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Klemens' s moment integIal formulation of the transport coefficients has been expressed in
multiband form. A two-band moments model consisting of a standard and a nonstandard band
has been adduced to explain the anomalies in the electrical and thermal conductivities of chro-
mium 0 and k, respectively, in the vicinity of the Neel temperature as if they were mostly the
result of the changes in the band structure that occur during the antiferromagnetic transfor-
mation. It canbe seenthatthebehavior of the Lorenz number L =k/aT clearly indicates that a
BCS-type gap has opened oveI' a poI't1on of the Fermi suI'face dur1ng this transformation, The
zero-temperature-gap ratio is 240= 5.2, a value that is in excellent agreement with the value
(2&0 ——5. 1) found experimentally by Barker et al. using optical ref lectivity techniques. The
ratio 8 of the antiferromagnetic and paramagnetic Fermi surfaces is 0.51, a value in very
good agreement with the theoretical prediction of Asano and Yamashita. It is possible to show
that a recently observed minimum in the thermal resistivity near the Neel temperature can
occur even in the case of elastic scattering.

I. INTRODUCTION

The anomalies in the transport properties of the
transition metals in the vicinity of chromium are
caused not only by unusual scattering mechanisms,
but also by their unusual band structures. ' These
band structures differ from the standard band of
the theory of metals4 in two ways: The r esulting
density of states is distributed differently about
the Fermi energy, and the electronic states them-
selves are distributed nonspherically in the Brillouin
zone. Klemens's * formulation of the transport
coefficients in terms of moment integrals of the
specific conductivity v(E) ~N(E)v'(E)r(E), a prod-
uct of the density of states, the carrier group ve-
locity, and the relaxation time of the carrier scat-
tering mechanisms, enables one to treat unusual
distributions of states about the Fermi level; the
multiband formulation of the transpoxt coefficients
considers their distribution in the Brillouin zone
itself. Thus, a general formulation of these coef-
ficients will combine these two approaches.

The f.orenz number of Cr (I =v/oT, the ratio of
the thermal and electrical conductivities and the
temperature) is anomalously large at all tempera-
tures greater than 90 K~'7 '0; that is, it is much
greater than the expected Sommerfeld value Lo
= 2.4453&&10 8 (V/deg)2. While it is possible that
such anomalies can be caused by resonancelike
scattering mechanisms, ' in pure metals at rather
high temperatures it is more likely that they are
-due to variations in the density of states. In this
case it was shown that the anomaly could be ex-
plained by a model of the reduced specific conduc-
tivity a„(E)= o(E)/o(0) that had many characteristics
of the chromium band structure: It was symmetri-
cal about the Fermi energy (E=0), where it had a
minimum and became temperature dependent below

the Neel temperature (T„=312 'K). However, the
analysis used and the model developed were of
single-band form; and it was not possible to de-
scribe this temperature dependence quantitatively.

In this range of temperature below T„, a BCS-
type gap opens over a part of the Fermi surface as
a result of an antiferromagnetic interaction; for
this reason McVfhan and Rice' proposed that the
band structure be divided dichotomously into apart
A that undergoes this transformation and a part P
that does not. Thus, the natural treatment of the
transport coefficients of Cr is at least a two-band
model. The purpose of this paper is twofold: First,
Klemens's moments formulation of the transport
coefficients will be rewritten ln a form more di-
rectly related to the symmetries of the band struc-
ture about the Fermi energy, and then these coef-
ficients will be expressed in multiband form. Sec-
ond, the previous~ single-band model of o„(E) will
be decomposed into two-band form. It will be seen
that the data for the I orenz number clearly show
the effect of a gap forming over a portion of the
Fermi surface. The best fit of the data will give
a value of the zero-temperature gap in excellent
agreement with the optical gap found by Barker et
al. ' and a ratio of the A and P surfaces in very
good agreement with the theoretical calculation
of Asano and Yamashita. ' Finally, the results
strongly suggest that the well-known anomaly in
the electrical resistivity at T„' is the result of
band-structure changes; scattering changes only
uniformly through this temperatur e.

There is one cautionary remark. As of yet the
lattice thermal conductivity of Cr is not known.
Since this quantity will affect the measured value
of I- used in the present analysis, the parameters
deduced herein must be regarded as approximate.



MULTIBAND MOMENTS MODE L FOR THE 3607

In Sec. II the moment integral formulation of
the transport coefficients ' will be restated and
reformulated in multiband form. In Sec. III the
data will be given with the thermoelectric power
corrections that were ignored previously, and the
two-band model of o„(E)will be developed. Final-
ly, in Sec. IV the model will be evaluated in terms
of the theoretical band structure of chromium and
other transport data extant.

II. TRANSPORT COEFFICIENTS

Klemens ' showed that if the same relaxation
time describes both the electrical and thermal
processes and that if the phonon system is in equilib-
rium, the transport coefficients become

p, V/deg at 300 'K, this effect is only a few percent.
Since these subsets of coefficients depend on the
even and odd terms of the expansion (2. 3) (in the
range of its validity), S will tend to be independent
of the conductivities. This conclusion is consis-
tent with multiband considerations and it will be
seen in Sec. III that the model adduced to explain
L(Cr) contains no thermoelectric power.

Since the relaxation time of individual scattering
mechanisms is, in general, ~(E) '=P(E)T~, where

p is some power, the reduced specific conductivity
o„(E)= o(E)/o(0) tends to be independent of the tem-
perature dependence of the scattering processes.
Thus the coefficients (2.4) can be rewritten interms
of new integrals G„(T), where

electrical conductivity:

0' =MD (2. la)

M„=o(0)G„(T),

0„(~)6" ' d6Bf

(2.5a)

(2.5b)
electrical thermal conductivity:

g, = (K/e)'T(M2 M, /M0)—

Lorenz number:

L = (K/e)'(M, /M, ) —S',

thermoelectric power:

S = (K/e)Mq/Ma .

(2. lb)

(2. 1c)

(2. 1d)

M„ is the n'th moment of the specific conductivity
o(e), where e = E/KT is the reduced energy.
Klemens's formulation of these coefficients differs
from other formulations'~' in that he chooses
E =0 at the Fermi energy. Therefore,

Consequently, the transport coefficients (2.4) be-
come the products of two factors: o (0), which con-
tains implicitly the temperature dependence of the
scattering mechanism and the density of states at
the Fermi level, and G„(T), which gives the tem-
perature dependence arising from anomalies in the

energy dependence of o(e). In the range of elastic
scattering, o(0) is the same for both conductivities;
and consequently, L = (K/e) G2/G0 determines this
second factor for both the conductivities.

The multiband form of the moment integral for-
mulation of the transport coefficients in Eqs. (2. 1)
is trivial. Since o(e) = go,.(e), then M„=/AM&„.
It is convenient to define the partial Lorenz numbers

Expand o(&) about the Fermi energy:

(2. 2) L„=(K/e) (M„2/M„0) Lr = (K/e) (Mz, a/Mpa). (2. 6)

Thus,

o(f ) = o(0) +ops + goy f +—o3 6 + ' ' ' . (2. 3) L =Z; (M) o/MD)L; . (2 7)

0 =MD,

~, = (K/e)'TM, ,

Le =(K/e) M~/Ma,

and the antisymmetrical coefficient

So = (K/e)Mi

(2.4a)

(2. 4b)

(2.4c)

(2. 4d)

are measurable. They differ from the coefficients
(2. 1) in that the retardation effect of the internal
electric field on the thermal conductivity has been
neglected. In Cr where S is large, about 20

Simple metallic behavior corresponds to only the

first two coefficients being non-negligible; anoma-

lies are caused by the higher-order coeffi ients.
It is convenient to define a slightly different set of
transport coefficients which will have definite sym-
metries in the range of the expansion (2. 3). The

symmetrical coefficients

Since M&o/MD=@&/o is a partial conductivity, Eq.
(2.V) resembles a multiband form. However, it
is now possible to build up the transport coefficients
from a collection of nonstandard bands.

III ~ MODEL

The data for $2, where S is the absolute thermo-
electric power of Cr, are shown in Fig. 1. These
data are a composite of those taken from three
sources: 100-330 'K, unpublished data taken by
Goff2 on the sample Cr(2) discussed previously;
260-340 'K, thesingle-crystaldata of Trego and

Mackintosh; and 300-1200'K, the data of Cox
and Lucke. 2'

The data taken for L are also a composite: below
330'K they come from Goff's' sample Cr(2); above
323'K they come from the Powell-Tye well-an-
nealed electrolytically deposited sample. It can
be seen from the ideal resistivities of these two
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FIG. l. Anomalous Lorenz number I of Cr and cal-
culations for a two-band model of the Fermi surface.
AI = g, +$2) —L,(„ where I 0

——2. 4453 x10 8 (7jdeg} (the
Sommerfeld value) and S is the absolute thermoelectric
power. The parameters are B~, the depth of the harmon-
ic well in the paramagnetic surface; C» the curvature of
this weQ; &0, the BCS gap ratio at T = 0 K; and 8, the
ratio of the antiferromagnetic and paramagnetic surfaces.
&0 = 0 gives the model predictions for paramagnetic Cr
below the Neel temperature T„=312'K. B and C are the
single-band values of BI.and C~.
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FIG. 2. Ideal electrical resistivity of Cr. Below the
Neel temperature the data are those of Goff; above this
temperature they are those of Powell and Tye. p» (0)
comes from the scattering factor of the transport co-
efficient and so contains the temperature dependence of
the scattering processes.

samples shown in Fig. 2 that they are not matched
exactly at T„. The detailed behavior of the Cr re-
sistivities was discussed previously.

These data were used in Egs. (2.1c) and (2. 4c)
to obtain I,: M, =L, -I-o, where the Sommerfeld
value I 0 is shown in Fig. 1. Although S is only
about a 2% correction in L at 300 'K, it affects the
parameters of the model.

The significant description of these data is that
~,&0 for all temperatures greater than 90 'K;
initially ~, varies as T; it begins to decrease at
approximately & 7„; there is an inflection at T„;
it then continues to decrease up to about 1000 K.
The data above this highest temperature were not
and are not considered. It is suggested here that
they may indicate the lattice thermal conductivity,
for similar ~ have been seen in the isoelectron-
ic' TiFe at lower temperatures.

The single-band model of o„(Z) shown in Fig. 3
was proposed to account for these characteristics
in a semiquantitative way:

o(z)/o(0)=l+cz', I zI &-', z,
(3 l)

o(Z)/. (0)=Z, l ZI ~2 Zo

where C = s2s/2o (0) in an expansion in terms of Z.
The magnitude of the anomaly described above mas
accounted for by the constants 8 and C; its tempera-

ture dependence, by the fact that these constants
were larger at temperatures less than T„ than they
mere above it. Voile this change is suggestive of
a gap having been formed at lower temperatures,
(such a gap would begin to disappear at —,T„)"it
was not possible to account for the changes in these
constants in a quantitative manner.

The values of these constants needed to fit the
corrected data for M, , above &„, whichis shownin
»g I, »e &=2.55 and C=130 eV . The width of

E0

FIG. 3. Single-band model of the reduced specific
conductivity o.(E)/o.(0). Well curvature is C=4(B-1)/E20.
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the well is Z0=2[(B —1)/C]~/3=0. 218 eV. Since the
Sa correction increases the value of ~L, at the
higher temperatures, the well width must be larger
than the value found previously when this correc-
tion was ignored.

The temperature dependence of M, can be
treated quantitatively by dividing the Fermi surface
dichotomously into a part A that undergoes an anti-
ferromagnetic transformation below T„and a part P
that does not; such a division was suggested by
Mohan and Rice. The simplest decomposition
of the single-band model of Fig. 3 is shown in the
top portion of Fig. 4, the paramagnetic state at
T & T„consisting of the standard band AP and a
nonstandard band with a well P. In this tempera-
ture range it makes no difference which of these
two surfaces are 2 and p; for if R(Z) =&~p(Z)/&/ (0),
then

~,(Z) = c(Z)/o(0) = [o(Z)i~.(o)][1/[1.R(0)]},

The A surface at T & T„is

o'~/, /o'/, (0) = R ~ (s. sb)

It is assumed that below T„ the gap opens over this
surface as if only the density of states were af-
fected.

o„(z) R Iz I

(0) (z2 ~8)1/2 g
t 1 I (3 4a)

..(z)/;«) = 0, (3.4b)

type gap opening in one of these surfaces as a re-
sult of the antiferromagnetic transformation. This
gap must open in the standard band A because other-
wise the low-temperature single-band model would

correspond to a square well, and ~I, would in-
crease much faster than Ta. The low-temperature
model is shown in the bottom portion of Fig. 4.

The P surface at all temperatures is

~,(Z)/o, (0) = 1+C,Z',
[
Z I —,'Z,

o(Z) = c,(0)[o,„(Z) +R(Z)]. (3.2b)

P: PARAMAGNETIC A: ANTIFKRROINAGNKTIC
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F&G. 4. Two-band model of the reduced specific con-
ductivity consisting of a paramagnetic I' and an antiferro-
magnetic A surface. Beiow the Noel temperature T„, a
BCS gap opens over the A. surface.

&I, is independent of R(0) as long as v(Z) is the
original surface. Thus, the solid line at T & T„
in Fig. 1 and its dashed extension to lower tempera-
tures represent the calculation of the model for
either the total surface in the paramagnetic state
or for R(0) =0. The fact that the data for AI, , lie
above this dashed line below T„ indicates that R(0)
is not zero and that the total surface has changed.
It will be seen below that R has become a function
of energy in this temperature range; that is, the
A surface is no longer a standard band.

R is caused to be a function of energy by a BCS-

where n, = boff T„(1—T'/&„)~/~ is the BCS gap. The
anisotropy factor 5 is used here to eliminate the
singularity m (3.4a); it is set small.

Since the A surface is a standard band above T„,
we have R(Z) =R, a constant. Therefore, the con-
stants of the new P surface are related to the old
single-band constants:

Z, =R(1 R+) -R, C, = C(1+R), (s. 3)

and the single-band model of Egs. (3.1) can be de-
composed into the two-band model of Eqs. (3.3) and
(3.4) by simply adjusting ho and R to nonzero values.

A gap 4 over any conducting portion of the Fex'mi
surface enhances ~L, because G& weights the dis-
tribution of states about the Fermi energy more
heavily than does G, [see Egs. (2.4c) and (2.5b)].
However, this effect is more important just below
T„than at much lower temperatures because ulti-
mately that portion of the surface becomes insu-
lating. The behavior of 4L, is quite similar to
the predicted behavior of transverse acoustic atten-
uation in superconductors.

Representative results of calculations for different
choices of 4o and R are shown by the families of
curves at T & T„ in Fig. 1. The small dashed lines
are for ~o = 3.5, a value chosen to be twice the BCS
value in ordex to emphasize the effect of a large
gap and several values of R. While it would be
possible to fit the data at low temperatures with
R = 1, the gap opens much too rapidly just below
T„; and consequently ~L, is much too enhanced.
On the othex hand, a fit just below T„with R = O. 4
leaves the A surface too insulating at the lower
temperatures. It is not possible to fit the data with
this value of 4o. The light solid lines are for
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FIG. 5. Components of the two-band calculation of the

transport properties of Cr for the best fit to the data.

L~ is the partial Lorenz number of band j. o;/o. is the

partial electrical conductivity of band j. &L, is the

composition of these components. o~/o (0) shows the en-

chancement of the electrical conductivity as a result of

the nonstandard form of the P surface for this best-fit
calculation.

8 =0.4 and several values of 40. Asano and
Yamashita ~ predicted that N~/N„=0. 41; and
indeed 8= 0.42 gives good fit over some 40 'K at
the lowest temperatures if Koehler's experimental
value ~0=2.2 is used. The best fit, shown by the
heavy line, is for 40 = 2. 59 and 8 = 0.51. Even so,
this fit does not agree exactly with the data just
below T„. Either the data are not yrecise or the
model is too simple.

The components of this best-fit calculation, the
partial Lorenz numbers [Eq. (2.6)] and the partial
conductivities [Eq. (2.7)] are shown in Fig. 5.
One sees quite clearly the gap enhancement of M &

and the well enhancement of ~p. The partial con-
ductivity ogo shows the effect of carrier excita-
tion across the gap with increasing temperature.
However, the majority of the currents are carried
by the P surface; the maximum contribution of the
A surface is about 25%%uo at T„. Finally, o/oJ, (0)
indicates the enhancement of the electrical con-
ductivity as a result of the nonstandard form of
the P surface. It is for this reason that the well-
known ' ' ' ' concavity appears in the electrical
resistivity of Cr above T„(see Fig. 2).

This statement can be demonstrated to be at
least approximately true by using Eqs. (2.4a) and

(2. 5a) to extract the scattering factor o~(0) from
the electrical conductivity. Since specific conduc-
tivities are additive, the total electrical conduc-
tivity is

o = o~(0)[G~O(T) + RG„O(T)] = o p(0)Go(T), (3.6)

where Go(T) has been determined by fitting the
model to ~,. op(0) contains not only the tempera-
ture dependence of the scattering process but also
the changes in N(0) p.„ the ideal electrical resis-
tivity, is shown in Fig. 2. p~, (0) = p~Gp(T) is shown

by the long-dashed line in the same figure. Ap-
parently the scattering factor changes uniformly
through T„. While the concavity is not completely
removed from this factor, it is suspected that this
failing is a defect of the data arising from the un-
known lattice thermal conductivity.

IV. CONCLUSIONS

It has been shown that the anomaly in the Lorenz
number ' of Cr, which appears at temperatures
above 90 'K, can be explained in terms of an anom-
alous distribution of electronic states about the
Fermi energy and throughout the Brillouin zone.
A two-band model has been proposed which consists
of a well-like nonstandard band for the paramagnetic
P part of the Fermi surface and a standard band for
the antiferromagnetic A part. Thus, the A surface
somewhat resembles that used by Zittartz,
who calculated the effect of scattering on the elec-
trical and thermal conductivities of the excitonic
insulator. However, the P surface precludes the
insulating state.

The data clearly show the effect of the BCS-type
gap opening over theA. surface below T„because
they are greater than the model's prediction for
a completely paramagnetic surface. This result
is consistent with the observation of smaller values
of the Lorenz number in Mo and W (For example,
it can be shown from the White-Wood data~ that
at 140'K, M/I o equal for Cr, 0. 61; for Mo,
—0. 16; for W, 0.098), although the matter is not
the simple one of assuming Mo and W to be para-
magnetic Cr. Since the P surface has the same
form as the previous single-band model, all
qualitative justifications for that surface still apply
here. The two adjustable parameters needed to fit
the data below T„are the zero-temperature-gap
ratio ~0 and the ratio B of the A and P surfaces.
The best-fit values &, =2. 59 and A=O. 51 compare
with the experimental value of Barker and co-
workers, who found that 240= 5.1, and the theo-
retical ratio of the density of states R=N~/N„
= 0.41, which was predicted by Asano and Yama-
shita. ' These values are also in agreement with
the McWhan-Rice results from pressure studies,
although they assumed that the P surface was a
standard band. It is also interesting to note that
the energy of the width of the well in the P surface
(Eo = 0.218 eV) corresponds to an optical wavelength
of about 6 p, and thus is close to the temperature-
independent structure ..n the optical ref lectivity of
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Cr that was noted by Barker. ~4

The agreement with the prediction of Asano and
Yamashita supports the contention that much of the
structure of the anomalies associated with T„comes
from changes in the band structure. However, the
model does not fit the data exactly at T„; it is some-
what low. There may be other effects.

The conductivities have been stated in a form in
which they naturally factor into a term which con-
tains the temperature dependence of the scattering
processes (and the density of states at the Fermi
energy) and another with the temperature depen-
dence caused by anomalies of the density of states
(and the energy dependence of the scattering pro-
cesses) about the Fermi energy in the case of a
single scattering process. An analysis of the
Lorenz number in terms of the model determines
this last factor for both the conductivities. The
scattering factor is then extracted from the data
by use of Eqs. (2.4a) and (2. 5a). This scattering
factor, which is shown in Fig. 2, suggests that
the scattering processes change uniformly through
the Neel temperature.

If the scattering processes are elastic, the scat-
tering factor op(0) is the same for both the thermal
and electrical conductivities. It becomes possible
to compute the thermal conductivity from the more
precise electrical resistivity data. From Eqs.
(2.1b) and (2. 4b) one finds that the thermal con-
ductivity without the retardation effect of the in-
ternal field is

and the complete electrical thermal conductivity is

~, = ~, —S'To~(0)G, (T) (4. lb)

In Fig. 6 are shown the ideal electrical resistivity
data of Arajs~s and the ideal thermal resistivities
w = I/a deduced from it by the equations given above
and the scattering factor shown in Fig. 2 [where
it is shown as p&, (0) = I/o~, (0)]. One does not ex-
pect to reproduce magnitudes exactly, because the
model does not quite fit the data for &I, in this
range of temperature; however, one does repro-
duce a minimum in so which has some of the char-
acteristics of the one that was recently observed by
Meaden, Rao, and Loo. As they pointed out, this
predicted minimum occurs at a higher temperature
than does the one in p;, but it occurs at 325 K
rather than the observed 313.5 'K. Since this mini-
mum seems to be related to the maximum in &I ~

seen in Fig. 5, this difference suggests that the
model does not have the A and P surfaces in cor-
rect balance.

An obvious question is whether the spin-wave
system of antiferromagnetic Cr contributes a
thermal conductivity that could affect the analysis.
One wouM guess for the following reasons that it
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FIG. 6. Result of the calculation of the ideal thermal
resistivities se& from the data for the ideal electrical re-
sistivity p; by use of the best-fit model of the chromium
Fermi surface. It was assumed that the scattering processes
are completely elastic. so, is the usual ideal thermal re-
sistivity; , is this resistivity without the effect of the in-
ternal electric field.

probably does not. For a weakly interacting sys-
tem of quasiparticles such as phonons or magnons,
the kinetic expression of the thermal conductivity
is that it is proportional to C„vA. , the heat capacity
per unit volume of the system, the group velocity,
and the mean free path, respectively. Sidha and
co-workers'~ have measured in a spin-wave veloc-
ity at 300'K of 1.29&&10~ cm/sec. Feldman~~ in
his recent treatment of the lattice heat capacity
of Cr points out that this value is equivalent to a
spin Debye temperature of about 16000 K. Thus,
unless there is some bizarre difference in mean
free paths the ratio of the magnon to the phonon
conductivities is about 0. 1; and the phonon con-
ductivity has been neglected in this paper.

There are several sources of limitation and
oversimplification in the model proposed:

(a) One is the assumption of a negligible lattice
thermal conductivity. 2 While the results of the cal-
culations imply that this assumption is approxi-
mately correct, one should expect to have to adjust
the parameters of the model when this quantity is
known.

(b) It has been assumed that the A surface is a
standard band. This assumption greatly simplifies
the calculations, is consistent with theoretical cal-
culations, and allows for one's intuitive feeling that
the A surface must differ to some extent from the
I' one. However, if A is to any extent nonstandard,
then the relative contributions of these two surfaces
will change. Even inthe present model, a difference
of scattering processes on the two surfaces at
temperatures below T„would cause 8 to vary with
energy and temperature in a manner different from
the BCS equation and so change the fit to the data.
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In this connection one should see the work of
Zittartz.

(c) The model contains no thermoelectric power
because it is symmetric. As can be seen from
Eq. (2. 1d), the thermoelectric power arises from
asymmetries in the specific conductivity. Since
the thermoelectric power takes the same sign as
the Hall coefficient, ' it is reasonable to suppose
that it is determined by asymmetries in the density
of states. However, the inclusion of such asym-
metries in the model to make it conform to a more
realistic case would then require the density of
states about the Fermi level to become a function
of temperature; presumably, the reduced specific
conductivity would so follow. However, the pro-
posed model does seem to work. While this prob-
lem is beyond this paper, it does suggest that the
I' surface itself is further divided into symmetric
and antisymmetric portions. If the antisymmetric
portion were lightly populated, it would dominate
the thermoelectric power, but affect the conduc-
tivity little. This suggestion is essentially the same
as the qualitative model that was postulated to ex-

= 3. 355x10-' (V/deg)', (4. 2a)

00 8
~If 0 (4. 2b)

Such an increase would improve the fit of the data
at T„and give a way to explain the structure in p;
in the immediate vicinity of T„, which was seen by
Sabine and Svenson. '
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plain the transport properties of the chromelike
metals.

(d) The anisotropy factor 5 has been set so small
that its effect on the model is negligible. However,
it can be shown from Eqs. (2.4c), (2. 5b), and
(3.4a) that if this factor is large and symmetric,
it will increase the value of ~&..
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