It is precisely at x = 0.95 that the
saturation magnetic moment decreases below the
number of electrons (its maximum possible value).
Pox' x & 0.95, the compounds are probably better
described by the conventional band theory of mag-
netism bRsed on the HRl tl ee -Foek Rppl oxlmRtlon,
Near x = 0.95, apparently, there is a good deal of
"polar state" admixture as occurs in a compound
undergoing a metal-to-insulator transition. The
difference here is that there is less than one elec-
tron per site in the conducting band, making the
compounds metallic on both sides of this transition
a po1nt.

A point of agreement between theory and experi-
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ment is that the T& versus hole concentration curve
(Fig. 6) predicted by the theory peaks at N„/N,
= 0.25, which corresponds to x=0.75. This is close
to the point at which the experimental curve peaks.
Although we do not expect the ferromagnetic paths
to still dominate at temperatures near the peak in
this curve, we still expect the results to be at least
semiquantitatively correct. A point of disagreement
between theory and experiment is the non-Curie-
Weiss behavior of the magnetic susceptibility above
T~ predicted by the theory for small hole concen-
trations, which is not observed in the experiments.
For low hole densities, however, the effective fer-
romagnetic exchange due to virtual admixture of
states containing two electron atoms might actually
dominate. Since this effective exchange can be de-
scribed by a Heisenberg model, it should give rise
to a Curie-Weiss susceptibility.

Polaron hopping theory is ruled out as a descrip-
tion of these compounds because polaron theory
predicts polaron band conductivity decreasing with
increasing temperature below a certain temperature
and thermally activated hopping above this temper-
ature. The conductivity is observed to decrease
steadily with increasing temperature. There could
still be some polaron effects, however. It is also

possible that rigid-band theory may not describe
these mixtures of compounds and that, instead,
impurity bands are formed. This is ruled out be-
cause if there were cobalt impurity bands, they
would have to contain one electron per site in the
band. Thus, if their bandwidths mere not above a
critical value (bandwidth & U), they would not con-
duct electricity. Above this critical value they
should be described by conventional band theory of
magnetism, which does not predict the localized
electron magnetic properties found for these
compounds .

Thus, we have seen that it is possible for nar-
row-band itinerant-electron theory to account for
both metallic conductivity and magnetic properties
characteristic of localized electrons, exhibited by
the same conduction electrons, in a simple experi-
mental itinerant-electron magnetic system.
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