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Using the Bardeen-Kummel- Jacobs- Tewordt approach to the BCS theory of a nonuniform

superconductor, we study the problem of a semi-infinite superconductor with a rigid po-
tential barrier at the interface. Very close to T~, the spatial variation of the order param-
eter is given by the Ginzburg-Landau formula &(z, T)/&„(T) =tanh[z/ 2 )GL(T)]. At de-
creasing temperatures, however, the order parameter heals much more rapidly than $ (T )

=vz/7f& (T), where $~~(T) =lim 0.74 $(T) as T T~; and, at low and intermediate tempera-

tures, does so over atomic distances.

I. INTRODUCTION

Very close to T, , if the superconducting order
parameter is required to vanish on a plane, it heals
as the hyperbolic tangent, b(z, T) = A„(T)
xtanh [a/v 2(o~(T) j, in an approximate length

W2$ oz, (T). ' Here )oL(T) is the coherence length
of Ginzburg-Landau. 2 The technique of Bardeen,
Kiimmel, Jacobs, and Tewordt (BKJT) for calcu-
lating vortex structure lends itself well to a varia-
tional calculation of the healing length below the
immediate vicinity of T, . Only modification of the



3578 ROBE RT M. C LEA RY

The Bogoliubov equations for the wave functions
of superconducting electronic excitations are

[& —(r")/2m)(- &'-p') —&(z)7"']xe, (x, y, z)=0,
(1)

where E is the energy, h(z) is the superconducting
order parameter, and we have employed matrix
notation. The medium is translationally invariant
in the x and y directions and the wave function is
required to vanish at z = 0, so that we have

= Og, (z) e"", (2)

where

e, „(0) =0. (3)

Assuming that b(z) varies slowly over the length
scale P~', a WKBJ approximation is made, '

(z) +(z) e ((i)g+ w/2) (4)

Equation (4) is substituted in (2) and (2) into (1), and
second-order derivatives of g are neglected. The
simplified equation is given by

where

) =E/~ (T)

(5)

equations to reflect the new geometry is required.
In the vortex problem, the pair-breaking prop-

erties of the magnetic flux depress the order pa-
rameter from its uniform value at infinity to zero
along the vortex axis. Self-consistency is main-
tained along the axis where all the electronic wave
functions vanish. In the plane-boundary problem
studied, the wave functions are forced to vanish
identically on the plane and no magnetic field is
introduced in the superconducting region. With this
boundary condition, the free-energy difference is
calculated between a superconductor with a finite
healing length and that of a uniform superconductor.
A minimum in the free energy, with a variational
function for the order parameter, is arrived at by
varying a parameter in the trial function. An op-
timized value for the healing length is thus obtained.
It is also verified that the superconductor with a
finite healing length has lower free energy.

In Sec. II some of the salient features of the
BKJT theory are reviewed, and in Sec. III comment
is made on our numerical techniques and results.

II. BKJT FORMALISM

g = (2m ~„/b)» .

and the equations satisfied by g and $ are

and 2e,. ~(~) „.„„~„(T)

For bound states, X & 1, g is real, and $ pure
imaginary. The boundary condition imposed be-
comes, for )1(0),

)) (0) = 0, a 2((, + 4)(, etc. ,

and one may see that

)) (0) =a)(, +37(, a 5((, etc. ,

also produces valid bound states.
For ~ &1, there is a continuum of scattering

states, each one of which is characterized by a
phase shift given by

o '= 5') (0)+ 2f"([~(&)/a„]xcos)i, sinh))2

()(2 l)'~2/dg (13)

The functions q and ( are, in this case, complex,
the subscripts 1 and 2 denoting their real and nega-
tive imaginary parts. Also

$;(0)=—tan '(tan [—,')),(0)]xtanh[ —,'))2(0)]''). (14)

The pair potential h(z) is obtained by minimizing
the free-energy difference between a superconductor
with the potential b(z) and that with 4„(T)8 (z). '
To simplify matters we introduce a single varia-
tional parameter a,

5(z) = h(z)/6„= tanh(az/t ) = tanh(b k'),

where

$ (T) = n»/((r „(T) and b = —,
' ((a sinn,

optimizing a(T) by finding a minimum of'

(15)

The subsidiary condition

q +k =P~2 2 2

must be satisfied so that one may write

0 =P& sin~.

To simplify the numerical analysis, BKJT have
written3

(10)

AP» T, T —1 p
' cosh(X((b) 5 „(T)/2T) 1 a.„(T)

(( T, e~ ' cosh(b, „(T)/2T) 2)(e2 2T

bdb d& Z X, b —
2 &&2 tanh
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I.O- TABLE I. Numerical results for c(T).

0.8

—0.6

0.4

0.2

1.0
0. 98
0. 96
0.94
0. 92
0. 90

c(T)

0. 869
1.05
l.20
1.40
1.90

&3.05

c(T')/c(&, )

1.0
1.21
1.38
1.61
2. 21

&3.51

0.0 I.O 2.0 3.0

FIG. 1. Lowest two branches of bound-state spec-
trum. b =7I/2 sinn a.

tanh +
&-tanh~ '~'

dx = b(i+ —,')-,'m
0 X+tanh g

(19)

where

and

C = p7TQ

(17)

and AGGL is the Ginzburg-Landau free energy as
first derived from BCS theory by Gor'kov. '

nGoL is of order h„(T) and presumably hG"'
vanishes. Except for lowest-order perturbation
theory, the only evidence for vanishing of 4G "
is of a numerical nature and as such cannot be con-
clusive. ' Assuming that EG " does indeed vanish,
we have c(T, ) =0.669.

III. NUMERICAL CALCULATIONS AND RESULTS

In Fig. 1 we plot X(b) for the two lowest branches
of the bound-state spectrum. Using a technique
by Bergk, one can see that for very small b the
bound-state spectrum is given by

X& (b) is the ith branch of the bound-state spectrum
A is the area of the interface.

Near T, , Eq. (16) becomes

lim hG + EGGL,
T» Tg

where

~G"'=", -
i~ db {Z,b-,'~[I-&';(b)]

4c ~g2 T

+ XdX [bQ (b,X) —
~ (X —1) ]]

except for X very close to 1. ' It follows that
dX/db(X = 0)-~ for all f, so that the density of
states for these branches is zero at the Fermi sur-
face. For the vortex case, (i+ —', ) in Eq. (19) is
replaced simply by i because of the magnetic field,
and there is one branch with i =0 which has a finite
density of states at the Fermi surface. This is the
branch which contributes to joule losses in flux
flow. " Also, for small b

Q (b y) b-1 f [(y2 tanh2~)1/2 (g2 1)1/2] d~
(20)

This formula was first derived for large & by Bergk
and Tewordt, but is applicable to almost all & in
our case, if b is sufficiently small.

Using the IBM system 360/75 at the University
of Illinois Digital Computer Laboratory, numerical
calculations of

6bG/6c =0

were made for c values up to 3.05. Our results
are tabulated in Table I. For T = 0. 9T„c(0.9T, )/
c(T,) & 3. 51. Linearly extrapolating the data, be-
tween T, and 0. 92T„we have c(0)= 113. Since this
curve lies well below c(0. 90T,), it can only be con-
sidered as a lower bound. It follows that at low and
intermediate temperatures c(T)((T)-Pz, that is,
the healing is over atomic distances.
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