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The work reported here, which deals with the influence of electron-electron interactions
on the optical properties of metals, is motivated by existing discrepancies between the observed
interband absorption and that calculated within the random-phase approximation (RPA). These
interactions are treated systematically using a self-consistent conserving-approximation
scheme. Both vertex and quasiparticle renormalization effects transcending the RPA are
considered on an equal footing. Repeated first-order scattering of a quasielectron and a
quasihole via the dynamically screened Coulomb interaction is the principal process inves-
tigated. The contributions are of two kinds: one associated with a statically screened Coulomb
interaction and the other with exchange of virtual plasmons. The latter contribution, although
larger than the former, is substantially cancelled, to within about 10% in Al, by quasiparticle
dressing effects due to virtual plasmons. Those second-order effects in the dynamically
screened interactions, whose inclusion guarantees a conserving approximation, are also
negligible. Recent experimental data for Al are reviewed and new theoretical calculations
within the RPA presented which appreciably reduce the existing discrepancies. These provide
support for the present conclusion that electron-electron interactions do not significantly
affect the optical absorption. Previous calculations for Na are discussed and the situation
there may well be similar.

I. INTRODUCTION

The quantitative success of band theory in ex-
plaining the shape and magnitude of the interband
contribution to the dielectric constant has been
far more marked in semiconductors than in met-
als. ' While recent calculations of semiconduc-
tors" have obtained close agreement with ex-
periment, the corresponding calculations for
metals have differed in magnitude by as much as
a factor of 3.' ' A number of proposals have been
put forward for dealing with these discrepancies
which have focused either on the effects of the
electron-electron interaction resulting from the
presence of conduction electrons in metals
or the fact that the pseudopotential that must be
used in calculating optical properties may differ
substantially from that used to calculate band
structures. " In connection with many-electron
effects, Hopfield first drew attention to the fact
that in the calculation of optical properties, the
pseudopotential must be screened by the frequen-
cy-dependent dielectric constant appropriate to
the incident light. The fact was used in Ani-
malu's' subsequent formulation of the optical
pseudopotential Bnd its application towards ex-
plaining existing discrepancies in the alkali met-
als. Overh3user addressed himself to the same
problem but emphasized instead the role of the
exchange interaction which was taken to be un-
screened. The results of these efforts may be
summarized by noting that the frequency-depen-
dent screening effect is small, provided that the

exchange interaction is properly screened. The
major corrections within this theoretical frame-
work thus arise from core corrections that are
properly included in the optical pseudopotential
rather than many-electron effects. These results
yield good agreement fpr pptassium. Fpr so-
dium the predicted absorption is increased by
about 501o but still is about a factor of 2 smaller
than experimental values. Weiner'4 and Ma-
han' ' ' have drawn attention to the importance of
vertex corrections which describe the interaction
of the electron and hole produced by the incident
photon. In particular, Weiner showed that the ex-
change of virtual plasmons between electron and
hole can result in a substantial enhancement of
the absorption. Mahan 0' considered spme par-
ticular band models for metals and degenerate
semiconductors and found that even the statically
screened Coulomb interaction, which is responsi-
ble for exciton formation in pure semiconductors
and insulators, can lead to significant vertex cor-
rections.

The present paper presents a systematic theory
that describes the influence of electron interactions
on the optical properties of metals, which reduces
in the appropriate limits to the results of previous
workers, but, in addition, considers effects that
have been hitherto neglected. The most important
of these is the fact that it is necessary to describe
the electron and hole individually as quasiparticles,
since in addition to interacting with each other,
they are also affected by the other particles in the
medium. It will be seen that the quasiparticle ef-
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fects are such as essentially to cancel the enhance-
ment produced by the dynamic vertex corrections. "
The formalism used is that of Martin and Schwin-
ger, ' and Baym Rnd Kadanoff. ' ' A conserving
approximation is employed mhich guarantees that
the subset of all possible diagrams that is selected
is such that the various conservation laws and com-
mutation relations involving particle number, ener-
gy, m et, hag, td sity, s
mell as the sum rule

f, &oe, ((o)d(o= —,'w(o2~,

where co~ is the plasma frequency, are satisfied.
To achieve this it is necessary to consider more
complicated vertex corrections involving two Cou-
lomb interactions and multiple electron-hole exci-
tations. These processes are intrinsically of high-
er order in perturbation theory. The processes to
be considered mill be characterized physically in
terms of a phenomenological calculation in Sec. II,
which is intended to serve as an introduction to the
more formal treatment that occupies much of the
rest of the paper. The principal result of this
work is that effects of electron interaction on the
optical properties in simple metals appear to be
no more than 10 or 20%%uo. This point is elucidated
by means of numerical estimates pertaining to the
alkali metals and aluminum.

The resolution of the discrepancies betmeen the-
ory and experiment therefore remains an open
question. In this connection it should be noted that
of the metals (aluminum, copper, potassium, and
sodium) investigated in greatest detail the discrep-
ancy in aluminum has appeared to be the most
clear cut, since the strong interband transitions
are confined to a small region of the frequency
spectrum which extends only between a.bout I to 3
eV. Thus, it is relatively easy to calculate the
entire interband contribution to the dielectric con-
stant separately from that due to the free carriers.
Recent calculation of Hughes et ul. as mell as in-
dependent work by the present authors have re-
sulted in substantially improved agreement between
theory and experiment. In addition to pointing to
a possible error in the earlier theoretical results
of Ehrenreich, Philipp, and Segall, they also re-
move one of the strongest arguments for believing
that there might be something intrinsically incom-
plete about a band-theoretic approach to calculation
of optical constants in metals Rs opposed to semi-
conductors.

VY6 conclude this section with a more explicit
outline of the content of the various sections of this
paper. The presentation is divided into three main
parts. Because of the complexity of the general
calculations, the first part, given in Sec. II, is de-
voted to a phenomenological description of the ef-

fects of the electron-electron interaction on the op-
tical absorption. This is based on a model Hamil-
tonian whose terms describe the principal interac-
tions that need to be considered, and, in particular,
virtual-plasmon exchange which is the most impor-
tant physical mechanism. The contributions of
first- and second-oxder Coulomb and plasmon scat-
tering are estimated. Significant cancellation of
the contributions arising from some of these pro-
cesses is noted.

The second part of the paper comprises Secs.
III- VI. These provide a more detailed and rigor-
ous description using the Green's-function formal-
ism. In Sec. III~ the relevant notation Rnd formRl
ism is presented. In addition, we discuss the phys-
ical basis for the dex'ivation of a formal expression
for the optical absorption, including the influence
of all interactions. This is written compactly in
terms of spectral densities and the vertex function.
Section IV begins by defining the conserving approx-
imation which has been selected. An estimate is
made of the quasiparticle renormalization factor
and a general procedure is outlined which may be
used to simplify the integral equation for the ver-
tex function. In Sec. V, this integral equation, in-
cluding only the first-order effects, is solved ap-
proximately and the result is compared with that of
other calculations. The cancellation of the dress-
ing effects and vertex corrections, which is respon-
sible for the small contribution of the first-order
processes to the optical absorption, is explicitly
illustrated. An estimate of the contribution of
those higher-order processes in the screened in-
teraction required to produce a conserving approx-

,imation is made in Sec. VI. This contribution is
seen to be negligible. Since the calculations pre-
sented in Secs. IV —VI are extremely lengthy, only
the general structure and bare essentials are pre-
sented. A detailed exposition may be found in
Ref. 20.

In the third part, Sec. VII, the work of Ehren-
reich et al. is reviewed. New calculations within
the random-phase approximation (RPA) using a
pseudopotential band structure and pseudowave
functions are presented, and, in contrast to the
earlier work of Ref. 4, substantial agreement of
the magnitude of the interband absorption with
experiment is found. Corrections due to the re-
placement of the pseudowave functions by the true

ve functions are consider6d and shown to be
negligible.

II. PHENOMENOLOGICAL DESCRIPTION

Two important considerations underlie the pres-
ent calculation. First, the electron Rnd the hole
are quasiparticles due to their interaction with
other particles in the medium. These effects are
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described by the self-energy function Z, labeled by
band indices n, a crystal momentum P, and an en-
ergy variable, whose real part describes the ener-
gy of the particle, and whose imaginary part the
lifetime in the state (n, P).

Because of phase-space limitations for scattering
near the Fermi surface, it is plausible to speak of
inde per~dent single-particle-like excitations. These
are described by a probability amplitude for being
in a particular state which includes a term
Ze'~~'~" "' [electronlike (-), holelike (+)] where
Z « l. e„(p) is the quasiparticle energy and y the
inverse of the lifetime. The remainder of the prob-
ability amplitude is weak Rnd broadly spread out in
energy.

%e expect that it is the sharply defined portion
m'hlch 18 dominant 1Q the optleRl-Rbsorptlon pro-
cess. Thus, in all the expressions based on a non-
interaeting picture, a factor Z must be introduced
for each quasiparticle. The net result is to reduce
the absorption probability.

The second question relates to the sum rule (l. 1),
which must be satisfied by any valid approximate
calculation of Imc ~. Since the electron-hole inter-
actions may shift oscillator strength from the Drude
intraband to the interband region in metals, if the
sum rule is satisfied, an enhancement in the inter-
band range guarantees a reduction in the intraband
range. The self-consistent conserving procedure
developed by Kadanoff and Haym'~' to be used here
ensures that an approximation to e satisfies (1.1).
It requires not only that there be restrictions on the
subset of processes for determining the Z's but
also that subsets of pxocesses of nominally higher
order in perturbation theory be retained.

Because the quasiparticles represent temporally
and spatially varying charge disturbances, their
interact'on must therefore by dynamically screened
by a dielectric function dependent on the frequency
~ and wave vector q. This dynamically screened
interaction may often be treated as being composed
of two distinct parts. Classically, the response
potential has components in and out of phase with
the disturbance, associated with the real and imag-
inary parts of & '(q, &u). In part, the electron gas
responds rigidly Rnd adiabatically to the quasipar-
ticle, perfectly tracking its movement. This part
of the effective quasihole-quasielectron interaction
is adequately described by the statically screened
Coulomb potential and involves Re& '(q, 0).

The second part is out of phase with the distur-
bance Rnd requires the use of dynamic screening.
Most significantly, the quasielectron induces a col-
lective charge disturbance, the plasmon, which
propagates through the medium and makes its pres-
ence felt at the quasihole and vice versa. This
virtual-plasmon exchange is analogous to the vir-

tual-phonon exchange which gives rise to super-
conductivity. The out-of-phase part is associated
with Im e (q, &o) which, for small q exhibits a
sha, rp peRk Rt 40 = M~ ~

In order to characterize these processes physical-
ly, it is useful to introduce the model Hamiltonian

&=K Z s„(p) c~p c„~+Z~p(q)a,'a,

+Z Z g„„.(k, q)c~ „,c„., (a, +a~,)
ttttt

+-,' Z Z..., k„„.(k, q)k„*.„(k', q)

ttt A+@ tn k tt ih tt Q +q

+ Z Z (c/2q}'"(e/m}
ttt, ttt

~ ~„„.(k) c„' „,c„,„(k,+b',),

and calculate the typical processes described above
by perturbation theory. Note that throughout this
paper we use units in which k = 1. (Vector notation
is not explicitly indicated in arguments, sub-
scripts, and summation indices. ) The first two
terms correspond to the noninteracting electxons of
holes and plasmons with energies s„(p) and s~(q),
respectively, where all energies are measuxed
from the Fermi level. The vectors are all crystal
momenta restricted to the first Brillouin zone Rnd
the c's and a's are electron and plasmon field an-
nihilation operators. The third term represents
the electron-ylasmon coupling and the fourth the
statically screened Coulomb interaction. The cou-
pling constants are given by

g, (k, q)=(5„„, (1—5„„,) ( [c„(k)— „.(k)]] '

xq ~ p„„,(k)) ~qi
'

[-,'A 'e (q)]'i'
(2. 2a)

and k„„.(k, q) =(~„„,+(I —~„„,) $m [s„(k)-c„.(k)])-'

xq p„„,{k))e/q/-'[e-'(q, o)]"'.

P„„.(k) is the interband momentum matrix element
which will be assumed to be constant and real;

c„(k)—s„.(k) -=e„„.(k)

mill also be assumed to be a consta, nt obtained by
averaging over the Brillouin zone. Then the g's
and h's are independent of k and the tmo interaction
terms are Hermitian. The last two terms of (2. 1)
correspond, respectively, to the external photon
field with energy a[s-=ep„{q)]and its interaction
with the electrons.

The coupling constants may be interpreted phys-
ically by noting first that since the qth component
of the electronic charge density is
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p(q) =e Z Z &n, k+qIe "-' In', k)c„'...c„,.
n, n'

(2. 3)

The term

e&n, k+qIe "'In', k)c„'„,c„„
describes the charge density produced by the shift
of an electron from a Bloch state (n', k) to (n, k+q).
For small q,

&., k + q I

e- ~ ' In', k )
= fb„(k +q, r)e el'~b„i(k, r)d~r

=&„„.+(1—~„„.) (m [c„(k)—c„,(k)] 'q ~ P,(k)].

(2. 4)

By analogy with the electron- phonon problem, "the
quantity

{c)

n', p

(b)

{d)

[-,'cp(q) 0 ']'~'(a, +at, )

=ne[2cp(q)Nm] '~'(a, +at,), (2. 5)

where N and n are the number and number density
of electrons, respectively, may be written in the
form net, . Here ~R, is the qth component of the
displacement of the electron gas associated with
the plasmon. Thus, the second term in the model
Hamiltonian represents the interaction between the
electron charge density and the polarization field
produced by the plasmon. Similarly, the third
term represents the statically screened interaction
between the charge densities

e &m, k+q
I

e-"' Im', k) c„' „„c„,,
n, k'+q) ct,.c„,„.

The photon momentum for typical optical wave-
lengths may be ignored. A calculation of the ab-
sorption due to the creation of an electron-hole
pair without Coulomb effects, as shown in Fig.
1(a), yields

2.(.)=-. (
—') ~- r z -' ~.".(~)'..~)

n, n' P

x [f(c. (p) ) -f(c.(P) )] ~(c„(p)—c„,(p) —c},
(2. 6)

where f(x) = (e'"+1) ' is the the Fermi distribution.
The next more complicated process in which a

photon excites an electron and hole which scatter
statically within their own bands (n and n', respec-
tively) into an energy-conserving state such that
c„(p)—c„.(p) = c is illustrated in Fig. 1(b). The
contribution of this to the probability for excitation
of a real, final pair is found from second-order
perturbation theory to be

—& ' Z, [(e/m) I „*„.(p —q)]k„.„,(p, - q) k„*„(p,- q)

xf«'(P —q))[c —c.(p —q)+c"(p —q)] '

FIG. 1. Typical excitation processes involving crea-
tion by an incident photon -—-- of a real quasielectron-
quasihole pair; (a) no interaction, corresponding to the
RPA result, (b) statically screened scattering —.——- of
quasiparticle pair, (c) emission of virtual plasmon (wig-

gly dotted line) by quasielectron and absorption by the
quasihole, and (d) the inverse' of process (c).

There are two corresponding virtual-plasmon ex-
change processes illustrated in Figs. 1(c) and l(d),
re spe ctively, in which the electron or hole emits
the virtual plasmon. These make contributions to
the probability amplitude for pair excitation in
third-order perturbation theory of

a- ' Z, [(e/m) Z„*„,(P -q) ]g„*,„,(P, - q) g„*„(P,- q)

xf(c„.( p-q)) [c-c„(p-q)+c„,(p-q)]-'
x [cp(q) + c„,(p —q) —c„,(P) ] ' (2. 8a)

'Z, [(e/m) p„*„.(p -q))g„.„.(p, —q) g„*„(p,—q)

xf(c„.(P —q) ) [c —c„(p—q) + c„,(P —q)]
x [cp(q) + c„(p -q) —c„(p)] (2. sb)

Adding the three contributions from Figs. 1(b)-
l(d) yields a correction to the probability amplitude
for pair creation of

Z, [(e/m) f „*„,(p - q) ]

"&"""(»-q) k.*.(P -q) [c.(P -q) —c. (p-q) —c]-'
+g."(P q)g.".(P, q) [c,(q)+c„,(p-q)- c„.(p)] '

"[cAq) + c.(P q) c.(p)] ')f(c„.—(p ——q) ).
(2. 9)

Using Egs. (2. 2a) and (2. 2b) gives

fl 'Z, e'IqI ' [(e/m)P„*„.(p —q)]

x(e (q, o) [c„(P—q) —c„,(P —q) —c]
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+ —,'c, (q) [cp (q) + c„.(p —q) —c„(p) ] '

x [cP(q) + c.(P —q) —c.(P)] ')f(c. (P —q) )
(2. 10)

Bquaring the tata/ probability amplitude and taking
only the terms linear in the corrections, we obtain
exactly the expression for the optical absorption
given by Mahan. '0 (He allowed for a single dynam-
ically screened interaction between electron and
hole. ) His numerical estimates show the second
term in the square brackets to make a contribution
to the absorption about 10 times that of the first.
Mahan's estimate for Na of the second term gives
an absorption in the threshold region enhanced
about 40% over the RPA value.

Consideration of repeated scattering of the elec-
tron and hole should increase the result further:
If the RPA probability amplitude is increased by a
factor (1+o!)to first order in the corrections, then
to all orders the correction might be of order
(1 —o.') '. This would give an enhancement factor
of nearly 1.6 for sodium. This suggests that much
of the discrepancy between theory and experiment
for the interband absorption would be removed.
Unfortunately though, the argument neglects the
fact that it is a quasielectron-quasihole pair, not a
bare electron-hole pair which is excited by the pho-
ton. Virtual-plasmon exchange also occurs between
the electron (or hole) and the medium. If this is
taken into account, as described in Sec. III, the
subsequent reduction due to the appearance of the Z
factors substantially cancels the enhancement just
calculated within the errors of our estimates —on
the order of 10%. (Exact cancellation can occur in
translationally invariant systems for infinitesimal
excitations, but not in the present case. ) There is
what amounts to a destructive interference between
the plasmons exchanged with the electron (or hole)
and those exchanged with the medium. Although
the corresponding detailed calculations for Cu,
where plasmons are not as well-defined excita-
tions, have not been carried out, nonetheless we

believe that the physical basis for the processes
and cancellation just described is also applicable
here.

Within the context of this discussion there ap-
pears to remain only one possibility for supplying
the needed enhancement factor. It has already
been noted that a conserving approximation is guar-
anteed only if higher-order processes are included.
These, it turns out, involve two dynamically
screened Coulomb interactions. The presence of
the two Coulomb factors or other, e. g. , phase-
space, considerations might make the contribution
dominant. Close consideration reveals that this is
not the case. For these processes, products of
two real parts or products of two imaginary parts

of inverse dielectric functions are associated with
the "in-phase" response of the system. These, as
might have been expected, yield a negligible contri-
bution when compared with the "out-of-phase" re-
sponse which involves products of one real part
and one imaginary part of & '.

A typical process described by our model Hamil-
tonian yielding such a term is given in Fig. 2(a).
Fourth-order perturbation theory gives a contri-
bution to the probability amplitude for pair excita-
tion of

(elm) &.*. (p q)-g:;(P, -q) g„*„,(p, -q)
x@„.„(p', —q) g„„(p', —q)

x [c„,(p) —c„,(P —q) + c„(p' —q) —c„.(P')]

x[ cp( q) +c.(p'-q) —c (p') —c] . (2 11)

Another process leading to the same final state,
shown in Fig. 2(b), yields

—(e/m) p„*„.(p - q) g„.„.(p, - q) g„*„.(p, —q)

xk„*,„(p', —q) h„„(p', —q)

x[c„,(P) —c„,(P —q) + c„(P'-q) —c„,(P') ] '

x [c&(q) + c„,(p —q) —c„(p))

Expressions (2. 11) and (2. 12) do not correspond
exactly to the results of the more precise calcula-
tions to be discussed in subsequent sections. In

n, p

q fl, p

(a)

fl, p

Il, p

FIG. 2. Second-order processes involving the statically
screened interaction and virtual-plasmon exchange corre-
sponding to the Hamiltonian (2. 1).
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Eqs. (2. 11) and (2. 12), e '(q, 0) should be replaced
by Rem '(q, (d) -(d), where (dI, (q) =~p for small q.
The source of the change is the fact that the screen-
ing occurs in the presence of the plasmon excita-
tion of frequency ~~ and the charge density induced
by the photon frequency ~. This implies the mod-
el Hamiltonian is not sufficient to characterize cor-
rectly all the processes which we need to consider.

If the necessary corrections to (2. 11) and (2. 12)
are made, the two added, and their contributions
added to those of other processes producing the
same final state, then they yield a result of only
about ID of that due to the lower orde-r correction
to the absorption. Actually, the complete set of
the present type of second-order processes must
include also the contributions shown in Figs. 3(a)
and 3(b). If these are taken into account, the final
result is reduced even further since the contribu-
tions of Figs. 2(a) and 2(b) tend to cancel those of
Figs. 3(a) and 3(b) and the same is true for the
pairs of processes not illustrated here.

III. DERIVATION OF ABSORPTION COEFFICIENT

(o}

(b)

n', p

p+a

n, p

fl, p

This section describes a general procedure for
evaluating the optical absorption in solids. The
optical properties can be characterized by the
macroscopic transverse dielectric function which
can be written in terms of the transverse current re-
sponse function XI~~

~' as

t(k, (0) ='1+(0 (}|gg(k) (0) —(d~), (3. 1)

for an incident electromagnetic field of wave vec-
tor k and frequency (d.

A. Formal Preliminaries

Field operators:
((H- gs)l

q (r) - ((8- gN)l

'lfl~f 5 ${H- VS)& .t(t e- ${H- ply) 7e

(3.2a)

(S.2b)

where r is a time variable in the range (- ~, + ~)
or (0, —iP), )( the chemical potential, and 1V the
number operator.

Tota/ Harniltonian (for imaginary times):

H=Hp+ ~ f d r(d rm f dra $ (r(, T() (I) (ra, r2)

x()(r„ra; &, —ra) g(r2, r2) g(r„r() . (3.3a)

The first term is the one-electron Hamiltonian

H, = —(2)n) ' f d'r, (I) (r„r,) v', (}(r„r()
+ f d'r, u(r, ) g (r„r,) (1)(r„r,), (3.Sb)

containing the bare ion potential and the second de-

The following discussion employs the Green's-
function formalism' ' which involves the following
quantities and relations.

FIG. 3. A pair of second-order processes which tend
to cancel the contributions of the processes shown in
Fig. 2.

G(11')= —i (T$(1)St(1')), 1-=(r„o„r,), (S. 5)

G(121'2') = (- i) (T((1)P (I')((2) ( (2')), (S.6)

where T is the imaginary time-ordering operator
and ( ) represents the average over a grand canon-
ical ensemble. In a Bloch representation charac-
terized by basis functions b„(p, r) and energies
c„(p),

G„~(P, (o„)=f d(r, —r„)[fd r(d r,.bf(P, r(}
x G(r,r,.; r, —r„)b (p, r, .)j 'e~"( '&'', (3. 7)

with fermion frequencies

(o„=i(((2@+1)P ', @=0, +I, +2, . . .

Dyson's equation:

G (11')= G() ((11' ) —Z(11'); (3.3).

Go and G refer, respectively, to a system de-
scribed by Ho and IJ; Z is the self-energy.

Spectral representation:

G„(p, (o„)=v ' f A„„(p,x)(x-(o„) 'dx; (3.9)

scribes the electron-electron interaction

()(r( r2 r( r2) (e /4v)
~
r( r2

~
~(r( —ra). (S. 4)

One- and two article-Green's functions:
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A„„(p,x) is the spectral density, a positive-definite
Hermitian matrix satisfying

v ' f'"~„„(p, x) dx=5„„.
For the unperturbed system

a„.(p, x) = v5„.5(x- s„(p) ),
and Go,„„(p,&o„) = 5„„[s„(p)—&o„]

Coulomb interaction:

(s. lo)

(3. 11)

(3. 12)

V(q, Q, Q'; x) = V(q, Q, Q'; x+ io) .

Response functions:

(3. 17)

The current-current correlation function and the
current-fluctuation response functions for the n, P

Cartesian components are, respectively,

X~~z (k, K, K'; &o) = A ' f d'r d r ' f d(t —t ')

and

Xg- f(%+ ~) ~ 5 g+ i( k++') ~ V' e k&(t - t')

xe(t- t') ([Z.(rt), Z,(r't')]) (3. 18)

Xzsz (k, K, K'; &o „)= 0 ' f d'r d'r '

d(r rv)e-« &(+ &f) ~ r +«((+ &&
~ ) .p

0

In a plane-wave representation, convenient for
later use,

(3. 13)

Q is a reciprocal-lattice vector and q lies in the
first Brillouin zone. The fully screened Coulomb
interaction (taking into account at/ polarization ef-
fects) is V (11') in coordinate space and

V(q, Q, Q'; &o„)

= f, d(r, —r, ,){It ' f d'r, d'r„e «~+5''~&

xe'" ' '' '&V( rr r —r )]e '"n"& '&'
1 1'&

(3. 14)

in momentum space; &o „=i«(2&&)P
' are boson fre-

quencies, p, =0, +1, +2, . . .
The quantities (3.14) satisfy Kramers-Kronig re-
lations:

V(q, Q, Q'; z) = 5o«. v(q, Q)

+&T
' f „ ImV(q, Q, Q'; x)(x —z) 'dx, (3. 15)

V(q, Q, Q'; z) V(k, K, K'; e+ z')

5QQ ~ 5&&xI v(q, Q) v(k, K)

+v-'f'" [V(q, Q, Q'; x-z)
xlm V(k, K, K'; x) (x-e -e')-'

+Im V(q, Q, Q'; x) V(k, K, K'; x+s) (x —s) ' ]dx.
(s. 16)

Here, z and z' are complex frequencies with Im(e),
Im (e +e ') + 0. For real frequencies,

x[(TJ, (rr)4~(r & )) —(J (r7')J~(r r ))]. (3. 19)

where g&~ is the transverse component of g~~ .
Note that

Im Xgg (k, 0, 0; &o) = (2 &)
'

[Xgg (k, 0, 0; &o + io)

—Xgg(k, 0, 0; (o —io)] .
Electron hole -correlation function:

L(121'2') = Gs(121'2') —G(11')G(22')

satisfies

L(121'2') = —G(12) G(21')

+ f G(13}G(41')"(35; 46)

xL(6252')d 3d 4d 5d 6,

(3.22)

(3. 23)

(3. 24)

where "(35; 46) is the irreducible electron-hole
interaction

(35; 46) = 5Z(34)/5G(65). (s. 25)

Current and charge -dens&ty ver-tex functions:

I'&(ll'2) = (- e/2im) (v, —va, )

x f G(11)L(121'2') G(1'1')dldl'
i „,.„s,

(3.26)

I',(l l'2) = —f G(11)L(121'2)G(1'I') dldl
i

' ~ = 0

(3. 27)
Useful relations involving I'& are

I' (l l'2) = (e/2im) (V —V,) 5(12') 5(21')
i

„2',.„s

—f:(1 3 1'3') G(3'1) G(1'3)

x I',(11'2)d 3d 3' d 1d 1',

((n=(2. ) ( ~„—~„)fn((1&

x I' (l l'2) G(1'1')dl dl' i,'™„'
These are represented diagrammatically in Figs.
4(a) and 4(b).

The transform of I'p is

(3. 28)

(s. 29}

P nn'(p~ ki Qi +vi +v++((i +&()

= f d(r, -r„)f d(r, r,)-

Here

~.(«)=(( )( )-( ) (('(«)&(r'ni. ..
(s. 2o)

is the current operator, 8(x) is the Heaviside step
function, and ~„ is a boson frequency. In analogy
with Eq. (3. 1), the transverse dielectric function

is
a (k, 0, 0; &o) = 1+ (o 2

(X~~q (k, Q, Q; &o) —&o~~), (3. 21)
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will encompass a more thorough discussion of
quasiparticle corrections and put them on an equal
footing with the vertex corrections to be discussed.

B. Broken Diagrams and Formal Expression for Optical
Absorption

(b)

Fig. 4. (a) Diagrammatic representation of the inte-
gral equation for the current vertex function I'& in terms
of the irreducible electron-hole interaction and Green' s
functions . The current vertex X corresponds to the
first term on the right-hand side of Eq. (3.25). (b) Rep-
resentation of the equation for the current-fluctuation-
re sponse function.

The objective of this paper is to evaluate Imxzz
and hence, Im & including terms that transcend
the RPA. In Sec. IV, we note a procedure by which
electron-electron interactions may be included in
a formal way, yielding an expression which is sim-
pler to evaluate and strikingly similar in form to
that given in the RPA.

Im Xzz contains terms involving delta functions
which correspond to energy conservation for the
processes by which the incident photon creates real
excitations in the solid. Examples of such possible
excitations are found by imagining that the dia-
grams of Fig. 4(b) are broken in two by a line so
that points 1 and 2 belong to different parts. The
particular combination of broken Green's-function
lines (or more complicated symbols) thus produced
corresponds to a term in Im Xzz(k, 0, 0; &o) which
represents a possible real photon absorption pro-

&& [f d'r, d'r, .d'r, b„*(p+b, r,) e""'~' '~&

&&b"(p ri ) I', (riri ra' &i-&i, &i-&a)]

y CQP{fg ~ fge) @
$40

I {Ty ~ fa) '(3. 30)

In the subsequent development only the Q = 0 com-
ponent of X'& will be required, and we write this as
I g „„s(p,k~ (0„, (0„+(d~, (dg), suppressing Q. The
first term of (3. 28) yields the RPA results

I'g, „„.(p, b) = J d'r, .e'~ ~3 (e/2im) (v, —v, ,)

&&b„*(p+b, r ) b„.(p, r,) i„.„ (3. 3l)
X

y*(k, 0, 0; (d, ) =-,'0 'p Z
~

I' „„,(p, b) ~'
P n, n'

x [f(s. (p) ) -f(s.(p+&) )]
x [s„(p+b) —s„.(p) —&o„] '. (3. 32)

These have the formal structure of the random- .

phase expression. They were derived using G

Go, which means the "bare" particle energies
and wave functions were employed [cf. Eq. (3.3b)].
Of course, this does not have much physical rela-
tion to a solid and is not the way the RPA is usually
calculated. Rather the average fieM produced by
the electrons is included in a self-consistent man-
ner by use of Hartree or Hartree-Pock energies
and wave functions in Eq. (3.32). Our calculation

X

FIG. 5. Broken diagram for the HPA shovring excita-
tion (on left) (a) of a real quasiparticle pair, (b) dynam-
ically screened scattering before creation of final pair,
and (c) creation of a real plasmon and quasiparticle pair.
The diagrams on the right side of the cut correspond to
inverse processes
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cess yielding that number of quasielectrons, quasi-
holes, and other more complicated excitations.

As indicated by Eq. (3. 22) and shown in Fig.
5{a), the RPA results simply in the creation of a
quasielectron-quasihole pair without vertex correc-
tions. Higher-order processes involve the dynam-
ically screened Coulomb interaction which will be
denoted diagrammatically as a solid wiggly line.
Any diagram in which a break occurs in such a line
may involve the excitation of a plasmon. The four
real optical-absorption processes on the left side
of the cut correspond to contributions to Im gz& in-
volving (a) creation of a non-energy-conserving
quasielectron-quasihole pair which scatter via the
dynamically screened Coulomb interaction into an
energy-conserving final state; (b) creation of an
energy-eonse~ing quasielectron-quasihole pair;
(c) creation of a non-energy-conserving quasielec-
tron-quasihole pair, and emission of an excitation,
such as a plasmon, by the quasihole yielding Rn

energy-conserving final state; (d) the same as (c)
with the quasielectron emitting the plasmon. Pro-
cesses (a) and (d) are illustrated in Figs. 5(b) and

5(c), respectively. Note that the pictures on the
right side of the cut in each of the diagrams cor-
respond to the conjugate emission processes.

Our objective is to select from the expression for
Im g~~ those parts which yield a delta function con-
taining the external photon energy and only the en-
ergies associated with the quasihole and quasielec-
tl on. This ls R rather complicated but straight-
forward procedure which follows the approach of
I anger and Ambegaokar ' and attempts to clarify
a number of points and to eliminate some ambig-
uities. If only virtual scattering processes lead-
ing to the creation of a final real quasipartiele
pair are considered, one obtains

lm )t', ~~(k, 0, 0; &o) = & 'Z Z
P ffgfl gffty5t

~ J {[6' Fz m e'(» ~i y~ y++~ ~)]*

+ [6'Fz,nn'(pi &i y~ y+~~ &)]

XA .„{p+k,y+ro)A„, (p, y)

IV. EVALUATION OF THE OPTICAL ABSORPTION

A prerequisite for evaluation of the optical ab-
sorption is selection of an approximation for the ir-
reducible electron-hole interaction ". %e want to
include in " at least the dynamically screened in-
teraction between the quasielectron and quasihole.
It is also desirable to employ the techniques de-
rived by Baym and Kadanoff' ' for conserving ap-
proximations. DetRlj. ed CRlculRtlons wlthln such R

context for optical absorption were first presented
by Weiner. '

We shall select the shielded potential approxima-
tion in which Z is given by

Z(11') = Z„(11')+Z,(l 1'),

Z„(11')= -i6(11')J G(22') v(1'2)d2

and Z,(11')= iV,(11')G(11') .

(4. 2)

(4. 3)

Equations (4. 2) and (4. 3) correspond to Hartree and
screened exchange corrections, respectively. In
the above, 'V, satisfies

1

V,(11')= ~(11')- fj ~(11)G(12) G(21) V,(2 1')dld2.
(4. 4)

This is the dynamically screened Coulomb interac-
tion within the RPA. Equations (4. 2) —(4. 4) are
illustrated in Figs. 6(a), 6(b), and 7.

Functionally differentiating in accordance with
Eq. (3. 25) gives

This section is concerned first with a discussion
of the quasiparticle factors Z which include Hartree
and screened exchange corrections. Second, a
procedure for simplifying the solution of the inte-
gral equation for the vertex function, independent
of the approximation, is presented, and its physical
significance and relation to other calculations dis-
cussed. Finally, the integral equation within the
shielded potential approximation is formulated and
solved approximately. The cancellation between
vertex renormalization and quasiparticle dressing
effects is illustrated.

A. Quasiparticle Effects

&&If(y) [1 f(y+~)]-f»-{y+ ~)[1-f(y)]])dy
(3. 33)

+1 J' ~m'{P~ ~i y~ y +~~ +)

=- (1 21'2') =- —f6(11')~(1'2) &(2'2') (4. 5)

'=,(121'2') = fV,(i 1') 5(12') 6(21')+G(22') G(11')
is obtained by replacing v„+v„, {d„, and {d~ by
y+v, y, and (d, respectively, and taking principal
parts in all the energy denominators containing
those terms. This expression is strikingly similar
in form to t'hat given in the RPA [Eq. (3. 32) ] where
1"

~ is replaced by an effective probability amplitude
+~g Rnd the bRre pRrtlcle deltR functions Rl"e re-
placed by the quasiparticle spectral functions.

&& [V,(l 2') V,(2 1') + V,(1 2) V,(2'1')] (4. 6)

as illustrated in Figs. 6(c) and 6(d).
We treat dressing effects on the same footing as

the vertex corrections. For the former, it is nec-
essary to introduce the quasiparticle spectral func-
tions A. . Near the Fermi surface, these spectral
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g„(II') =

{a)

V, (((') =

2+ [

Z ((I ) =

—„(I2I'2') =

=,(I2I'2') = i

(b)

—
j P (I I+) ——- ——S(2'2')

i/

8(2I')

FIG. 7. Integral equation for the dynamically screened
interaction in the RPA.

1

,& P) + ~DE C, (p) g

(4. 8)

which we shall estimate.
The momentum-frequency transform of Eq.

(4. 3) is

~s,nn'(» ~s)

=f[~TZ a-'ZZ Z .-'(P-P, q, q;~.)

(d)

FIG. 6. (a) Hartree and (b) screened exchange con-
tributions to the self-energy Z within the shielded poten-
tial approximation and the corresponding contributions
to the irreducible electron-hole interaction, (c) and (d),
required by the conserving approximation.

densities may be replaced by the quantities'

&..(P, x) = 3„„~„(P)~(x - s.(P) ) . (4. 'I)

The band indices are now associated with new Bloch
basis functions, and quasiparticles of self-energy
given by Eq. (4. 1). The quasiparticle energies can
be regarded as real. The Z„i(P) are the quasipar-
ticle strengths given by

xe'lp -p' I-'(nP le'@'i Imp')

xG„.(P, (oq- to ) (m'P'le @'~&' ln'P)]. (4. 9)

In the above,

(Pl' 'I P')

= f u„*(P,r,) e' '
i u (P', r, ) d'r, , (4. 1O)

~ (P, ~~) = ~ ~ [s,.(P) —~&]
' . (4. 11)

u„and u~ are the periodic parts of the Bloch func-
tions, and i is the dielectric function in the RPA.
(The Hartree term does not need to be considered,
since it is independent of frequency. )

%e assume that for the bands and momenta of in-
terest, 6 ~ can be written

The frequency sum can be performed to give

p' Q, Q' rn

xB [1-&f(s.(P') )]~ ' (P-P', q, q'; ..(P') -~,)+6 z-'
x f —,'sgn(x)1m' '(P-P', q, q';x)[& (p') —(o~ x] 'dx) . -

Using Eq. (3. 15) we can write

~.,„,„,(P, z) =-f1-'~ ~ ~"lp-p+gl-'(n'Ple"'i imp')
P' QQ' m

x(mp'le-' "i~ ln'P) -', [1 3f(s. (P"))—]&«,+(6~ 'f, 1m~-'-(P-P', q, q';x)
x [s (P') —x —z] dx) f(s„(P'))
+ (a'm ' f „Im &

' (P -P', q, q; x) [e (P') -x —z] 'dx) [1-f(s„(P') )]

(4. 12)

(4. 13)
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Partial differentiation with respect to z yields

x (a m-'f, Ime '(p —p', q, q.'. ; x) [s„(p') —x —z] 'dxf f(s„(p'))
+(a~-' f' 1m'-'(p-p', q, q'; x) [s (p')-x-x]-'dx] [I-f{s„(p'))] (4. 14)

Now, we lets-s„(P) —io (for a quasihole); in this case, since the energy denominators in Eqs. (4. 14) will
never vanish in the range of p we are considering, we can neglect the io. Observe that if p= p&, both in-
tegrals in Eq. (4.14) are negative definite.

As before, the product of matrix elements and

the Coulomb factor gives the largest contribution
for q=o. Using, for small Ip —p'~,
I e-'(p-p', O, O; x)

r'(1 1'4) =5(14) 5(41') -f f =-,(1 Sl'3')

xG(3'4) G(4'3) rs(44'4) dsds'd4d4' . (4. 22)
= ——,'w '

sp [5(x —sp) —5(x+sp)], (4. 15)

it is found that

eZ, „,„,(p, x)
88 g» g~s (P) $0

~~~
Rg-1 Q ea p««9

~

-2

xf(s. (P') ) [s. (P') —s..(p) —sJ] '. (4. 16)

Corrections from terms for which q 4 0 increase
the magnitude of the result slightly. IM j is an
average of [(n'p ~n9P') [ over the allowed values of
p/

We define

Q„can be seen to be the irreducible polarization
operator and hence, if "z+ "z is the complete ",
then V~ is the fully screened Coulomb interaction
V. Otherwise, 0'~ is some approximation to V.

By considering the first term of Eq. (4. 22), it is
seen that V~ always contains at least the polariza-

tion bubbles which characterize the RPA. If we

solve Eq. (3.24) with " replaced by "s and by

analogy with Eqs. {3.26) and (3.2V), define

r~(11'2) and re�(11'2)we find

r, (11'2)=r',(ll'2)-f f r,'(ll'5) V,(5S)

xc(34) G(4'S) rs, (4492) d5d4d4'dS . (4. aS)

g» g„.(p~- &0 ~ (4. 1&)

{4.16)

Z„(p+0) = 1+o.„(p+0)

for a quasielectron.

(4. 19)

so that Z„,(p) = I+a„.(p) .

Using similar procedures, we can construct

Introduction of

IIs~ (32) = fG(34) G(4'3) r~(44'2) d4d4'

implies that

r (11'2)=r',(ll'2) fr', {11'2) V {22')

x 11„(2'2)dada',

(4. 24)

(4. 25)

8. Vertex Corrections: Resrrangelnent of Hartree Terms

Some simplification of the solution of the integral
equation for I'~ eliminates the necessity for includ-
ing the "& term. Suppose that any approximation
for " is written as "„+"s. (:"z in our approxima-
tion will be taken to be "z.)

We define

v, (12) =~(1 2) —f ~{Is) rr„{s4)v, (42)dsd4,
(4. ao)

which is shown in Fig. 8.
By analogy with Eqs. (3.30), (3.18), and (3.14),

we define

rf „9(P» &9 ~v9 ~v+ &v 9 ~v)9

rz vv (P9 ~9 ~v9 ~v+ ~v 9 ~v)9

II,&(k, q, q'; ~, ), and V&{q, q, q'; &a,) .

Then, Eq. (4. 25) becomes

rz, n 999 (P9 &9 "9v 9 ~v+ ~ v 9 ~v)

where

11„(34)=f J G(31)G(1'3) r {1I'4)d4d4 (4. 21)

E= I g „„(p,k; (0„, (d„+ (d v, (0„)

v ~ 9999 {P9 9 q9 v9 v 999 99)
Q» Q'
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2 = ~[,
'

2 +

FIG. 8. The equation for I'& showing the two contri-
butions, I'q corresponding to direct coupling with the
currents in the system and I'

~ V@IIp J corresponding to
indirect coupling to induced charge densities.

X Ve(k, Q, Q'; (on) ling(k, Q', 0; &on). (4. 26)

Es'(13)= 5(13)+f g(14) j,~(43) d4,

we may write

Ve(1 2) = f e '(eI 3) g(3 2) d3.

(4. 27)

(4. 28)

Previously, it was remarked that when appro-
priately analytically continued, I"z may be treated
as an effective probability amplitude for pair crea-
tion. It is now seen that this probability amplitude
is composed of two distinct parts. The first cor-
responds to the first term of Eq. (4. 25) and can be
associated with an effective probability amplitude
for pair excitation due to direct coupling to the cur-
rents induced by the photon field. The second de-
scribes the fact that the system, in responding to
the probe, induces a charge density characterized
by II,~. This charge density can exert its influence
elsewhere in the system via a screened Coulomb
interaction V~. Given this charge -density distur-
bance, there is an effective probability amplitude
for pair excitations characterized by I',

In terms of a dielectric function

For a model in which the effective screened lattice
potential LP+' is weak, it can be shown that

I'znn' (p~ ki &v~ &v+ &n~ ~n)
E= I'z, nn'(p~ ki ~v~ ~v+ &n ~ &n)

-1x cB (k, Q„„',Q„„';(u„), (4. 29)

where Q„„.= Q„-Q„. and Q„and Q„.are the recip-
rocal- lattice vectors associated with bands n and
n' in an extended-zone scheme. 7

This result is similar to those obtained by Hop-
field, Overhauser, and Animalu. ' In the work of
Hopfield, it is assumed that the self -consistently
screened one -electron lattice potential is weak.
For T = 0, he describes the response to a uniform
external electric field, treating the electron-elec-
tron interactions exactly and the lattice potential
to second order. With these same assumptions,
Eq. (3. 33) yields the same results for quasiparticle
pair creation as Hopfield's Eq. (6).'0 In Over-
hauser' s calculation the response to the photon field
is considered, including explicitly the influence of
the self -consistently determined Hartree and ex-
change potentials the latter of which are taken to be
unscreened. But as Overhauser and Animalu point
out, if screened exchange is employed, the net in-
fluence of the exchange correction is negligible.
Then the factor E~' is relatively unimportant: It
tends to reduce I'ez by about 10%. Thus, without
the other vertex corrections which are ta bq dis-
cussed, the calculated absorption might be less
than that in the RPA.

V. FIRST-ORDER CORRECTIONS

In this section, the contribution of first-order processes will be estimated and the cancellation between
vertex and quasiparticle corrections exhibited. To accomplish this, the simplified integral equation for
1"~ is solved excluding higher -order effects.

Assuming that:-e=:"e and using Eq. (4. 6), the integral equation for I'f becomes

I'z(11'2)=e(2im) ' (VB-V2.)5(12')5(21')I 2 n + f (i V(11')5(13')5(31')

+ G(3 3') G(1 1')
I. Ve(1 3') Vg(31')+ Ve(1 3) Ve(3'1')]j G(3'4) G(4'3) I'eq (4 4'2) d4 d4'd3 d3'. (5. 1)

Introducing the momentum -frequency transform of I' ~ and pe rforming the space and time integrations
gives

I ~, , (p, k; ~„(u„+(u„,(u, )=1'~ „„,(p, k)+iTH p n 'L 5~ (e Ip —p'+@la
td„q, q ~ p ' m, e e, r, r e

&&~ ~(p -p, Q, Q ';&.-&, )(~p+kl ~~ e'Ilp +k) (m'p Ie '~~'lnp)

+iT'5 z a '5 "Iq+Ql '~ '(~, Q, Q ';~.)"lq+k+4I '
td~ O, Q' m, ms, l, r e

xZ (q+k, Q, Q ';&a )G-- (p-q;~„—~ )(np+kle' '&Imp p)(m 'p'-p-le ' ' &'In'p)
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x[(~'P'le""3IIP' -q)Grr (P' -q ~. ~.)(&'P' -qle""3 IIP')

+(m'p'Ie~ "'Ifp '+q+k)GIr ~
-(p'+q+ k;" +~~+~ )(l p'+q+kle'~" IIP'+k)]]

xG„,(p+k, ~„+(u~)G „.(p', &u„)I'z, ~ (p ', k;z„, &„+&~,z~) . (5.2)

Effects arising when sums of momenta such as p+ q+k do not lie in the first Brillouin zone will be ig-
nored because they are small.

The integral equation which Weiner' attempted to solve is obtained if the higher-order terms in square
brackets are ignored. He chose an analytic-continuation procedure for I'z somewhat similar to the one we
have discussed and the result was substituted into an expression analogous to Eq. (5.2). However, the
spectral functions associated with the true propagators were replaced by delta functions since he used non-
interacting Green's functions.

We now temporarily ignore the last two terms in square brackets on the right side of Eq. (5.2) and re-
place each Green's function with the approximation given by Eq. (4. 11). Proceeding as Weiner, we assume
that l"~ is a slowly varying function of ~y so that it may be removed from the sum and evaluated at &y = &„.
Performing the frequency sums, letting T- 0 and selecting the appropriate analytic continuation gives

~1';,...(P, k; ..(p), .(P.k), .)=1",
, ...(P, k)

+II '&» e21p-p'+0l '(n, p+kle""I&, p '+k)(~p'le ""'I"»
pe Q, Q'l, m

x [c,(p'+k) -c (p ') —c] '(—,
' [1 —2f(c„(p ') )] Re e '(p -p ', Q, Q '; c„(p ') -c„.(p) )

--,' [1 —2f(c, (p '+k))]Res '(p -p', Q, Q';c (p'+k) —c„(p+k))

+ e' ~ ' f ', sgn(-x) Im e '(p -p ', q, q ';x){[c (p') -c„.(p) -x] '

-[c,(p'+k) -c„(p+k) -x] ')dx)5 I'. ..(p', k; c„,(p), c„(p+k), ,) (5.2)

where & means a principal-parts integration about the point x = 0 and any point at which an energy denomi-

nator vanishes. Using Eq. (S.15) and .rearranging terms yields

„„.(p, k;c„.(p), c„(p+k), c)=1' „„.(P, k)+II '& Z 5 e'lp-p'+Ql '
P Q, Qe l, m

x( ,np+ kl

'e'~ /I, p'+ k)(m p' le-' "
i Inp) 5 [c,(p'+k) —c (p') —c] '

x(f(c (p +k))Req (p-p, q, q 'c (p +k) c.(p+k))-

-f(c (P'))R« '(P-P', Q, Q'; c (P')-c.(P'))
0—s v ' f Ime '(p-p', Q, q';x)([c (p') —c„,(p) —x] ' —[c,(p'+k) —c„(p+k) —x] ')dx)

xa'I'e~, (p', k;c„.(p), c„(p+k), c) (5.4)

The dominant contributions to Eq. (5.4) can now be estimated in the manner used by Weiner. He assumed

at p was a slowly varying function of p ', and could be removed from the integration and evaluated at p
'

The integra]. equation was then solved approximately. In addition, the off-diagonal (Q&Q ) components

of E ', associated with local field corrections may be ignored. Because of the singular nature of the Cou-

lomb denominators, we can choose Q=O for the most important contribution. As a consequence, m=n' and

l =n yield the maximum contribution for the product of matrix elements. These approximations give

„„.(p, k; c„.(p), c„(p + k), c) = I'~ „„.(p, k) (1 — ' Z ~, e'
I
p —p

'
I

'

x (n, p+ k ln, p'+k) (n'p' In'p) (f(c„.(p') ) [c„(p'+k) —c„.(p') —c]-'

x Re & (p —p', 0, 0; c„,(p') —c„,(p) )
0

+s v 'f 1m''( -p'p, , 0;0)x[ c( )p- c( )p-x] '[c„(p'+k) —c„(p+k) —x] dx}) (5. 5)

Because c„~ (p') —c„(p)vanishes as Ip —p 'I when Ip —p' I-0 then

Re e- '(p - p ', 0, 0; c„,(p ') —c„,(p) )
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can be replaced by Re& '(p —p', 0, 0;0). Moreover, the principal contribution to 1m' '(p-p', 0, 0; x) for
j p —p '

j & q„ the cutoff wave vector, is that due to plasmon excitation; that small part due to pair excita-
tions is smoothly varying, yielding, on the average, a nearly vanishing result. Also, (n, p+k~n, p +k) =1
and (n'p')n'p)=1 for most p, p' of interest. Consequently, using Eq. (4. 15) we obtain

s'I „„„,(p, k;c„,(p), c„(p+k), c)=1"',,„„,(p, k)[1 —n„„,(p, k;c)] '

o.„„(p,k;c)=& 'l Ml'Z& e'lp-p'l '(f(c. (p'))R« '(p-p' 0 0 0)

+ —,'c~[c„.(p')- c„.(p)+c~] '[c„(p '+k)-c„(p+k)+ cp] ' j

(5.5)

(5. S)

~ I ~2 is an average of the product (n, p+k(n, p'+k)(n'p'In'p) over the p and p' for which the ma~mum
contribution to n„„(p,k; c) is made. The two terms in Eq. (5.7) correspond to the two terms in Eq. (2. 10);
Mahan's'0 results are obtained when Eq. (5.6) is expanded to first orde»n o'„~(p ki c).

If p is not too far from the Fermi momentum, n„.(p), n„(p+k), and o'„„(p,k;c), given, respectively~ by
Eqs. (4. Iq) and (5.7), are not only slowly varying in magnitude but also contain similar matrix elements,
energy denominators, and ranges of integration which make their values almost identical. Upon substitut-
ing the first two into the expressions for the spectral densities and the third in the expression for the ver-
tex function, we find that Eq. (2. 33) becomes

I y (k 0 0; )= —,'0 'g p li' „„.(p k)l [1— „„.(p k; )]
P n&fI

x[1 . (p)] '[1 .{p k)] 'lc '(k, e.. .@-
&&[/'( „(p))-y( „(p+k))]5{c.(p+k}- „.(p)- ) . (5. 8)

Consequently, significant cancellation between the spectral density and vertex-function terms occurs.
The net enhancement of the absorption due to many-body effects is small. In fact, because of the screening
factor, the absorption may be reduced.

Vl. HIGHERARDER PROCESSES

In this section, the two processes necessary to guarantee a conserving approximation are considered.
The magnitude of their net contribution is crudely estimated, but in any case found to be negligible. The
comments of the last section concerning Mahan's' and Weiner's' calculations suggest that the magnitude
of the correction to I' ~ associated with the first iteration of Eq. (5.2) is satisfactory for an estimate of the
magnitude of the true I'~~. The influence of the two screened Coulomb scattering processes will be esti-
mated similarly by replacing I'sz with I" Oz. In addition, the propagator given by Eq. (4. 11)will be used.

The manipulations are fairly straightforward, albeit complicated. They yield, for the first term in the
square brackets of Eq. (5. 2),

(c, —c —&o„) 'f(f, —f-, )(~„~+, +-, c—c, —c„-) '[6'v ' f —,'(coth-,'px)imc '(;x)

x e-'( ~ x+(g )(x-(g ic ) 'dx+ 6'v ' f —'(coth-'px)c '(~ x —(g )imc '( x)

x (x —&u„-&u„+c„-)"'dx+e '(;to„- c-) e '(;to„+&@ —c- ) —,
' tanh —,'Pc-„

—a v ' f ,'(coth-,'P—x)imc '(;x)~ '(; x+(o„)( x+(o„+c,—c-,) 'dx

—a v ' f'" —,'(coth-,'px)c-'(;x —(u, )1m' '(;x)(x+c-, —c,) 'dx

—e-'(;c, —c-, —(o„)Res-'(;c-, —c,)-', cothP(c-, —c,)]
—(f„—y-, )((o„+c-, —c„—c„-) '[4'v ' f' —,'(coth —,'Px)imc '(;(o„—c„)lmc '(;x+(o )

&& (x —(o „+c-) ' dx + 6' v ' f —,
' (coth —,

' Px)e '(; x —~ ) Im c '{;x)(x - (u„- (u„+ c-) '

+c-'(~ (o —c-)e-'( (o +(o —c-)-'tanh-'Pc-- (pv-' —,'(coth-,'Px)
CO

&&Imc '(;x)c-'(;x+u)„)(x+c-,—c„) 'dx —O'w ' f'" —,'(coth-,'px)

&&e (;x){x—e~+c& —c~) dx —Ree ('c- —c —&u )e (;c,—c~ —(u~) 2 oth-c,'p(c , —c~)]]-
exclusive of all factors involving matrix elements, Coulomb interactions, and summations over momentum
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variables and band indices.
The momentum variables in c and e are implicit. For simplicity, f, denotes f(c,) and c, signifies

(c,(P ), consistent with the notation of Eq. (5.2). Energy denominators are, if necessary, principal parts
about those points at which they vanish. An expression similar to that in Eq. (6. 1) is obtained for the sec-
ond term in square brackets in Eq. (5. 2).

Conversion of the cotangent terms into Fermi factors, employment of Eq. (3. 16), and a lengthy rear-
rangement procedure yield finally

+ ooav-' f [ ' f f—,(l —fI)(coth-,'px+'I) ——,'(1 —f )(1 —f, ) fI(coth-,'px —1)]

&& [Imc '(;x)c '(;x+(o„)(x+c-„—(o, ) '(x+(u„+c; —c,) '(x+c-, —c„) '

+ c '(;x —u&, )1m' '(;x)(x+c-„—~„-~„)'(x+c-, —c,) '(x+c& —c„-~„)']dx

+ (c, —c —e~) '(6 w
' j [—,'(1 —f„)f,(1 —f-, )(coth —,

' px+1) —,'f„(1——f)f-,

&&(cothp px —1)][Im & ( x)E ( x +9) )(x +c- —(d ) (x +(d +cI —c~)

+ c '(; x —(o„)Im c '(; x)(x —&u„- (u, + c-„) '(x + c, —c-,) ']dxj- (p x ' f [-,' f„(1—f,)(l —fI)

x (coth-,'Px+1) ——,'(1 —f„)f, f-, (coth-,'Px —1)][Ime '(; x)i '(; x+(o„)(x+c„-—(u„) '

x (x+c- —c ) '+c '( x+(y )lmc '( x)(x —(o —(o +c-) (x+c- —c —(g ) ')dx

+([f (I f~)fr+{I--f )f&(I f&)](~, +,c-+„c- c) '

—[f (1 f) f-+(1--f )f-{1-f„-)](&,+(o, +c-, —c, -c„-) ")~ '(;(o„—c„-)e '(;(u„+~„—c-„) . (6. 2)

To find 6'I ~, we used the appropriate analytic-continuation procedure which amounts to replacing m„++~
by c„(P+0), ~„by c„.(p), &u~ by c, and all integrals containing energy denominators by principal-parts in-
tegrations. Letting T-O [in order to use Eq. (3.36)) and introducing the Coulomb factors, matrix ele-
ments and, summations over momentum variables and band indices, yields

0 'Z p Z (np+kle' '~lm p —q)(m p —qle ' '~ l& p)(~p le ~lf P —0)
P pqmgl, m, k QgQ ygyQ

x(l, p '-
~ ~ ""s'll, p '+I )e4lq+k+5 I 'lq+Cl '{(+v-'J'„[8(x)fbi(I -fi)

+ 8( —x)(l-f„)(1-f)f-][1m' '( x)Re~ '( x+~)(x+c- —c ) '(x+c+c--c )
'

& (x+cI —c ) '+Re& '(;x-&u)1m' '(; x)(x+c-„—c„) '(x+c-, —c,) '(x+c-, —c —c) ']dx)

+ (c, —c„—c) '((Pv ' f„[8(x)(l —f„)f,(l —f-,)+8( —x) f„(l f,)f, ][imc '{;—x)

x Res '( x+(o)(x+c- —c .) '(x+c+c--c ) '+Re~ '(;x-(o)1m''(;x)(x+c- —c„) '

&& (x+C-, —C, ) ']dx)- S'x ' J [ &(x)f„(l-f)(I-ff)+6(-x)(I-f )f&fI]

x [Im~ '(; x) Re& '( x+&o)(x+c- —c .) '(x+c-, —c„) '+Res '( x-(o)1m' '(;x)

&& (x+c--c.) '(x+c&-c -c) ']dx+([f (I f&)f-+(I-f-)fi(i-f-)]
&& (c„+c-,—c —c-) '-[fr{1—fI)f-+{1 fi)f1(1—f )]{c.+cI ——c~ —c-) ']

x Re c '(; c„.—c-„)Re & '(; c„—c-„))I'J, ,„(P', k) (6. 3)

Of the many terms to be evaluated, the most important may be expected to couple only transitions be-
tween bands n and n '. Thus m may be set equal to n' and l to n. It is also plausible to assume that sub-
stantial contributions wil1. occur for those values of momenta and band indices which tend to make the
Coulomb terms singular and the product of matrix elements as large as possible. Thus, setting Q = Q' = Q
= Q implies that for a non-negligible contribution m and I should take on the value n or n .

As an illustration of the procedure used to estimate the terms, let I=n' and l =n. Upon setting the

photon momentum SQ = 0, this yields



OPTICAL PROPERTIES OF METALS: MANY-ELECTRON EFFECTS 379

0 2 Z (n, p n', p —q)(n, p —q n', p)(n', p n, p' —q)(n, p
' —q n, p )e q I'~z „„.(p', 0)

Pre

x (f(c„~(p )) [c„(p ) —c„~(p )-c] 6w J (Imc (q; x) Res '(q; x+&o)

x [x+c„.(p —q) —c„.(p)] '[x+c„(p'-q) —c„.(p')] '+Re& '(q;x-&o) Im&t '(q x)

x [x+c„.(p —q) —c„(p)] '[x+c„(p' —q) —c„.(p') —c] ') dx+ f(c„.(p —q))

x [c„.(p)+c„(p —q)-c. (p )-c. (p-q)]-'Rec-'(q;c„. (p)-c„,(p-q))
x Re c- '(q; c„(p)—c„.(p —q) )) . (6. 4)

In the first term, the significant contribution should be that associated with the plasmon part of Im a

which is largest for q = 0. Plasmon excitations corresponding to finite q in the square bracket will be ap-
proximated by their q = 0 form. The errors that are thereby introduced may be expected to be reasonably
small because, as the plasma peak is broadened and becomes smaller due to interband excitations, there
is a compensating effect arising from the smaller-energy denominators. ~~

With these approximations the integral of the term in square brackets assumes the form

—6'x ' J "[Im c'(0;x)Re& '(0;x)x '(x+c„(p') —c„.(p')) '

+ Re c '(0; x —a&) Im c '(0; x)(x —c) '(x —c + c„(p ') —c„.(p ') )
' ] dx

which becomes, with the help of Eq. (4. 15),

—,'c (Re& '(0; (dp+(d)c~ [cp+c„(p ) —c„~(p )] '

+ Re c '(0; (o~ —(o) [c~ —c ] ' [c~ —c + c„(p ') —c„.(p ') ] 'j

(e. 5)

(e. 6)

Observe that the first term in the square bracket corresponds to that given by Eq. (2. 11) and (2. 12) de-
termined by the phenomenological Hamiltonian.

At or near the threshold, I' z „„~will be largest (in an alkali metal) and [c„(p')—c„.(p ') —c ]
' nearly

singular for p'=p. Hence, choose p=p' in Eq. (6.4), let q=0 and assume that c&c~. Also, let Rec ' be
approximated by the corresponding expression from the Lindhard dielectric function

Res-'(0;(op+(o)= (I —[c~/(c +c)]'] '

The expression (6. 6) then becomes

c,/(4c,'- c') (6. 8)

The magnitude of the second term of (6. 4) is limited by the Fermi-factor restrictions c„.(p —q) &0,
c„.(p') & 0, c„,(p) & 0, and c„(p'- q) &0. For fixed p, and most q, c„.(p) —c„&(p —q) &0 and c„(p' —q)
—c„.(p )2'c so that q can be set equal to zero. Furthermore the dielectric functions appearing in thisterm
may be regarded as slowly varying functions of q. This gives

f(c„.(p —q) )[c„(p ') —c„,(p ') ] ' Re c '( q, 0, 0; 0) Re c '( q, 0, 0; &o)

Using the Thomas-Fermi approximation, Rec '(q, 0, 0;0)= Iq)'/(Iql +krr )(where kTr is the Thomas-
Fermi wave vector) and observing that the second term has a Fermi-function restriction which the first
does not, it can be seen that for most q, the plasmon term dominates. Returning to expression (6. 4), then
it is found to be

0 ' Z (n, p (
n', p —q )(n', p —q ~

n'& p)(n ', p
'

( n, p
' —q)(n, p

' —q ~
n, p ')e'

( q
~

' I'0~ „„,(p, k)
P 'ya

xf (c„.(p ') )[c„(p')—c„,(p ') —c] 'c~(4c~ —c')-'

For small q

(n, p' qln p') =1, (n', p —q~n', p)=1, (n, p~n', p —q)= —(e) 'q. l"', „„,(p, o)/c„„,(p),

(n', p' n, p' —q)=(e) 'q. I ~ „„.(p', 0)/c„„.(p')

(e. s)

By assuming that the product of matrix elements and one Coulomb factor e )q! is slowly varying with

q, it is possible to write



380 L. W. BEE FERMAN AND H. EHRENREICH

-f~ '~p f(c. (p')) [c, (p') c„„(p)]-'c,(4c,'-c')-' lc.(p')-c„(p')-c]-'
&« 'Z, [q.r', „„,(p, 0)][q.I',„„.(p, 0)]*e'(q~ 'r', „„,(p, o) (6. 10)

With a q integration ranging through a sphere with a radius on the order of q„ it is readily shown that
(6. 10) becomes

f(c. (p') ) [c.„(p') c„„(p)] 'c,(4c,' —c') ' [c„(p')—c„,(p') —c]-'
x(e'q, /4v)-,' r', „„,(p, O).r,'*„„,(p', O) r', „„,(p, O)

Since P =P is the most important part of the integration range, we write instead

—ffi '&, f(c„(p'))-' r&... (p', o) '[c.(p')-c. ~ (p')-c] '[c- c.. (p')] '

&&c (4c' —c') '(e'q, /4m)] r', „„,(p, O)

(6. 11)

(6. 12)

c„„.(p) = c has been used because the final calculation of the absorption contains a delta function 5(c„(p+k)
—c„.(p) —c). If for the momentum k and energy c, the main contribution to Re Xozz(k, 0, 0; s&) comes from
the virtual transitions between bands n' and n, then the final result is roughly

—Rey'„'(k;(u)(e'q, /4mc~) c~(4c~ —c') '(c/c„„.(p'))r', „„.(p, 0), (6. iS)

-Re X'„'(k, ~)&c/c„„,(p)) (e' q, /4vc, ) r ', „„,(p, O) .
We recall that the corresponding correction to I" z „„.(p, k) from the single-screened scattering process
was approximately nr ~ „„.where o. = e' q, /4w 'C~ so that the additional correction is scaled down by two
extra. factors. The second (c/c„„.(p)) is less than 1 near the threshold and the first Re y O~~r can be es-
timated as ™0. 1 for Na using Butcher's'9 model for the band structure.

However, the final result is even smaller, since, if the same analysis, procedures and approximations
discussed here are used for evaluating the corresponding contribution from the second term in the square
brackets of Eq. (5. 2), then the contribution is roughly given by the negative of (6. 14). Consequently, the
net effect of the two processes is seen to yield a small correction which we estimate to be of order 0.01.

(6. i4)

where () represents some average over allowed p. The evaluation of the remaining significant terms in

(6. 3) follows along the above lines and yields one term nearly identical to (6. 13) and two terms nearlyiden-
tical with (6. 13) except that c~(4c~ —c') ' is replaced by —,'(2c~a —ca)(4c~ —ca) '. Adding up all four gives

VII. NEW CALCULATIONS WITHIN THE RPA

The calculations and discussions of the previous
sections provide strong evidence that the influence
of electron-electron interactions is not sufficient
to explain the substantial discrepancies existing
between the experimental data and theoretical es-
timates of the optical absorption, particularly for
aluminum. This suggests that a careful reex-
amination of the RPA numerical calculations be
undertaken in order to ascertain whether a reso-
lution of the discrepancies within its framework
might eliminate the difficulties.

Heretofore, for aluminum, the most thorough
investigation on that basis was that of Ehrenreich,
Philipp, and Segall. ' They used a band structure
based upon a two pseudopotential and effective-
mass parameter fit to energy eigenvalues deter-
mined by the Korringa-Kohn-Rostoker (KKR)
method. The quantities chosen were the pseudo-
potential parameters Vying

=0 313 eV Vapp=0 585
eV, and effective mass m*=1.03 m. Their mo-
mentum matrix elements were evaluated explicitly

at only a few points because of the complexity of
the KKR scheme. For the other points in the zone,
an interpolation method was used. In particular,
for their calculation, which we designate as EPSI,
the principal contributions to the absorption peak
come from transitions at W and in the (001) plane
containing the Z axis. At 8", the momentum ma-
trix element, in units of 2v/a was estimated as
0. 491 and for Z, at the point (—',, —',, 0)(2v/a), it was

given by 0.421. The Z transitions gave the pre-
dominant contribution to the absorption peak. The
total contribution to the sum rule, Eq. (1.1), fell
short of the expected experimental values by about

a factor of 3.
In Ref. 4, &~ was first derived from the avail-

able ref lectivity data. Then, a two-parameter
Drude model was used to match the intraband ab-
sorption at infrared energies. By subtraction
from the total &&, the interband part was obtained.
Reasonable Drude-model fits to the intraband re-
gion with different values of the parameters can
be found, but they do not significantly alter the
structure of the interband absorption.
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Subsequent to that work, Ashcrofts' attempted
to match Fermi-structure data with a pseudopoten-
tial band structure. He found that V», =0. 243 eV
and V300 = 0. V62 eV yielded the best fit to observed
de Haas-van Alphen periods. The effective mass
was an arbitrary scaling factor and could be chosen
to match other data. For the resulting energy
bands, there is no contribution at W to the ab-
sorption peak since the valence band of interest
lies above the Fermi level. Thus, it might be ex-
pected that an RPA calculation of c2 would produce
an even larger discrepancy between theory and
experiment.

Calculations for this band structure were per-
formed by Hughes et al. ' and independently by the
authors (denoted by AI) using the pseudo nisse f-unc

tions to determine Ne momentum maA"ix elements.
The results are illustrated in Fig. 9(a). It is seen
that the agreement of the general features of the
experimental and theoretical curves is far better
than that obtained in EPSI; damping effects not in-
cluded in these calculations might be expected to
smooth the sharp theoretical structure. The reason
for the coarseness of our absorption curve relative
to that of Hughes et al. "is due to their use of a
very high mesh density —5&&10' points throughout
the whole zone —corresponding to about 100 times
what we employed. Nevertheless, the results
fundamentally corroborate one another. Our cal-
culation of the interband contribution to the sum

rule agrees within 10/o with that estimated from the
experimental data.

In addition, we performed a similar calculation,
denoted by EPSII, using the EPSI parameters. The
results are compared with the previous calculation
in Fig. 9(b). The essential difference produced
was a shifting of the peak down from about 1.55 to
about 1.25 eV; the contribution to the sum re-
mained fundamentally unchanged. The shifting of
the peak was not surprising, since a calculation
fust involving t/2oo and I/111 in which ~111 is relative-
ly small yields energy differences for the energy
bands of interest very close to 2V&«. These have
values 1.17 and 1.52 eV for the EPSII and AI cal-
culations, respectively.

%'hy the EPSI calculation gave a peak near 1.5 eV
is, therefore, not clear. But the more important
aspect is the significant difference in the calculated
magnitude of the absorption. The obvious source
of this is the momentum matrix element which, for
the EPSII calculation, had values 0.418 and 0.995,
in units of 2s/a, at the points (1, —,', 0)(2s/a) and

(8, 8, 0)(2s/e), ~espectively. The large difference
between EPSI and EPSII persists throughout the Z
region contributing to the peak. This is also true
for the AI calculation which gives 0. 997 at (—,', —',, 0)
& (2s/a).

The question remains of whether the pseudo-
wave functions are sufficient to give accurately the
momentum matrix element. Previous calcula-
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FIG. 9. (a) Histograms of the interband part of &2 for Al based on Ashcroft' s parameters as calculated by Hughes ei;
al,. (heavy solid curve) and the authors {light solid curve) are compared with the experimental interband determination
of Ref. 4. (b) Histogram of the interband part of e2 for Al based on Ashcroft' s parameters Oight solid curve) is com-
pared with the based on Segall's parameters (heavy solid curve).
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tions ' ' leave the answer unclear. For sodium,
Appelbaum explicitly derived the true wave func-
tions from the pseudo-wave functions and found a
substantial seduction in the absorption —upwards
of 80%. He used two pseudopotential parameters,
V&pp and V»p. It was then claimed by Overhauser, '
apparently on the basis of a model calculation, that
the suppression of the matrix element was due to
nonorthogonality of the wave functions and if this
error were corrected, there would be no xedgction
in the absorption. Animalu' considered Na and
other alkali metals treating the lattice pseudopo-
tential correctly to second order and taking into
account the necessary core corrections. He found
an enhant."extent of the matrix element by about
20% and of the absorption 50%.

There appears to be little physical distinction
between the calculations of Appelbaum and Animalu
except the relatively unimportant one that the lat-
ter used a nearly free-electron approach and the
former does not. What may have produced the
bulk of the difference was Appelbaum's inclusion
of Vapp The work of Politzer et al. suggests
that the values of V~pp which Appelbaum chose can
produce substantial reduction (over 40%) of the
matrix element which includes only the influence
of V, fp Cutler points out that inclusion of more
plane waves may make the effect less severe.

The preceding discussion shows that it is im-
portant to determine the influence of introducing
the true wave functions (as derived from the
pseudo-wave functions). Rough estimates of ours
based on Animalu's formalism suggested that such
influence would be slight due to the small size of
the aluminum core and the small ratio of band gap
to absorption energy.

This was confirmed by detailed calculations for
aluminum based on the formal expressions of
Appelbaum. Our rederivation of his results yields
an additional factor of —,

' in the function B(k, k ')
given by his Eq. (10). Calculations were per-
formed using both values of 8 with negligible dif-
ference. But if our expression is correct, then
the reduction of the absorption in Appelbaum's
work would probably be even more severe.

For aluminum we find that replacement of the
pseudo-wave functions by the true wave functions
reduces the momentum matrix element of interest
by at most about 1% and often only a fraction of a
percent. The wave functions used were found to

be orthogonal to within about 10 and normalized
to within 10 and often much less than that.

These results imply that our RPA results, AI,
are probably sufficient to give a plausible corrob-
oration of the optical absorption in aluminum.
The reason for the discrepancy between the EPSI
and EPSII estimates remains unclear, but it ap-
pears that the earlier calculations were subject
to some error which we have beenunable to trace. '

In sodium the situation remains far less clear
than in aluminum. Aside from experimental dif-
ficulties that arise in working with such extremely
oxidizable materials as the alkali metals, and
which are now being resolved, ' there are a num-
ber of theoretical difficulties that render calcula-
tions less reliable. First, the separation of &2

into inter- and intraband contributions is more dif-
ficult than in Al. Second, because the oscillator
strength due to interband transitions is not local-
ized in a small photon energy range as in Al, the
conductivity sum rule cannot be used to check
calculations. Third, for Na, as we have noted
above, there remain many questions about the
correct handling of calculations within the RPA
especially with respect to the influence of core
corrections and the various components of the lat-
tice pseudopotential. Finally, the degree of can-
cellation between vertex corrections and dressing
effects of the first-order electron-electron cor-
rections is not known very well. This is, in part,
due to inadequacies in the estimates of the cor-
rection factor (1 —n) ' which is more sensitive to
the approximations made for sodium than for alu-
minum. This factor, which would be between the
values given by Mahan' and Weiner, ' is very
large in sodium. Thus, for that material, can-
cellation occurs between two large quantities and
hence the net result might still be substantial,
even though this is not very probable. For alu-
minum, it is unlikely that it would be more than
10-20% at most.
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