2 ELECTRICAL RESISTIVITY OF PdFe ALLOYS

a theory does not exist for the type of system studied
here. However, the apparently simple relation be-
tween the coefficient of the 7% low-temperature de-
pendence of p,, the total spin-disorder scattering
Ap, and the iron concentration, together with the
consistency of the interpretation of our data in terms
of electron-magnon scattering with an effective con-
centrationdependent. s-d exchange integral, suggest
that such a theory should be obtainable from a com-
plete treatment of the s-d scattering mechanisms in
terms of the dynamic susceptibility x(q, w) for PdFe.
A recent papera"‘ has considered in some detail the
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properties of this function and shows that the spin-
wave excitations are damped. This should have an
important effect on the electron-magnon scattering.
Note added in proof. All of the experiments re-
ported in this paper were performed in zero applied
magnetic field. The effect of the demagnetizing
field on the resistance is not considered in this

study.
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The effect of imperfect “nesting” of the band structure on itinerant antiferromagnetism is
considered. A model band structure with spherical electronandhole pockets of unequal radii
and a ‘“honmagnetic”’ reservoir is examined. A first-order commensurate-incommensurate

transition is found, but the paramagnetic transition remains second order.

The influence of

generalized Kohn anomalies on the transition is investigated, and it is found that though they
lead to anomalous behavior in the limit of vanishing antiferromagnetism, there is no change

in the order of the transition.

1. INTRODUCTION
In recent years, the antiferromagnetism of Cr
and its alloys has been studied extensively. It has
been well established that the antiferromagnetism

in Cr and its alloys is itinerant in nature and is an
example of an Overhauser spin density wave aris-
ing from correlations between the conduction

electrons.! The importance of the peculiar nature
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of the Cr Fermi surface, in which there are large
electron and hole pockets similar in size and shape,
was first emphasized by Lomer.? Much of the sub-
sequent theoretical analysis of Cr has employed
simplified models of the band structure in which

it is assumed that the “nesting” between the elec-
tron and hole pockets is perfect.®

In this paper we will be concerned about the ef-
fects of imperfect nesting on itinerant antiferromag-
netism. We will study in a Hartree-Fock approxi-
mation a number of simple model band structures,
in order to gain insight into the influence of various
aspects of the band structure on such properties as
the variation of the Néeltemperature T with changes
in the band structure due to pressure or alloying,
the variation of @ -vector with temperature and band-
structure changes, etc. One question which we had
hoped to investigate was the question of first- ver-
sus second-order transitions at Ty. However, all
of the models which we have investigated have a
second-order phase transition between the paramag-
netic and antiferromagnetic phases, whereas the
observed transition in Cr is first order, though
weakly so.

We will restrict ourselves in this paper to the
weak-coupling limit and work within a simple
Hartree-Fock approximation. We will make a
further approximation of keeping only the dominant
term in the Hamiltonian which describes the Coulomb
attraction between the electrons and holes. We ig-
nore the intraband exchange interactions and the
coupling between the “magnetic” portions of the
Fermi surface and the “nonmagnetic” portions,

i.e., those parts which are not substantially af-
fected by the transition. For the case of the Cr
Fermi surface, this corresponds to the retention
of the interaction between the hole octahedron cen-
tered at H and the body of the electron jack cen-
tered at I" and the omission of the coupling to the
balls on the electron jack and the hole ellipsoids
at N. We make the additional approximation of
replacing the screened Coulomb interaction by a
constant, and of ignoring the change in screening
associated with the loss of carriers in the antifer -
romagnetic phase. It is possible that by going
beyond these approximations qualitative changes
can occur in the behavior of the system, such as a
change from a second-order transition to a first-
order one. In the few cases where this has been
investigated, however, no qualitative changes were
found.

In Sec. II, we will examine the itinerant antifer-
romagnetic transition for a model band structure
with imperfect nesting. The model band structure
has one electron pocket, one hole pocket, and a non-
magnetic background. The electron and hole poc-
kets are taken as spherical in shape. If the radii
of the two pockets are equal, then the model has
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perfect nesting but we will allow the radii to differ,
leading to imperfect nesting. The model has cer-
tain mathematical similarities to the effect of

Pauli paramagnetism on the BCS theory of super-
conductivity which has been studied by a number of
authors. *7 The existence of the nonmagnetic por -
tion of the Fermi surface (not involved in the anti-
ferromagnetic transition) gives us an additional
variable, and there is complete mathematical equi-
valence to superconductivity only in one limit. We
find that in this model the paramagnetic to antifer-
romagnetic transition is always second order. There
are, however, first-order transitions between
antiferromagnetic states with different periods simi-
lar to the commensurate-noncommensurate transi-
tion observed in some Cr alloys.® Such transitions
were predicted on general grounds by Herring®

and discussed in detail for a one-dimensional model
by Falicov and Penn.'® The suggestion that the
changes in the antiferromagnetism in certain Cr
alloys were due to the relative variation of the
electron and hole portions of the Fermi surface
with the changing electron to atom ratio was first
made by Muheim and Muller, !!

In Secs. III and IV, we investigate the possible
influence of generalized Kohn anomalies!®*® on the
transition. In Sec. III, we discuss a model band
structure in which the one-electron-band suscepti-
bility has its maximum at a “cusp” -type anomaly.
It has been shown that such cusp-type Kohn anom-
alies must occur in the Cr-group metals and that
in the particular case of W a maximum in the one-
electron susceptibility occurs at a cusp-type anom-
aly.'* This feature of the band structure leads
to an anomalous variation of T, with external pa-
rameters, such as pressure in the neighborhood of
the point where the Néel temperature goes to zero.
We find that transition remains second order, how-
ever, at least in the weak-coupling limit.

In Sec. IV, we turn our attention to higher-order
cusp-type Kohn anomalies, which may occur at
points of high symmetry. We also discuss, insome
detail, the case of a cylindrical Kohn anomaly. !*
While an anomaly of this kind cannot really occur
in nature, it may nevertheless be a useful approxi-
mation to represent a complicated series of anom-
alies by such a cylindrical anomaly over a limited
region of wave vector.

Finally, in Sec. V, we state the conclusions and
make some remarks concerning the question of
first- versus second-order transitions in itinerant
antiferromagnetism.

II. UNEQUAL SPHERE MODEL

In this section, we shall consider a model Fermi
surface with two spherical pockets, one of elec-
trons and the other of holes of unequal radii kpz,
and kz, and with a background reservoir of elec-
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trons that are unaffected by the antiferromagnetism.
We shall examine the changes in the antiferromag-
netism with variation in the radii of the spheres
which may be thought of as arising from either
doping or from variations of the Fermi level with
external parameters such as pressure, etc. Ifthe
electrons and hole spheres were equal in size, then
the model would be just that discussed by Fedders
and Martin® and would be mathematically equivalent
to the BCS theory of superconductivity. Changing
the relative sizes of the electron andthe hole spheres
is the mathematical equivalent to changing the Fermi
radius for up spins relative to down spins in super-
conductivity. The effect of such a polarization on
the superconducting transition has been studied ex-
tensively theoretically.*" In the model for the
antiferromagnetic (AF) transition, which we will
discuss, there is an additional parameter, namely,
the ratio of the density of states of the reservoir
to that in the spheres, and there is complete math-
ematical equivalence between the two models only
in the limit of an infinite density of states in the
reservoir.

The energy spectra for the electron and hole
pockets measured relative to the Fermi energy
will be taken as

€a(.l;) =vp(k —kp,)=vp(k —kp) +H,

.- (1)
Gb(k+Q0)=— Up(k-kpb)=—74:~(k"kf«‘) +H,

where we define kp =3 (bpp +kp,) and H=3v; (b,
-kp,) is the energy the Fermi level lies below for
perfect nesting. The wave vector 6)0 is the separa-
tion in reciprocal space between the centers of the
electron (a) and hole (b) pockets and is determined
by the band structure. We restrict ourselves to
the weak-coupling limit, where H and the energy
gap are much less than vzkr. We take a model
Hamiltonian of the form

%= 2 “(k)n~ +V Z: a. - a- bt

b
- b
%01 a,b,c¢ - k+do ko k'-Qqe’ Ko’

@)

where a'and b" are creation operators for electrons
in the a and b pockets, respectively, »n is the number
operator, and Vis the Fourier transform of the
effective Coulomb interactions which we have taken
as a constant. In choosing a Hamiltonian of form
(2), we are ignoring the intraband exchange terms
and all coupling between the magnetic portion of
the Fermi surface (z and b bands) and nonmagnetic
portion (¢ band). These approximations could in-
fluence the order of the transition that we find.

It is convenient to introduce the joint density of
states function Ng;(¢, n) defined as

Na, (&, m=Z ;0 -5[€k+Qy) - €(R) )

x 6(n-5[e"(k + Q)+ €*(®)). (3)
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In this model it is straightforward to evaluate N
and we find

Ng,u(E, M)=N,Q 601 -H+Q)-6(n-H-Q)], (4)
where Q =vp | Q -Ql, N, =k%/2n%p, and 0(x)
is the step function.

Let us study the Hamiltonian (2) in the Hartree-
Fock approximation allowing for the possibility of
antiferromagnetism. The AF state is characterized
by nonzero expectation values of the form (a3, ,
ka*Qv'“) Defining the order parameter A=V
Eg(ak ¢0i.ay,-0), We find the optimum value by
minimizing the free energy with respect to A. This
leads to the familiar gap equation

A=V [ dcdnNg, m (5, 1) (A/2E)

x [1=fE+n) -f(E-n)], (5)

where EZ= £2+ A%, f(¢€) in the Fermi function, and
H' - H is the shift in Fermi level in the AF state
(see Fig. 1). Substituting from Eq. (4) and evalua-
ting the right-hand side of Eq. (5) at T=0 °K, we
arrive at the following equation for A:

-21n(a/8g)= (A/Q)[G(r,) -G(r))] , (6)
where
Ve = (QiH’)/A’

Ag=vpkp exp(- 1/N, V) is the energy gap for
Q=H=0, and

G(x) =x cosh™lx — (x% - 1)V?2 sgn(x), for fx) >1
=0, for |x| <1, (7)

Equation (6) is identical to the gap equation of Fulde
and Ferrell® for the analogous case of a supercon-
ductor in a strong exchange field.

The difference in the thermodynamic potential
2 between the paramagnetic and antiferromagnetic
states at chemical potential u is given by

Qur (L, Q, T)~9, (1, Q, T)= [T d(1/V)8%7, @, H')

/ A2(8(1/V)>

The optimum value of the Q vector is found by mini-
mizing with respect to Q. This leads tothe equation®
for Q@ at T=0°K,

Q% -1 A%Q[y(r,) +v(r)] +3 A% e(r,) +e(r)] =0, (9)

where v (x) and €(x) are defined as follows:

yx)=| x| &6®=1)Y2 —coshx, |x|>1

=0, |x I <1, (10)
e(x)=3xy(x) —sgnlx) (2 -1)¥% | x| >1

=0, | x| <1.
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Finally, the position of the Fermi level in the
antiferromagnetic phase H’ is determined by the
condition that the number of electrons is conserved.
In Fig. 1, we show the single-particle energy bands
in the antiferromagnetic phase. Equating the num-
ber of electrons removed from the paramagnetic
reservoir with the number gained by the magnetic
part, we get

N,(H' -H)=2N,H -2 [ dt dnNg, g
X [1=fn -E) -f(n+E)],

where N, is density of states per spin in the reser-
voir. Evaluating the right-hand side of Eq. (11)
we get

(Q+n)H —nH' =5 A2Q7[y(r,) = v(r))] , (12)

where n=N,/2N,, denotes the ratio of the density
of states of the reservoir to the magnetic part of
the surface.

The three coupled Egs. (6), (9), and (12) deter-
mine the values of A, @, and H’ as a function of H,
the Fermi level in the paramagnetic state. If for
a given value of H there is more than one solution,
then the solution with the lowest energy is the
physical one.

Let us restrict our attention first to =0. Then,
the equations simplify considerably. In the limit
n-0, there is only one nontrivial solution

(11)

A%= Ay(Ag — 2H) (13)

shown in Fig. 2 as a function of H. This solution
clearly gives a second-order transition at H=24,/2,
where A is the BCS value when H=0, T =0 °K.
However, in the opposite limit n~«, H' =H and we
find two solutions in addition to the trivial paramag-
netic solution a=0, 5

(14a)
(14b)

A= AO’
A%= Ay(2H - Ay),

H<A,
§A0<H<A0.

By examining the ground-state energy E., it is

/

FIG. 1. Band structure in the unequal sphere model.
The b pocket centered at Q; has been mapped onto the
origin and the zero of energy has been chosen as shown.
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FIG. 2. Solutions of the gap equation at 7=0 °K for
@=0. The heavy dashed line denotes the unphysical
region.

straightforward to show that (14b) is unphysical and
that there is a first-order transition between the
fully polarized state, (14a), and the paramagnetic
state A=0at H=A,/V2. As n increases from zero,
one finds a second-order transition for » <1 and
first-order one forn >1,

At finite temperatures we may proceed through
an analogous series of calculations. In the limit
H-0, the model reduces identically to the Fedders-
Martin (BCS) model. In this limit the antiferro-
magnetic to paramagnetic transition at TY isclearly
second order. Inthe region n<1, the transition
at T =0 °K with increasing H is also second order.
One finds that for all intermediate values of H the
transition which now occurs at finite temperature
is second order. For n>1, however, the transition
at T'=0 °K with increasing H is first order. For
n>1, one finds that for small values of H thetransi-
tion remains second order, but for the large values
of H (less than the critical value) the transition with
increasing temperature is first order. Thus, for
any n >1, there is a critical value of H or equiva-
lently of Ty, such that for T >7T%, the transition is
second order and for T <T%, the transition is first
order. In the limit n—, this critical value T%
=0.557%.%°

The situation changes considerably when we relax
the condition @ =0, First, let us calculate the
right-hand side of the gap equation (5) in the limit
A-0. The right-hand side is proportional to the
band susceptibility x(®) defined as

flet,5,) —f(€d)
Xo(Q)= —Z——-_’—(il———*
£ e(k+Q) -e€k)

(15)
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= [ aganNg, (&, ) @& =1 +1) = £ =n)]

(16)

212 H
N[5 (gt )15 | E5| ).
)

In Fig. 3, we plot x,(Q) at T =0 °K as a function of
Q. We see at once that the maximum occurs not
at @ =0 but at @~ 1.2H. Thus, if the paramagnetic
to AF transition is second order as H increases

at 0 °K, then it must occur with @~ 1.2H. Substi-
tuting this value of @ into the right-hand side of
Eq. (6), we find that the critical value of H for a
second-order transition is H=0.7534,. Note this
value is independent of n. The paramagnetic res-
ervoir plays a role only at a first-order transition
where finite repopulation effects can occur. The
paramagnetic-antiferromagnetic transition occurs
first as a second-order transition to a finite @ state
for all values of n. In this model the finite @ state
is the analog of the Fulde-Ferrell state® for super-
conductors in the presence of a strong exchange
field.

In the limit z—=, Eq. (12) reduces simply to
H'=H. In this limit there is complete mathematical
equivalence with superconductivity in a strong ex-
change field. If we plot A as a function of H, then,
following Fulde and Ferrell, ® we get a curve of the
form shown in Fig. 4. There is a first-order phase
change at H slightly less than 0.714, from the @
=0 or Q;=Q, AF phase to an AF state with @= 0. 94,.
This discontinuous change in Q vector as a function
of an external variable was predicted on general
grounds by Herring.® Subsequently, Falicov and
Penn studied such a first-order transition in a model
which is similar to that under consideration here.!®
The commensurate-incommensurate phase change
observed in some Cr alloys® is an example of such

X,(Q)

Band susceptibility in the unequal sphere
model at T=0°K.

FIG. 3.
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FIG. 4. Solutions of the gap equation at T'=0 °K for
various values of . The heavy dashed line denotes the
unphysical region,

an effect. In pure Cr the electron and hole pock-
ets are unequal in size with the body of electron
jack smaller than the hole octahedron. The @
vector of the antlferromagnetm phase is approxi-
mately 0. 96(G/2) where G isa(1, 0, 0) reciprocal-
lattice vector. On alloying with Mn, Ru, Re, etc.,
to increase the electron-to-atom ratio and there-
fore the electron pocket relative to the hole pocket,
an abrupt jump in @ vector is found to the com-
mensurate value @ =3 G

However, if we take the opposite limit of -0,
i.e., no paramagnetic reservoir, then we find the
solution of Eqs. (6), (9), and(12) is single valued as
shown in Fig. 4. Thus, in this _limit the Q vector
varies continuously away from Q1 Qo, as H in-
creases from zero. Note that we have omitted the
higher-order terms which Herring® showed lead to
a discontinuity in @ vector. For a general value
of n, the solution is complicated. We have solved
numerically the set of Eqs. (6), (9), and (12) for
various values of n. The results obtained for A(H)
are shown in Fig. 4. For n< 0.31, we find that
A(H) is single valued. For H<nAy/(1+n), we find
@=0 and for H>nA,/(1 +n), @+ 0. The transition
between the commensurate (Q =0) and incommensu-
rate (Q #0) phase is continuous and second order.
However, for values of »>0. 31, the curves for
A(H) are multivalued as shown in Fig. 4. This
leads to a first-order transition between the com-
mensurate and incommensurate phases as H is
increased.

In Cr the density of states is approximately halved
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on going through the AF transition® which leads to
value of =1 and a first-order commensurate-in-
commensurate transition even without the higher-
order terms which Herring® included. Inthe com-
mensurate phase the energy gap A is constant, in-
dependent of H and Ty. At the first-order phase
transition it drops abruptly to a value = 0.74, and
varies continuously to zero as H is increased.
These results are in qualitative agreement with
those of Barker and Ditzenberger, !¢ who find a
value of the gap which is roughly constant in the
commensurate phase of various Cr alloys. In the
incommensurate phase on the other hand they find
that A varies approximately linearly with Ty. The
model band structure is too crude to allow us to
make a quantitative comparison with experiment.
Lastly, we consider the properties of the system
near the Néel temperature. Aswe stressed earlier,
if the transition is second order, the existence of
a reservoir does not affect the Néel temperature.
We can then obtain the dependence of the transition
temperature on H from the calculations in the
analogous problem in superconductivity by Saint-
James and Sarma.” Their results are shown as
the solid line in Fig. 5. Furthermore, using the
superconductivity results we see that in the n—-=
limit, the paramagnetic to AF transition is, in fact,
second order. For H<0.7074, and equivalently
v>T5%=0.55T;, the transition at the Néel tempera-
ture is initially toa @ =0 or Q1— Q0 state, and for
0.707A,<H £ 0.754, the transition is to a finite -
@ state. Since the transition at the Néel tempera-
ture is second order in both =0 and n=>° limits,
we believe that this transition will remain second
order for all values of n. It then follows that the
value of Ty is the same as in the case n== for a

PARAMAGNETIC

A.F.
Q=0

Tn

H/Bo

FIG. 5. Néeltemperatureversus H. The dashed line
denotes the transition temperature of the commensurate-
incommensurate transition for n=1.
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given value of H. For some values of H and #,
there will also be transition between an AF state
with @= 0 and one with finite . The transition
temperature and also the order of this transition
will depend on » and H.

The dashed line in Fig. 5 is the locus of this
transition for n=1, the value appropriate to Cr.
The point where the @ =0 to @+ 0 transition curve
meets the curve of Ty is independent of #, and there
is a discontinuity in the second derivative of T y(H)
at this point. The foot of the curve is at a value of
H where the commensurate-incommensurate transi-
tion occurs in Fig. 4. A final feature of interest
is the curve of Ty versus H in the region near H,
=0.75 Ay, where Ty~ 0. The curve has a square-
root behavior Ty~ (H, —H)"? in this region.

III. CUSP-TYPE KOHN SINGULARITY

In Sec. II, we discussed a model with a band sus-
ceptibility which had a regular maximum. We now
wish to examine the question of how the existence
of singular maxima in the band susceptibility x4(g)
can influence the transition. We will consider in
this section the case of a cusp -type Kohn singularity
in the susceptibility. The possibility of cusps in
the susceptibility was first demonstrated by Roth,
Zeiger, and Kaplan. 13 These authors showed that
if for a given value of Q, say Qo, acurve of intersec-
tion between the Fermi surface and the Fermi sur-
face displaced by Qo crosses 1tse1f at a point, then
there will be a cusp in xo(Q) at Q QU, at 0 °K.

The wave-vector-dependent susceptibility x(Q) in
the generalized random-phase approximationis given
by

x@~ xe@)/[1 - V% @], (18)

where xo(é) is the generalized band susceptibility
introduced in Eq. (15). At a second- order transi-
tion to an antiferromagnetic transition, x(Q)-' <.
Clearly, as we vary V by varying some external
parameters such as pressure, the transition will
occur first at a maximum of xo(Q) We shall take
a simple model band structure which exhibits a_
cusp-type singularity; we shall assume that ¥, @
attains its maximum value at the apex of this cusp
and examine the nature of the AF transition as we
vary V.17

We begin by considering a band structure of the
form

b ") _sz_ k3
€ (k+Qq) =vk,+ -
2m, 2m, (19)
ay _ kg _@AZL_
€’(k) = vk‘+2mx—2my

Let us examine the curves of intersection of the
two surfaces e“(k) Oand €’(k+Q)=0 as we vary @
through the value Q,. Denoting the product v(@ —Q, ),
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by ¢ we find that for ¢ >0 the curves of intersection
lie in the (&,, k,) plane and form a hyperbola as
shown in Fig. 6(a). The shaded area denotes the
region where the perpendicular distance to the

b surface kz is greater than the distance to the a
surface k5. As g varies through zero, the branches
of the hyperbola approach each other along the &,
axis, touch at ¢ =0, and then separate along the

k, axis. The joint density of states defined in (3)
Ng(&, 1) can be evaluated at once for this model
and we find

2 2
Ng(, n)=§ o(& ~vk, -3 q)d [n ‘(27;‘; —2%;)-%«1]

(20)

=voln| o/ -39) | , (21)
where 7, is a cutoff energy in th_g (%, ky) plane and v,
= (mym,)V2/4m%. For ¢=0or Q=Q,, N has a loga-
rithmic divergence as 77— 0. This in contrast to
the behavior at a usual type of Kohn anomaly which
causes a discontinuous jump in the value of Nqg(&, 7).
In the model discussed inSec. II, there is an ordinary
Kohn singularity at @ =+H and associated with it is
a discontinuity in N [see Eq. (4)].

The gap equation for general band structure can
be written in the form

1/V=A(g,A,T) 22)
= [ datanNg(&, n) QE)Y1 -f(E +n) -F(E -n)].
(23)

From knowledge of the function A, we can readily
determine the order of the transition in the Hartree-
Fock approximation. By the particle-hole symmetry
of our model, the Fermi level in the AF phase will
be the same as in the paramagnetic phase.

We can rewrite Eq. (8) as

Quar —Q,:fA%(A, q, T)A2dA, (24)
0
where A is the value which satisfies Eq. (22). Con-
sider now if the maximum of A as a function of A

q>0 q=0 q<o0

(a) (b) (c)

FIG. 6. Curves of intersection of the Fermi surfaces
€?(k) =0 and €?(k +Q) =0 given by Eq. (19).
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occurs at A=0 for all ¢ and T, then dA/dA < 0 for
small A and the transition is clearly second order.
On the other hand, suppose that for temperatures
near the transition the maximum of A with respect
to ¢ and A occurs away from A=0 at A=A,(7T). Then
as the temperature is reduced we first get a solution
of Eq. (22) with A=4,,. Clearly, dA/dA >0 as we

go from A=0to A=A, and the integral (24) is posi-
tive. Therefore, the paramagnetic free energy is lower.
Aswelower T further, thereare two solutions with A

> A,(T) and A <A, (T), respectively. If we take the
solution with & >A,,, there are both positive and nega-
tive contribution to the integral (24) and the value

of the integral is always less than that which would
have resulted from the choice of the other solution
for A, The transition occurs when the integral (24)
equals zero and the state of lowest free energy
changes discontinuously from a state with A=0 to
one with a value A> A, (T) and the transition is,
therefore, first order.

We will now proceed to examine the gap equation
in the model band structure described by Eq. (19).
Substituting from Eq. (21) and evaluating the right-
hand side at T'=0 °K, we get

W, 1 B T]
Alg, A)=v, [ ‘a ——f dnn l——O——
@ ) 0[w0 £2E -E 1 n—%q

1

g iq
=v f d&(lnn +22 1n
0 10 0 2F

E-3q
E+3q

-1-%1n| g% - E? |)+2u0/°’°dg Inn,,

A (25)
where w, is the upper cutoff on the ¢ integration.
Expanding the right-hand side as a function of A
and g we find

Alg, 8)=A,- o[ (A% -3¢)"? —3¢ sin" G g/ )]

+0(a/ng, A/wg), A>3q (26)
=Ao-%an|q| +0(g/ngy, a/wy), A<iq
(27)
where A, and @ are constants:
Ag=v4ne+2noIn(we/ng)], a=mav,. (28)

Examining the results first in the limit A- 0, we
see that A(g, 0) has a cusp centered at ¢=0. This
cusp is a reflection of the cusp-type Kohn anomaly
in %o(Q) derived by Roth et al.'* In Fig. 7, we plot
Af(g, A). The maximum value of A occurs at A
=0, ¢=0. Thus, as A, varies through V! at0 °K,
there will be a second-order transition between a
paramagnetic state and an AF state with ¢=0 or
§=—Qo. The linear dependence of A(0, A) on Awill
give rise to alinear dependence of Aonexternal
parameters in contrast to the square-root depen-
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(@) q=0 T=0
(b) q#0 T=0
(©) q#0 T#0
{a)
< (b)
(c)
1
L
29
A
FIG. 7. Function A(q, A, T) plotted against A for vari-

our choices of ¢ and T,

dence whichwas found in Sec. II. The square-root
dependence is characteristic of a transition that
occurs at a vegular maximum in x,(Q).

A first-order transition will occur if the function
Al(g, A) has its maximum value at a finite value of
A, Tt is possible to obtain this condition by intro-
ducing strong-coupling corrections and additional
conf_ributions from other bands. Let us divide
X o(Q) into two parts xo=X¢+X¢’, Where x is the
nonanalytic contribution calculated above and x o’
is a background analytic contribution from the non-
magnetic bands., Then we have

2 X

%=—z—uosgn(q)+%(&q . (29)
In general dy{’'/dq# 0 for ¢=0, thus, by a suitable
choice of xy’, we can make dx,/dg as small as we
like for ¢ <0. Under these circumstances strong-
coupling corrections can lead to a first-order
transition. In the weak-coupling limit, A(g, A) is
a constant as a function of A for A <3q. However,
the terms of order 0(A/N,, A/w,) may be increasing
functions of A as we increase A away from zero.
We have calculated these terms numerically for the
model band structure in (19) and we find that they
can cause 2 maximum in A(g, A). The value of
this maximum clearly depends on the model band
structure. However, by a suitable choice of param-
eters, it is possible to simultaneously satisfy the
conditions that max{A(g, 0)} is at ¢ =0 and max
{A(g, A)}isat A#0 and ¢#0, leading to first-order
transition at T=0 °K as Vis varied.

At finite temperatures, the step function in Eq.
(23) is replaced by the Fermi function. Because
of the exponential character of the Fermi function,

T. M. RICE 2

we have not found it possible to carry out the neces-
sary integrations analytically. Therefore, we re-
placed the Fermi function at finite temperature by

a slanting function (see Fig. 8) defined as

fle)=1, €e<-CT, ky=1
=3[1-(/CT)], =CT <e<CT
=0, €>CT (30)

where C is a constant which we choose equal to 2.7
for reasons to be discussed below. With this ap-
proximation it is possible to carry out all integra-
tions analytically.

Let us first evaluate A with A=0. We find after
some algebra

Alg,0,T)=A,-ar(2CT)[(CT -1q)?

x sgn(CT -3q)+(CT +3q)*sgn(CT +3q)]

(31)
~Ag-tarCT, CT>3q (32)
=A,-far|q|, 3¢>CT . (33)

The effect of the finite temperature is to round the
cusp in A(g, 0, 0) or xo(g). For small ¢, the maxi-
mum height drops linearly with increasing tempera-
ture, while away from the apex of the cusp the
temperature causes only very small changes. The
linear dependence on T causes a linear dependence
of the critical temperature for a second-order
transition on external parameters in the limit
Ty-0. The experiments of McWhan'® on the pres-
sure dependence of Ty in Cr-V and Cr-Mo alloys
support such a linear dependence for the antiferro-
magnetism of Cr.

A numerical evaluation of A(0, 0, 7) using the
Fermi function gives

A0,0,T)=Ag-2.1aT . (34)

The constant C was chosen so that the linear coef-
ficient in the “slanting” approximation expansion

Fermi function (solid curve) and the slanting
approximation to it (dashed curve).

FIG. 8.
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(32) would equal that in the exact expansion (34).
For a more general band structure with a cusp-
type Kohn anomaly, the coefficient a can be ex-
pressed following Roth, Zeiger, and Kapla.n13 interms
of v,; and v,,, the perpendicular velocities in the
two bands, and «,, and k,,, the parameters of the
hyperbolas of intersection between the electron
and hole pockets. As Q varies through Qo, the
family of hyperbolas of intersection is given by

(Q-Qu)o= —5 (kg2 +Kyk?). (35)

We then find for a general band structure using the
slanting approximation to the Fermi functions

A(q,, o, T) =Aq - (167 | KyxKyy I-, va \ Vg1Vs2 ‘. szT)-l
X [(gL+CbT) sgnlg,+CHT)

- (g, - CbT) sgnlq, - COT)], (36)

where g,=(Q —Q),; and b= v, = vl /1v,40,].
Finally, we evaluate A(g, A, T) as a function

of all three variables for the simple band structure

using the slanting approximation to the Fermi func-

tions. After some algebra we find
tz
A(q, A T) AO (BT l(t-nA) }' F](t_, A)
4CT ——{F,(t,,A) +F,(_,A)

+3[t, Falt,, &) +t_Fylt_, A)}}> , (37

where ¢,=CT +3q and three functions F,, F,, and
F3 are defined as follows:

(¢, A)= f odgln t+E
=7sint/A, a>|t]
=37°sgn(t), a<lel @8
(% L-E )
Fot, 0)= f ag (tln t+E 2t>
= —zmt (A% = 1®)V2 3 A%sinl(t/A),  A>|t]
=% 1°A%sgn(#), a<lt]
and )
Folt,8)= J;dt (In] 2-E?| ~21n¢)
=7 (a2 -)V2 ax|e]
-0, A< l ¢ | .
(40)

In each case we have kept only the leading terms in
A and ¢ and ignored corrections of order (A/wy,
t/wy). In Fig. 7, we plot A as a function of A in
the region CT<1%¢q | . In this region, A(4) is
constant up to A=} ¢ —CT and then falls off, It

is clear that this feature is a result peculiar to the

slanting approximation, and if we had used the full
Fermi function, then A would monotonically de-
crease as a function of A, In the limit when CT
>3q, A is also a monotonically decreasing func-
tion of A and T. Thus, in this simple model we
find that there is always a second-order transition.

We showed earlier that the contribution from
other bands could cause a first-order transition at
T=0°K. Since the nonanalytic contributions at
T=0 °K to A always fall off monotonically as T in-
creases from 0 °K and, further, fall off faster at
finite A and g than at A=0 and ¢=0, it is clear
that by increasing the coupling we will convert the
first-order transition at 7'=0 °K to a second-order
transition when the Néel temperature T exceeds
a critical value T%, depending on the parameters
of the model.

Recently, Kimball and Falicov'®?® have examined
the paramagnetic to antiferromagnetic phase change
in a model with a single tight binding s band hydri-
dised with a plane-wave band. For this model, they
find in the Hartree-Fock approximation at finite
temperatures a first-order paramagnetic to anti-
ferromagnetic phase transition. However, at T=
0 °K the transition is second order as the coupling
constant is varied through its critical value. The
Néel temperature appears to go to zero linearly
with coupling strength, while the ratios of the zero-
temperature energy gap and of the extrapolated
second-order transition temperature from below
to Ty remain constant. This latter behavior sug-
gests that the peak in x,, the one-electron-band
susceptibility for their model, is at a cusp-type
Kohn anomaly. An examination in detail of their
band structure shows that it has a cusp-type Kohn
anomaly at approximately the correct position. It
is not clear from their numerical calculation which
feature of their model is responsible for the dif-
ference in behavior between their model and the
results we have obtained above.

IV. MORE GENERAL KOHN ANOMALIES

In Sec. III, we discussed the case of a cusp-type
maximum in the susceptibility which occurs if the
point of tangency is at the intersection of two lines
of intersection. It is possible for more complicated
anomalies to occur. Thus, for example, one could
have at a symmetry point several lines of intersec-
tion, crossing at a point of tangency. It is straight-
forward to generalize the analysis of Roth et al.'?
to cover this case. One finds at T =0 a nonanalytic
contribution to x4(g) of the form —-B | ¢ | ¥", where
n is the number of lines of intersection crossing at
the point of tangency. The model band structure
discussed in Sec. III corresponds to the case n=2.
It is straightforward to generalize the calculation
of the temperature dependence, at least in the
slanting approximation, and one finds that the sus-
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ceptibility at ¢=b behaves like —cT%" near T=0.

Other forms of the singularity are mathematical-
ly possible. One example is the cylindrical anomaly
discussed by Roth et al.'® which will occur if at
critical contact there is a line of tangency rather
than a point of tangency. Another example, is per-
fect nesting where critical contact occurs simul-
taneously over a plane of tangency. Neither of
these examples will occur precisely in nature, but
it is, nonetheless, interesting to analyze these
models since they may represent useful approxi-
mations to actual physical systems over limited
regions of temperature, etc. The analysis of the
perfect nesting example is similar to the BCS model
of superconductivity and leads, of course, to well-
known results and, in particular, a second-order
transition. *

In this section, we shall analyze a model of the
cylindrical type. We choose

€t =k2/2m+Vk, ,
(41)

e 5 =k2/2m —V(k,+qL) ,

ks
where, again, we have chosen the %, direction per-
pendicular to the plane of tangency and g, = (@ — Q,),.
At ¢,=0, the two surfaces are tangent along the

y axis. It is straightforward, for this model, to
evaluate Ng (£,7) defined in (3) and we find
_L@em)V® 6 -3Vvq))
NQ(g: "7)— 87T3V (n _%Vq;)l/z ’ (42)

where L is the length of the line of tangency. At

a cylindrical anomaly, N has a square-root
divergence at the origin. If we substitute this form
in the general formula for A(g,, A, T), then, after
some algebra, we find at 7'=0 °K that

, _qy L@m)? [0 0 +5Vq;)
Al & T=0="g 5y S, M Tvg)l?

wo d
x Lo z'—é[l -f(E +n)-f(E -n)]
(43)

_Lem)v2 [0 6 +5Vqy)
T 81V Ja n +3 Vg )V?
o 2 Vd,

Wy + (w24 AZ)/2
x 1“( 7 +(772:'_42))T/2 (44)

We have not evaluated this integral in general
but will examine the behavior in certain limits.
First, in the limit A -0 we find

_L(Zm)”zf"o URSACAN TR
A=783v Sy (n+%Vq;)"2<lnl " )

(45)
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LmY? A?
-———(—Vq;)”z 1+—-—~(Vq,)2 +eeo) L, Vgi<0
z

=Ag- 47r2V
(46)
Vg, A
=Ao+0<‘g‘{, _> , Vq,>0 (47)
Mo Mo
where
A= [L(2mne)Y2/4r° V] [Inwy/m,) +2]. (48)

The square-root singularity in A(g}, 0, 0) is the
cylindrical anomaly found by Roth, Zeiger, and
Kaplan.®® In the opposite limit A> | Vg’ |, we can
expand Eq. (44) and we find

A =L(?.m)1/2 "0 dy ln( wg+(wzg + A2)1’2>
—8-11-3V o 7717'2 n+ (772+A2)1/2

, 70 d
+3 Vq,_[ _n1/z‘(‘n—zn+_Az)T/‘z + ] (49)
Liem)Y? f [< nl/2 )
=Ag+—pgo— ["0dn | ( ot ~ 1
o+ 8,V [ n n? + AT
1 ’
AVq
A’ T S I
722+ A%)2 ] (50)

These latter integrals may be evaluated in terms of
elliptic functions and we find
1/2 ’

A=A0—o.84]‘—(§%3—)—<1-1.1%---) . (51)
Examining A as a function of A at various values of
q}, we see at once that A is a monotonically de-
creasing function of A with its maximum value at
the origin. Thus, at 7=0 °K, the transition is
second order.

Finally, we estimate the temperature smearing
of the square-root singularity of the susceptibility.
Again, we have recourse to the slanting approxima-
tion. After some algebra we obtain

Alg;, A=0, T)=Ay-[L(2m)"?/247%V]

x [(2CT -3 Vq,)¥%6(2CT -5 Vq.)
-(=2CT -3Vg))¥*6(-2CT -5 Vq))] .
(52)

The effect of temperature is to smear out the square-
root singularity. The apex at ¢,=0 drops initially

as TV%, Away from the apex, the falloff is much
slower. Although we have only calculated at 7=0
and finite A, and A =0 and finite 7', there is nothing
to suggest that raising the temperature could change

a second-order transitiontoafirst-order one. Thus,
the occurrence of a Kohn anomaly does not lead to

a first-order transition, but does lead to anomalous
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dependences of Ty and A in the limit of low tempera-
tures.
V. CONCLUSIONS

In this paper, we have examined the effects of
imperfect nesting of the band structure on itinerant
antiferromagnetism. In Sec. II, we studied a model
in which we took the electron and hole pockets to
be spherically symmetric, but allowed the radii of
the two pockets to vary. This model may be con-
sidered as a first approximation to the case of the
Cr alloys, where by varying the electron-to-atom
ratio, one may vary the size of the electron jack
relative to that of the hole octahedron. This model
correctly predicts the transition from a commen-
surate structure, when the sizes are equal, to an
incommensurate structure, when the differences in
the sizes becomes sufficiently great. However, the
qualitative features in the limit Ty - 0 predicted by
this model are not in accord with experiment. The
maximum in xo(ﬁ) occurs at a regular maximum,
whereas the experimental data are better fit by
assuming a cusp-type maximum of form discussed
in Sec. III. Clearly, a model band structure which
combines these two features is necessary for the
Cr alloys.

One important qualitative feature which the models
do not reproduce is the first-order nature of the
paramagnetic to antiferromagnetic transition. It
is interesting to note thata small first-order transi-
tion similar to that found in Cr2! has also been ob-
served in Eu.®? Of course, in the latter case the
antiferromagnetism is not primarily itinerant in
nature, but it is believed that the nesting of the con-
duction-electron Fermi surface plays an important
role in the effective exchange and determines the
period of the spin structure.

One mechanism which can cause a change in the
order of a magnetic transition is the magnetostric-
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tive effect proposed by Bean and Rodbell?? for MnAs.
Cohen et al.?® have ruled out this mechanism in

Eu, at least for simple distortions. In Cr, it is
known that the antiferromagnetism is extremely
sensitive to small volume changes. However, we
have made estimates of the magnetostrictive effect
in Cr and find that the coupling of the antiferromag-
netism to the lattice is not strong enough to account
for the first-order transition.

It is possible that strong-coupling corrections are
important. One such correction is the change in
effective interaction due to the loss of carriers in
the AF phase. Thiswas investigated for the Fedders-
Martin model by Baklanov and Chaplik?* who found
no qualitative changes.

Note added in proof. Professor E. P. Wohlfarth
has drawn the author’s attention to the apparent
inconsistency of the linear temperature dependence
of Xo(T) found in Sec. III with the thermodynamic
requirement that the entropy vanishes in the limit
T-0. The entropy S of a system of noninteracting
electrons moving in a periodic potential and a mag-
netic field Hy is given by the usual relation S= 372
X N(E;)T, where N(E;) is the density of states at the
Fermi surface. It is straightforward to show that,
for @ =Q,, the wave vector of the Kohn cusp anomaly,
N(Ep) decreases initially linearly in | Hy |. Thus
for this @ vector there is a breakdown of analyticity
and of the expansion of the free energy terms of
H% and T2, This nonanalyticity is also apparent in
the anomalous behavior of A and 7', discussed in
the text. The author would like to thank Professor
Wohlfarth for drawing his attention to this point.
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It is known that Cr;S; becomes ferrimagnetic at T¢=305°K and undergoes a ferrimagnetic-
antiferromagnetic transition at 150< 7T, <160 °K. A neutron-diffraction study by van Laar in-
dicates this transition to be of second order, whereas the existence of thermal hysteresis
points to a first-order effect. We have investigated the magnetization of Cr;Sg as a function
of hydrostatic pressure as well as of temperature and applied field, We find that 87 ./6P
=1.83°K/kbar, 8T,/0P=0.04°K/kbar, and o, (d0)/8P)=~0.011/kbar. 8T,/0H runs from
—0.54°K/kOe at low fields to — 0. 45 °K/kOe at 9—12 kOe; these values, together with the shape
of the normalized curve of magnetization versus temperature, are independent of pressure.

In addition, we have investigated theoretically the classical ground-state spin configuration of
the CrsSg lattice, using the generalized Luttinger-Tisza method, and have computed the ther-
mal evolution of the ground state in the molecular field approximation. The observed spiral
ground state is found to require not only that all the nearest-neighbor interactions be antiferro-
magnetic, but also that antiferromagnetic next-nearest-neighbor interactions be present. The
calculated temperature dependencies of spins on the different sublattices lead directly to a
second-order spin transition to a collinear ferrimagnetic configuration at T;, in good agree-
ment with experiment. We conclude that the transition at T is basically of second order,

with secondary magnetostrictive forces responsible for the thermal hysteresis, The pressure
dependence of o, indicates that some of the magnetization of CrgS; arises from band electrons.
The decrease of T with pressure is largely due to a decrease in the nearest-neighbor inter-
action along the ¢ axis, which interaction is also the one most likely to involve band electrons.

I. INTRODUCTION

The structure of Cr;Sz has been determined as
similar to that of NiAs, but with ordered vacancies. !
The material is metallic, % has a ferrimagnetic
Curie point of 305 °K, and undergoes a ferri-anti-
ferromagnetic transition at 150-160 °K.%° A re-
cent neutron-diffraction study of Cr;Sg by van Laar®
has shown the spin configuration to change from
collinear Ne'el-type ferrimagnetism above the tran-
sition temperature (Tt) to a spiral configuration
below T,. van Laar also observed that the wave
vector Kk which characterizes the spiral configura-
tion varies in a smooth and continuous fashion from
temperatures well below the transition to zerowave-
length at and ahove 7';. This result indicates that
the transition between the two magnetic states is
of second order, but is at variance with the signifi-
cant hysteresis observedfor 7, depending on whether
the transition is observed during a heating or cool-
ing cycle, which indicates a first-order transition.

In order to gain greater insight into the magnetic
behavior of CrsS; we have undertaken a further
study of its magnetic properties as functions of
pressure as well as of magnetic field and temper-
ature. We have also applied the generalized

Luttinger-Tisza method’ to study the ground-state
configuration of Cr;Sy in a multidimensional mag-
netic-interaction parameter space. This has en-
abled us to establish the existence of a region in
the space wherein the ground-state configurations
are of the type observed by neutron diffraction.
The variation with temperature of the configura-
tions within this region was then studied in the
molecular field approximation.

The effects of pressure on a sample of the slight-
ly different material CrS, ,; have been studied pre-
viously by Kamigaichi et al.® They noted kinks in
the electrical conductivity at both 7", and 7o, and
measured the changes in the temperatures of these
kinks as functions of pressure. Since the measure-
ments were of electrical conductivity, they could
provide no insight to possible changes of a mag-
netic character. It also seemed preferable to
choose a sample composition which more closely
approximated the pure ferrimagnetic phase Cr;Sg.
As will be noted in Sec. II, our results at the tran-
sition temperature significantly differ from the
results of Kamigaichi ef al.®

II. EXPERIMENTAL RESULTS

Our measurements were made on a sample of



