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The boson method in superconductivity, developed in previous articles, is extended and ap-
plied to the problem of vortices in neutral and type-II superconductors. In the approximation
considered, the distributions of current and magnetic field of a single vortex are given in the
whole domain, up to the center of the flux line. Expressions for the vortex self-energy and
the interaction energy between two vortices are also derived. In the limiting case in which
v» 1 (where tt is the Ginzburg-Landau parameter) and the structure of the core is approxi-
mated by a 6 function, our results agree with those of Abrikosov's theory, based on the
Ginzburg- Landau equations.

I. STRUCTURE OF BOSON METHOD

We have devoted several papers'2 to the role
played by the bosons in the recovery of gauge in-
variance and current conservation in the theory of
superconductivity. In the course of this study it
appeared that many phenomena could be presented
from a new angle. We called this approach the
boson method. In the previous papers we have es-
sentially limited our study to the case of a position-
independent order parameter, although the space-
dependent case has been briefly touched upon in
Ref. 2.

The purpose of this paper is to extend our previous
considerations to space-dependent superconductors
and to show that this approach presents certain ad-
vantages. In order to check our general argument
we applied it to an extreme case of space dependence:
the vortex lines in type-II superconductors. We
would like to emphasize that although some of our
results are similar to the Landau-Ginzburg-Gor'kov
theory, our method presents some essential dif-
ferences which will be shown explicitly in the &ol-

lowing pages.
It has been known for many years that, in order

to have a theory of superconductivity where the cur-
rents are conserved and which is gauge invariant,
one has to take into account terms of higher order
than in the BCS theory (the reduced Hamiltonian
is not gauge invariant and the current obtained
through a simple Bogoliubov transformation is not
conserved). 4 It is also well known that already at
second order' there appear bosons in the theory and
that these bosons play a crucial role in the sym-
metry recovery.

If one wants to extend this program to the case
of a space-dependent order parameter, one is faced
immediately with great difficulties, since already
the first-order' problem (where no bosons appear)
is very hard to solve.

The boson method suggests a line of approach
which allows us to bypass some of these difficulties.

p(x, t) = p'"(x, t) +p'"(x, t),
j(x, t) =I (x, t)+I (x, t)

(I.2)

where p ", p' ', j'", and j' ' are, respectively,
the quasifermion density, quasiboson density, quasi-

A keystone in this approach is the introduction of
some invariant transformations, under which the
field equations stay invariant while the ground-state
expectation values of various observables may
change. Through these transformations we can move
from the space-independent solution to space-de-
pendent ones. We have already derived the operator
forms of most of the important observables (such
as the current, density, . and Hamiltonian) expressed
in terms of bosons and quasifermions. These ex-
pressions were obtained by solving the electron
equations for the space-independent superconductor,
and they manifest the gauge invariance and current
conser vation. Space-dependent phenomena can be
derived from these results simply by operating the
invariant transform3tions on the observables. In
this way the space dependence can be treated with-
out solving the Gor'kov equations, while the gauge
inveriance and current conservation are guaranteed
by the boson effect. It will be shown that the order
parameter thus obtained satisfies the Gor'kov
equations.

To be more specific let us first consider the
case of a neutral superconductor. In Ref. I we
have solved the electron equations derived from
the BCS Hamiltonian and found the quasifermion
operators n, (s = 0, 0) and quasiboson operators B,

The BCS Hamiltonian can be rewritten in terms
of these new operators in the form

B=~ ~a &4,.oa,.+~~i B'r Br

where op, = 3 '~'v~l = vol for tf « I (t is the coher-
ence length). The ground state l 0) is assumed to
be position independent. The current and density
operators become
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fermion cux'rent, and quasiboson current, p'~) and
j' ' can be expressed in terms of the boson field
B(x,f) and its canonical conjugate v(x, f) in the fol-
lowing manner:

p("(x, f) = - )&(v) )((x, f), (& = B) (1.8)

j'2&(x, t) =(&(') &&(V)VB(x, t) . (i.4)

The coefficient &t(V) is given by )I(V)= —2)t 2&
[R(v)]&~~, where s is the energy gap and It(V) is de-
fined in Ref. 2.6 As we have shown, n(V) is properly
a temperature-dependent function: »(V}=q(V, T); in
the following, the variable T will be omitted.

The conservation law for the bosons is guaranteed
by the field equation

—p-(&20V~ B(x, t) =0 (1.s)

It has also been shown in Refs. 1 and 2 that the
electron fields can be expressed in terms of the
quasiparticle fields as

. = exp. [[i/»(V)]a(x, f)]a[(»(x, f), (& a(x, f)] (i.S)

where (I)(x,f) is the quasifermlon field and E is an
unknown function.

An interesting property of the boson operator
is that, under the transformation induced by the
genex'Rtox'

i&t&" =j d'j&f(j)p'"{y),

lt transfoxms ln t e following way:

. (8)
B(x, f)-B~(x, f) = e "y B(x, t)(. (")

=a{x,t)+ f (f'yf(y)g(v„)d(x —y),

«{v)+;. si- (j = —&(4'(0 4),
I 8

«(v)+ —.— g, = -&((t&', ((I&, (I&, ),
(i.11)

where «(V) = --', (F2+k+~), become after the trans-
formation

«(v) y(f&
&

q(&&)ty(f) y(f)
z et

«(v) + q(I) y y(g&gy(f'& q(&')

I

(l. 12)

%'here

i d(x —y) = [B(x,f), )&(y, f)].
Anothex' important result is that the transforma-

tion induced by N&
' leaves the equations of motion

and the q-number part of the Hamiltonian invariant
if f(x) obeys the Laplace equation

v'f(x) = 0 . (i. io)

For instance the equations of motion

%hex'e

q
f) - Nf y efNf( ] (3)

= exp(i [I/q(v)] B,] S'[y, (&B,] . {1.18)

Equations (i.12) are easily derived observing that,
owing to (1.8), (1.S), and (1.7),

d'yf(y)(&(v), ,~ B{y,—&)

=-eo dy yg 7'V By, t

Rnd Rftel partlRl integl'ation

N&»»=,—,, &'&» = »&&f»&y -~&f(y)n(~)»(y, » o, =

(1.is)
since, by hypothesis, f(y) obeys the Laplace equa-
tion.

The proof that the transformation induced by
Nf' ' leaves invariant the q-number part of the
Haxniltonian, modifying only the e-number part,
requires mox'e detailed arguments and is px esented
in Appendix A.

It is also interesting to notice the invariance of
the boson field equation (i.S) under the transforma-
tion (1.8).

In the following, the transformation induced by
K&2' is called "the boson transformation. " As was
shown lD Ref. 2, this colncldes %1th the g3uge
transformation when f is very smooth. 8 It is im-
portant to distinguish the boson transformation
from the gauge transformation because the electron
equation is invariant under the boson transformation
even when f is not smooth. When f is a constant,
the boson transformation is simply a phase trans-
formation of g. The invariance of the electron
equations under the phase transformation of g is
well known and is obvious from (1.11). It is, how-

ever, remarkaMe that there exists a position-de-
pendent transformation vrhich keeps the electx'on
equations lnvRx'lRQt. SucI1 RQ invariance ls Dot ex-
plicitly seen from the electr on equation (i.11), be-
cause the boson transformation induces a compli-
cated nonlocal transformation of $ as is sho~ by
(1.1.8}. (The invariance becomes explicit when we
focus our attention on the boson. )

Using these x'esults, our approach in a space-
dependent problem is the following. We first look
for an f (x} satisfying the Laplace equation as well
as the boundax'y conditions of the problem and then
induce the transformation generated by the cor-
responding K&3). For instance the neve boson cur-
rent obtained after the transformation is, using
(1 4),
j'"(x, f) =(&('))l(v)va(x, i)+»'v„s(~) J d'y c(x —y)f(y),

(1.16&
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where g means q(0) and

e(z —y) = fn(&.)n(&,)/7l']d(z —y). (1.1v)

state is

(HgB)) = (1/2q'mao) f d'x j (x) ~ j(x). (1.28)

Everywhere in Ref. (2') we approximated g (I) by
il(0) so that e(z) itself was the boson commutator.
In Ref. (2) we took

e(z~ y) P ii ~ (R -A (1.I.8)
l & l & lO

where la = 2&/vo. This is of course an oversimpli-
fied choice. In the present paper we do not speci-
fy the precise structure of this function. Use is
made only of the fact that this function has a range
of the order of $ and that it is normalized:

J' d'xe(x-y) = J' d'xd(z-y) =1. (1.19)

The ground-state current is obtained immediately
as the average value of j' '(x, f) with respect to the
(space-independent) ground state I 0):
(0 I

j"'(x, t) I 0) =b'av,'7„f d'ye(x y)f(y). —(1.20)

H(B)=-', f d' [ '(z)+v,'VB(x) ~ VB(x)]. (1.22)

After the boson transformation the expectation value
of the transformed Hamiltonian III in the ground

The position-dependent order parameter is obtained
simultaneously:

~( )=(0I m{[2/n(&)]B~(, t8&'(4, » ) I 0&

(1.21)
The absolute value ) A(x) I depends on x because
B~ contains f[cf. (1.8)] which is a space-dependent
c number.

The Gor'kov equations for the Green's functions
can be derived from Eq. (1.12) in the usual way.
In other words, S(z) given by (1.21) satisfies the
Gor'kov equations. One should note that the ground
state to be used is still the original space-indepen-
dent ground state I 0), the space dependence having

been introduced in the operators $'~' [see Eq.
(1.18)].

We thus obtain sirnul taneousl y the Gor'kov equa-
tions and their solutions. On the other hand the
correct ground-state current is given by expres-
sion (1.20).

The fact that the transformation induced by NP'
leaves the q-number part of the Hamiltonian invari-
ant implies that the system described after trans-
formation is the same system as before but influ-
enced by new boundary conditions. The invariance
of the electron equations does not mean that the
energy of the system is unchanged. The transforma-
tion induces a c -number part in the Hamiltonian,
and thus, for instance, modifies the ground-state
energy. For instance let us consider the con-
tribution of the persistent current to the ground-
state energy. The boson part of the Hamiltonian
(1.1) can be put in the form

One of the principal merits of the Boson method
is that it relates through a simple transformation
(simple only when expressed in terms of boson
fields) different states of a superconductor, each
of these situations being characterized by a solu-
tion of the Laplace equation (1.10) obeying certain
boundar y conditions.

The method described above is not modified when

the Coulomb interaction among electrons is taken
into account. We include in the Hamiltonian the
Coulomb interaction

—.'e'f d'~ f d'yp(z, ~)p(y, &)/I, z-y
I

(1.24)

&tp
-vo~ B x, t — d y 7'B y, t =0,

4r lx —yl

v,'V' eaV' (1.25)
where p, = (4w)" eel. This shows that the plasma energy
idi, is equal to (@8+p, eo). As was shown in Ref.
2, p ea is about equal to 4&e n,/I where n, is the
superelectron density. The relation between p and
B is also modified by the Coulomb effect

B' (x, t) = v'(x, f) + dy
~

- '-
~

— (1.26), v'(y, &)

Making use of the relations (1.25) and (1.26), we
obtain

—v'(x, t) = xiii V B'(x, t). (1.2v)

The current conservation law is now obvious from
this relation. It is also obvious that the boson
equation (1.25) is invariant under the boson trans-
formation as it should be. It is not difficult to show
that the Gor'kov equations and their solutions can
again be generated simultaneously by the new gen-
erator

iv&'" = f A p""(y, &)f(y),

where f(y) obeys the Laplace equation.
The inclusion of a vector potential presents more

problems» Part of the vector potential can be ln-

and diagonalize the new Hamiltonian. The expres-
sion of the Hamiltonian in terms of quasifermion
and quasiboson operators is again given by (1.1),
where ~~ is now a plasma frequency. The following
relations are still true:

p"a'(x, f) = -il(V)ii'(z, t),

j"@(x,t) = u',g(V)VB'(x, f),

[B'(z, f), '(y, t)] = 'd(x —y),

where the superscript c designates the operators
under the influence of the Coulomb interaction. The
boson field equation (1.5) is modified by the Coulomb
effect to become
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eluded dire ctly by gauge-invariance considerations.
vB(x, t) is replaced everywhere by

vB(x, t) —efd yA(y)q(v, )d(x y) (1.28)

The gauge invariance of this expression is obvious
if one remembers the relation (1.13). By doing
the substitution (1.28) one includes, so to speak,
the vector potential attached to the bosons (or con-
densed electrons). Since the description of vortex
lines presented in the rest of the present article is
intended as an illustration of the method described
in this section, we simplified the calculations by
including only the part of the vector potential ap-
pearing in (l. 28). The core current may conse-
quently be incomplete. A more detailed calculation
will be presented later. From these considerations
it is easy to see that in the case of a charged super-
conductor the boson transformation, generated by
X~' ', induces the following ground-state current
(or persistent current):

J (x) = eq~vo~ Iv„f c(x —y)f(y) d'y

-e f c(x-y)A(y)d'y]. (1.29)

Performing the boson transformation in the boson
Hamiltonian in the charged case, we find that the
expectation value of the transformed Hamiltonian

II& in the ground state is

(H&(B)) =(1/2e q vo) f d'x J(x) J(x). (1.30)

It should be noted that the boson transformation
induces also the following operator term in H&.

(1/2g) J d'x vB(x) J(x)
which, however, is zero owing to the conservation
law V' J =O. Thus, the ground state remains an
eigenstate of the Hamiltonian under the boson trans-
formation.

Another interesting application of the boson
method is the Josephson effect. This effect can
be obtained through the boson transformation
generated by N& ', where f obeys the Laplace equa-
tion and is subject to appropriate boundary condi-
tions. Thus the Josephson effect becomes a prob-
lem of the Laplace equation. A study of the
Josephson effect along these lines will be presented
in a separate article.

II. EQUATIONS FOR VECTOR POTENTIAL A

ff we introduce (1.29) in the Maxwell equationg

4&J =gxgxA, (2. 1)

we get the following equation for A:

vxvxA(x)+ (1/X~}f c(x —y)A(y)d'y = 4&ej (x),

(2. 2)

where A~ is the London penetration depth

1/&z, = 4',e /m = 4me q vo .

where

J |x)= J,(x) + J,(x),

J (x) = —(1/4vz')f c(x —y)A, (y) d'y,

J~(x) = f D(x —y) j (y) d y,

(2. 6)

(2. 7)

(2. 8)

e&~~ ~ 1 1D(x-y)= p 5(x-y)—
Xg 4&Xg I x-y1

y exp— (2.9)

The equations for the magnetic fields 8& = V ~ A,
and H, =V~A~ are

f c(x-y)H, (y)d'y+X vxvxH, (x)=0, (2. 10)

H3(x)+pc VXVXH~(x)=4veX~ VXj(x). (2. 11)

Since H, and J& do not penetrate into the metal, we

mainly consider H2 and J~. In Sec. III,J~ will be
denoted simply by J.

Summarizing, our computation procedure in-
volves the following steps: Look for solutions of
the Laplace equation (1.10) under appropriate
boundary conditions to compute f(x), then calculate
the neutral current j (x) by means of '(l. 20); the
charged current J (x) is then given by (2.6)-(2.8);

The general solution of this equation is given by
A =A&+A~, where A& is the general solution of the
associated homogeneous equation and A~ is a parti-
cular solution:

vxvxA~(x)+ (1/Az) f c(x-y)Aq(y)d'y =0, (2. 3)

vxvxA, (x)+ (1/X~2) f c(x -y)A, (y) d'y =4vej (x).
(2. 4)

Equations (2. 3) and (2. 4) show that Aq is induced by
the external field, while A~ is the self-consistent
field induced by the persistent current. Equation
(2. 3) is clearly the generalized London equation.

Using the expansion

f c(x —y)A, (y) d'y = (1+Gv') A, (x)+p(('/y'),

where G is a constant of the order (, we have

G = ,'p f,"r,'-c(r, ) dr, ,

and observing that the substitution of this expansion
in (2.4), together with the conservation of the neu-
tral current j, implies that

v A, =O,

the Eq. (2. 4) can be approximately 0 put in the
following form:

VxVxA (x)+ (1/X~)A (x) =4ve(X'/X2)j(x) . (2. 5)

Here it should be noted that Xc = (X~ —G) "is not
to be confused with the effective penetration depth.

Then solving the Eq. (2.5) and using (2.1) we
obtain
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the ground-state energy of the neutral and charged
systems can be computed by making use of (1.23)
and (1.30), respectively.

HI. FLUX LINES

In this remaining part of the paper we apply the
boson method to the problem of flux lines in type-
II superconductors. We consider a particular solu-
tion of the Laplace equation (1.10):

f(x) =-,'v(f)(x). (3.1)

Thisis the simplest solution with a cylindrically
symmetric nature: (I))(x) is the polar angle of the
vector x expressed in cylindrical coordinates and
v has to be an integer in order that the order param-
eter((I), g, ) be single valued. By using this solu-
tion we calculate in this section the distributions of
current and magnetic field of a single vortex. The
results cover the entire system, including the core.
The function c(x —y) given in (1.17) plays a crucial
role in the case: We show that it describes the
structure of the vortex core. In Sec. IV, we con-
sider the problem of the interaction between two
vortices. When the distance d between two vortex
lines is less than the coherence length, we find
that two terms contribute to the interaction force:
One is repulsive (this is the only term present for
d»f), and the other is attractive. The latter con-
tribution increases when the distance decreases.

In the special case where the core structure is
approximated by a 5 function and in the limit w

=))./$»l, we find exactly the same results as the
Abrikosov theory, "based on the Ginzburg-Landau
equations.

In the present framework of the boson method the
results presented in this paper are valid for any
temperature below T, and in the approximation which
neglects terms of the order of 1/)( .

Finally, we would like to mention that there are
two new approaches to the theory of type-II super-
conductors which try to give a description of the
structure of the vortex line throughout the entire
H, T plane. Bardeen et a/. have recently developed
a new method for solving the Bogoliubov equations
in the WKBJ approximation, and they are principal-
ly concerned with such quantities as pair potential
and magnetic field in the vicinity of the core. Eilen-
berger' has constructed a method of solving the
Gor'kov equations and in a recent paper, ' in col-
laboration with Buttner, gives the description of a
vortex line far from the center.

Neither of these methods is easy to use because
the equations that must be solved contain the order
parameter and the vector potential which must be
determined self-consistently. In our approach, as
we have pointed out in Sec. I, this complication is
by-passed because the space-dependent order param-
eter and the solutions of the Gor'kov equations are

obtained simultaneously through the boson trans-
formation. Our method at the present time may
still be incomplete because we take into account only

part of the vector potential, using gauge-invariance
considerations. Extension of the method is under

study.

A. Neutral Case

Since f(y) does not depend on the third coordinate

y„wecan define a new function

c(y)= f dy c(y) (3.2)

and write for the neutral current

j(x)=q v', V f d yc(x y)f(y)-. (3 3)

2''v(') v e(P,)]kx)=
2 r.

rx
r, c(r,) dr, , (3.5)

where r„=I x I and e(Q„)is the unit vector in the
azimuthal direction, i.e. , e(Q„)=- ( x2/r„, x-,/r„).
Since c(x) and c(x) are functions only of I x I, we
frequently denote them as c(r„)and c(r„). If we
recall that the c function is normalized by (1.19),
i.e. ,

2v f rc.(r)dr= 1,

we can rewrite (3. 5)

This describes the current distribution in the neu-
tral system. From (3.5) and (3.6) we easily obtain

Now f(x), given by (3.1), is a. multiply connected
function; in order to calculate the current we have

to define the differentiation in (3.3). First we write

C~(x) = f d'y c(x —y)f(y) .

then for an infinitesimal translation x-x+ 5 wehave

Cq(x+6) = f d'yc(x+6 —y)f(y) = J d yc(x-y)f(y+6).

In the last step we made an essential definition that

f(y) =-', v &f& (y) varies continuously with y: This is
because the boson transformation B-Bz, with f(x)
given by (3.1), requires that the domain of &f&(y)

not be restricted to 0 & P & 2v but extend from -~
to +~.
Thus, defining

d2 —
y ~ l. C)'(x+ 5e;) —C, (x)

( -0 f)

(for 5 = 5e„ i = 1, 2),
we find that

j (x) =q'v(') f d'y c(x y)vf(y). - (3.4)

After a change of variables it is simple to calculate
the angular part of the integral in (3.4), so that the
persistent current for a neutral superconductor
takes the value
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»m j (x)=0, V j(x)=0,r„-O
V' j (x) = vn'vove(p„) c'(~„), (3 7)

netic field h =H, in terms of the neutral and realis-
tic currents:

h(x) = 4v V x [eZz j (x) —Z~ J(x)] .

j()= '
2r ~. (3.8)

and, in the intermediate region, is strongly modi-
fied owing to the c function, as is shown by (3.6).

From (3.8) we can deduce how the superelectron
density varies:

n, (x) = 2vn, f "r,c(r, )dh, ,

in other words,

n, (x) cp„'
1 c,/r„'—

for x„«(
for r„»$,

where ci and cg are two constants:

c, =pc(0), c,=-', v f, r'c(r)dr

To illustrate these results let us use the naive ex-
pression (1.18) for c(x). In this case we obtain

e(x) = J,2pgr„g )

where J~ is the Bessel function of first order.
Therefor e

B. Charged Case

Vx j(x) = wg'v'Ov e, c(x„),f j (x) ~ dl = mq'vov,

where
4C

e3 is the unit vector along the third axis, and the
path of the last integral is a circle of radius R- ~.
From these results we can derive the following con-
clusions: The circulation of velocity is quantized
in units of 2p/2m:

K = f v, dl = (2v/2m) v.

The persistent current goes to zero at the center,
behaves far from the axis like the well-known re-
sult

Then, using the expressions (3.5) and (3.9), we
find (see Appendix C)

h(x) = ', e, K, ~
~

r, c(x,)io —z
0

+ID
—" r, c(r,) Ko ~ ~dr, . (3.10)

r 't

0 y 9 9 y )

Now observing that h(x)-0 as exp[ r„/X-~jr„"for
~„»X~, we can immediately calculate the totalmag-
netic flux; we integrate (2. 11) over a circular sur-
face of radius R»X:

f dS„h(x)+ ho f dS„'Vx V&&h(x)

= 4peX~ f dS„~V x j (x).

The second integral does not give any contribution
and we are left with

C -=f ds„~h(x) = 4mex~ f ds„~v && j (x) = (v/e) v,
(3.11)

where use was made of (3.7). An equivalent way
to get this result is to compute the flux of the mag-
netic field directly by using expression (3.10): The
calculation is very simple as is shown in Appendix
C and the result agrees with (3.11), as it should.
Applying similar considerations to Eq. (2. 10) and

making use of (1.19) we find that the Meissner mag-
netic field H, dues not contribute to the magnetic
flux. Thus 4 accounts for the total magnetic flux,
which turns out, from (3.11), to be quantized in
units v/e. It is interesting that the total flux is
induced by the line integral of the neutral current.

Let us analyse the results obtained, recalling
that the function c(r„)is practically confined in the
domain 0 & ~„&(, and using the asymptotic expres-
sions for the Bessel functions for small values of
the argument:

I,(x) = 1+O(x'), Ko(x) = ln (1/x),

I,(x) = -x+ O(x'), K (x) = 1/x

Now that the problem is settled for the neutral
case, we consider a charged superconductor. Sub-
stituting the expression (3.5) in (2.8) we get, after
a straightforward calculation (see Appendix B), the

following vortex current:

J(x)= ~ e(P„) K, —" r,c(r,)IO —" dr,

-Ij ~ r~c ry K0 —dr„, , 3.9

where K;, I;(i= 0, 1) are the usual modified Bessel
functions. From (2. 11) we can express the mag-

At first we would like to emphasize that in the
approximation considered (see Sec. I) the expres-
sions given above represent the distribution of the
current and of the magnetic field at any point in-
side the superconductor and are valid for any value
of the parameter x(1/~ & x & ~) when the c function
satisfies

f c(x —y)c(y —z)d'y =c(x —z).

Otherwise the error is of the order of (I/v) . Thus,
the result may not require X» $:e.g. , I/x = 10
for y= 3$. We observe in (3.9) and (3.10) that two
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terms contribute to the current and magnetic field:
The first one represents the behavior for large
values of r„(i.e.,r„»$), the second one is appreciable
only for x„&$ and thus represents the modification
due to the effect of the core.

(a) r„-0:
lim J(x)=0,

rx 0

~, c(r„)x,(
—') ur, . (s )p)

At the center, the current goes naturally to zero,
and the magnetic field reaches its maximum value.

(b) 0 &r„&$: We find that inside the core the

current J does not have the same behavior as the
neutral one j, but is modified by the second term
in (3.9). The magnetic field decreases slowly.

(c) r» ]:
rx

Z(x) =, e(y„)Z; —" r, c(r, )f, ~
4A. X ~ ]

(3. 13a)

h(x) =~ e,A; —'
(3. 13b)

The effect of the core is practically negligible.
(d) r, » Xc: The current and field fall off

rapidly, owing to the superconducting screening
effect manifested by K,(r„/Xc)and Ko(r„/Xc). From
the expressions (3. 13) we can conclude that our
theory agrees withthe results of the usual theory '

when we consider the limit r»l (in which case
Xc =X~) and distances far from the center:

IV. INTERACTION ENERGY BETWEEN
FLUX LINES

A. Neutral Case

The energy due to the persistent current can be
computed by putting (3. 5) into (1.23}. We find that
the self-energy per unit length of a flux line has
the value

g gsg2 ~2 p

where R is the radius of the vortex.
Now let us consider a system composed of two

flux lines and study the static situation when the
centers of the lines are in position a and b, respec-
tively A.ccording to (l. 23) the total energy of the
system ls

Z =(1/2n'v20) fd'x [j"'(x)+j "'(x)]
~ [ ''"(x)+ '"(x)]

= Z") +Z'" + (1/n'v02) fd'x j "' (x) j '" (x),

where E" and E' ' are the self-energies, and the
last term represents the interaction energy between
the lines. I et us study this term. By using the
expression (3. 5) we find that the interaction energy
per unit length is given by

, e(A„,) e(4„)
xa xb

where the following notation is used:

h(x)=, EC,
—" e, for r„»$, X»$.

J(:)=„'...x, (-;);((,,),
Let us close this section by noting that when we
use for c(x —y) the simple expression (1.18), the
following results can be obtained:

t'ut
&(x)=3 2~as(4.) fa 1,~2 ~g(rg),

(m =a, b).

The calculation of this expression gives

E""=- ' ind+2a r, c(r, ) ln ~ dr,(~» 1 o

,m'q'g', 2f r„(r„)dr

e &~& t dtK(x)=, e, , /, Z, (rg),

where Jo and J& axe Bessel functions. It is interest-
ing to compare the expression for the magnetic
field at the center that ean be derived from (3. 14)

I (0) = (C /4~&', ) ln(1+ ~', /~')

and the results obtained by Neumann and Tewordt
by solving numerically the 6-I equations. These
authors calculate the magnetic field in units of the
critical field H, for the values )( = 1/&2, 1, 2, 5.
The agreement is very good for ~ = 5, but not so
good for smaller values of v.

x dc~
e ~ e & g ~ ~ 6)

+x+x(f

where d = b —a and d is the distance between centers
of two vortices, i.e. , d = I d ) . The last term in
this expression comes from the core-core inter-
action; it is easily seen that this term is zerowhen
d»(, while for small distances it seems to be pre-
dominant. When d» (we have the usual result

E'"= --,'~g'v,'v'lnd.

Therefore for large values of the separation dis-
tancewefind the usual repulsive force between the
two lines
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F(d) =- i E'" —-'mq'g'v' d/d'

while for small distances the results are strongly
modified by the effect of the core-core interaction.

B. Charged Case

In the charged case there is a contribution to the
total energy that comes from the magnetic field
associated with the lines. Therefore the energy
of the system is given by the expression

( ), h (x} J(x) ~ J(x)
2egq2~i8

where use was made of (1.30). By using the equa-
tion for the magnetic field (2. 11) the last expres-
sion can be written as

(a) = —,'Xao Jd'xv [h(x~ ) xJ(x)]

+-', exal, fd'xh(x) ~ vxj (x)

+2&(&l, —&o) Jd'x J(x) ' J(x). (4. 1)

Now because h(x) and J(x) are regular functions
(i. e. , they do not possess any singularity at the
center), it is easy to see that the first term in (4. 1)

does not contribute. The third term represents

a correction to the energy of the order of $3/Xa:

For the sake of simplicity, in the following, we
shall not consider this term, though this quantity
can be calculated by means of expression (3.9) for
the charged current. Now the energy of the system
is

(a) = —,'eX2~ Jd'xh(x) V&& j (x}.
From the results (3.7) and (3. 10) we obtain for the
line self-energy (per unit length)

(4. 2}

The usual theory gives for this quantity the expres-
sion

E = (C/4v~, )' In(~, /t).
This result represents a rough approximation of
(4.2) in the limit X»t'. In a similar way we can
calculate the interaction energy per unit length
between two lines, whose centers are separated
by a distance d:

(4.4}

In this expression the second term is due to the
core-core interaction and is practically zero when
d» $. It can be proved, by using the asymptotic
expressions for the Bessel functions, that in the
limit X» $ and for distances d» g, expression (4.4)
gives the well-known result""

for»& $, d» t'.

By using in (4. 2) and (4.4) the naive expression
(1.18) for c(x) we obtain

] ~X

I If'
E(d)=, , 2, &0(df).

8m&g 0 t +1 x~~

%e notice in these expressions that the self-energy
of a vortex is related to the value of the magnetic
field at its center

E = (4/8v)I (0)

and that the interaction energy between two vortices
can be expressed in terms of the magnetic field of
a line as

E(d) = (C/4m)h(d).

The potential energy (4.4) leads to the following
interaction force in the direction of d:

E(d)=-, fd xe(~) "K'(~)f rc(~l(( )d~ I,(~)f rF(r)K-, (~)d»,

Because the Bessel functions are positive and the
integral of the function c(r„)is positive definite, we
find that the force is composed of two terms, one
repulsive and one attractive. It should be noted
that the attractive part is present only when d g $.

CONCLUMONS

Our method of computation can be summarized

as follows: Solve the Laplace equation for the

phase, calculate the neutral persistent current,
and, from the latter result, calculate the charged
persistent current; the ground-state energy and the
magnetic fieM can be obtained from these currents.
All these results are expressed in terms of the
c function. %e have not studied the c function in
detail; it is one of our future programs to compute
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it by the boson formalism itself. As an application
we have studied the vortices and computed the cur-
rents, magnetic fields, vortex self-energies, and
the mutual interactions among the vortices. The
approximation used is to ignore the terms of order
(I/x)'(x = &/g) so that the results can be applied to
a wide range of v.

Our expressions for the currents and magnetic
fields are valid even in the vortex core. These
quantities have been computed by many authors;
in the region far from the center our results coin-
cide with theirs. The mutual force between two
vortices was obtained for arbitrary distances
between the vortices. For large distances it agrees
with the result found in the literature, whereas at
short distances there appears an extra, attractive
force. Our result for the self-energy of a single
vortex agrees with the known result only when we
approximate the c function by the 5 function. The
precise form of the self-energy is important for
the computation of the critical magnetic field.
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APPENDIX A

In the case where f(x) is not confined to a finite
domain, so that the partial integration is not permit-
ted, the proof of Eq. (1. 15) can be modified as
follows. Let us consider the commutator

[N& ', v(x, f)] = —ivo jd'y f(y)q(V„)V,'d(y —x),

where use was made of Eqs. (1.14) and (1.19). We
can now perform the partial integration because
d(y —x) is a function of finite range. We then find
that

[N& ', a(x, f)]= —iv',fd'y V'f(y)g(V, ) d(y x) =O, —

owing to the Laplace equation for f(y). Further-
more, it is obvious that N&"' commutes with B(x)
and P(x) (the quasielectron field). Thus NP'must
be a c number. We then have

N"' =(o
I

N"'
I o);

on the other hand

&o
~ N,"'

~
o&=o

because

&o i
B

i
o)=o.

0

We have thus proved that N&
' is zero.

This proof, however, is too formal, because we
know that N&

' is not well defined as an operator
acting on the Hilbert space of the quasifermions and
quasibosons when f(x) extends to an infinite domain.
As was pointed out in Ref. 19, we consider in
such a case a finite tridimensional domain D(L),

defined as the set of points x such that ix I & L, and
introduce a function g(x) such that

1 for x&D(L)
g(x) =

0 for ix J»L.

We then construct a new operator N&
' defined as

N~,"= fd'xg(x)f'(x) p@'(x) = —fd'x g(x)f(x) q(V)v(x),

where f(x) satisfies the Laplace equation (1.10).
The boson transformation of any operator A(x) is
then defined by

A&(x) = lim exp(- iN&~~')A(x) exp(iN&~@), (Al)

which is, in many cases, well defined, while

lim exp(jN& )
igloo

is not. For instance for xcD(L)

Bz (x) = lim exp(- iN &"') B(x) exp (iN P')

= B(x) + i lim fd y g(y)f(y) q (v, ) d (x —y)

= B(x) + i f d'y f(y) p(V, ) d(x —y)

because d(x —y) has a short range. Therefore for
xcD(L) the definition (Al) of the boson transforma-
tion coincides with (1.8) given in the text.

Following an argument similar to the one applied
to N& ', we can show that N& 'commutes with a(x),
B(x), and Q(x) when xcD(L). We then conclude that
N&~@ acts as a null operator in the algebra of opera-
tors in D(L). This conclusion with the limit L -~
is the precise meaning of the previous statement
giving N&

' =0.
Since D(L) represents the domain of the system

under consideration, the integration of any observ-
able A(x),

f d'xA(x),

should be limited to the domain D(L) with L being
practically infinite. In this way such an operator
belongs to the algebra of operators in D(L). We
then see that the boson transformation of these
observables can be performed simply by the re-
placement (1.8). For example, the boson trans-
formation induces the following change in the
Hamiltonian (1.1) [see (1.22)]:

0~~~+ c number

With

My ——fd x VB(x) Vf(x),

M, = fd'xVB v fd'y f(y)q(~, )d(x —y).

It is easy to show that M& commutes with m(x), B(x),
and Q(x) when xcD(L) and therefore that M& is a
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null operator. In this sense the boson transforma-
tion leaves invariant the q part of the Hamiltonian
and modifies it only by a c number. It must be
noted that this assertion is not in conflict with the
result previously found that N&+~' is a null operator
in the algebra D(L). As we have already mentioned,
if h(x) is the Hamiltonian density, our Hamiltonian
is given by

II= fd xh(x),

where the integration domain is confined to D(L) so
that our Hamiltonian belongs to the algebra D(L). On

the other hand N&
' is defined on an algebra bigger

then D(L), because g extends out of D(L). This
means that

To give an intuitive description of the argument
exposed in this appendix we note that as a first
step in our approach we solve the equations of mo-
tion (1.11) in an homogeneous system that extends
to infinity. Until this point all the quantities are
defined in the whole domain. When, through the
boson transformation, we induce the space depen-
dence, we must limit ourselves to the dimensions,
extremely big butfinite, of the system under con-
sideration. The boson transformation and the in-
variance of the equations under this transformation
are properly defined in this restricted domain.

APPENDIX B

Calculation of the charged current Accord. ing
to (2. 8) the charged current J is given by

e
J(x) = —, ej(x) — —, d y exp

fx-y l

4gX2c ~c

Hy)
Jx-y J

Since the neutral current j(x) does not depend on
the third coordinate, we can immediately calculate
the integral over y3.

j.
x"' K„(ax)dx=2" 1"(v+1)-a K„&(a)

0
(Rev & —1).

When we define1, r e(dp )P(x) = — d'y K() r, c(r,) dr,

the charged current can be written as

g2 2 2

J(x) ~3 0 e((t) ) K
2&c

r„d(r„)dr„P(x)
I

.rX 7 g

To calculate the quantity P(x) let us take, for
simplicity, x on the first axis and consider the
second component of e((t P) [the first component of
e((t), ) gives zero as a result]:

IP(x) =— r, c(r,) dr, dr,
c 0 0

so that

f2r .".t
cos(t), = -,' d(t), cos(t

„

0
' Xc 0

exp — —— g+

exp — — —-' -"
I&

In order to calculate the angular part let us use the
integral representation of Ko (see 8.4327 of Ref.
21)

00
2

exp ——t+ —t" dt-v-1
2

where Ko is the modified Bessel function of zero
order; then using the expression (3.6) we obtain

2 2

(~ &g .(q eq e,v, r~ e((t),)
4~g2c 5 0

x 1 —2 r, d(r, ) d )r
The calculation of the first integral gives us

f d K '=2 d(.
" 1 ——"K

where K& is the modified Bessel function of first
order and use was made of the formula (see 6.5618
of Ref. 21)

=2m Ig
~ Kg —" Or„—r

+I) ~ Kg ~ Or -r„

1 2 2 ah dh
exp ——,x ———(a +b ) I„—

2x x x

2I„(a)K„(b)
2I„(b)K„(a)

0&a&b
0&b&a

Therefore

where in the last step we used the formula (see
6. 6531 of Ref. 21)
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P(x) =—e(P„) r, c(r)Ch, dr, Iq —' K& ~ 8(r„r-„)+I~ Kq P- 8(y,' —r„)

By recalling that

(g)=d I.(g). K (g)=
d

K-o—(g)
d d

the integration in r, is easily performed to give the
result

P(x)=e(P„) 2g Kg &" r c(r, )IO Ch;
G 0 G

cr, &o

+ rcr, dr,

where use was made of the well-known Wronskian
property

I„(g)K„„(g)+I„.,(g) K„(g)=1/g.

Substituting the expression obtained for P(x) in

(Bl) we find the result (3.9).

APPENDIX C

Calculation of the magnetic field As .we have seen in Sec. III B, we need to compute the curl of the
charged current to obtain the magnetic fieId:

"g ~rVxJ(x)= axe(p„) K, (~ x,c(r„)I, &
dr, I~ ~ -x,c(x)K, ~ dr,

7T G

1—I~(g) = Io(g) ——I,(g),

K1 ~ Io~ +I1 ~ &0

Now using the formula

7x[e(4„)g(r„)]=e, " +
d

"

where g(r„)is any regular function of the modulus
l x l = r„andusing the recurrence formulas for
the Bessel functions

—K,(g) = -K,(g) --K (g)
d
dZ 1

we obtain

ixJ(x)=, e, lw, e(r, )
4W~G

"x
rip

r, c(r,) Io
—' dr,

r c(r )K,( „)dr„„I—"

This, together with the fourth relation in (3.7) and

the Wronskian property for the Bessel functions,
gives the value of the magnetic field (3.10).

Calculation of the magnetic flux. In this last.
part of the appendix we want to show how to calcu-
late the magnetic flux directly from the expression
(3.10) for the magnetic field:

K(x) ds„=n

OO r 00

r„dr„Zo—" r c r„Io ~ Cr~ +Io —" r~c y~ Eo dr~

By using the formulas
] 1 ]

xKO(ax) dx = —K&(a), xIO(ax) dx = —Iq(a)
1 a o

o a
we can perform the integration over r„:

y', e(r, ) lo(—")K,( )

+To —~ I1 —' dr

where use was made of the Wronskian property for
the Bessel functions and of the normalization of the
c function.
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