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The scattering of moderately high-energy x rays from electrons in magnetic solids is ana-
lyzed. We show that (a) the incoherent Compton scattering of polarized x rays can be used to
determine the spin-dependent momentum distribution function of electrons in ferromagnetic
materials, and (b) the coherent Bragg scattering of unpolarized x rays can be used to determine
the magnetic structure of antiferromagnetic solids below their transition temperature.

Recently' there has been renewed interest in
utilizing x rays to probe the electronic properties
of molecules and solids.

In the extreme nonrelativistic limit, the x rays
couple exclusively to the charge of the electrons.
This implies that for electrons in solids the scat-
tering cross section is independent of the magnetic
properties of the medium. However, it is well
known that the complete relativistic Compton am-
plitude does depend on the spin of the electron. '

The dominant charge scattering mechanism can
be thought of as arising from the acceleration of
the electron by the electric field of the wave and the
electric diPole reradiation of the scattered field.
Although it is not quantitatively correct it is quali-
tatively correct to think of the spin dependence of
the scattering amplitude as, at leastin part, arising
from the same acceleration followed by a magnetic

dipole reradiation of the scattered field. If one
thinks of the electron as a little spinning ball with a
radius of the order of the Compton wavelength
X =a jmc then the ratio of magnetic dipole to electric
dipole radiation is roughly k,N„ i.e. , au~, /mc .

In this paper we wiD show that mildly relativistic
x rays can be used to: (a) measure independently
the momentum distributions of spin "up" and spin
"down" electrons in magnetic solids, and (b) deter-
mine the magnetic crystal structure of antiferro-
magnetic sobds below their transition temperatures.
This magnetic Bragg scattering is analogous to con-
ventional magnetic neutron scattering.

Since the binding energy of the outer electrons in
atomic systems is small relative to typical x-ray
energies, all of the physics we mill discuss is con-
tained in the formula for the scattering of light
from free particles. Binding effects will be in-
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eluded in the analysis only insofar as they modify
the initial and final states of the electronic system.
In essence we neglect the effect of binding on the
intermediate states. This type of correction can
be shown to modify all of the leading terms to be
discussed here by quantities of order E~ /he, .

Consider the scattering of light from a single
free electron of momentum p, and spin a. This
scattering is diagrammed in Fig. l. The initial
(final) photons are characterized by the four-vector
k, (k2) and polarization vector e& (ez). The quantity

k' = k f —02~ =- ( k, &o ) (1)

is the four-dimensional momentum transfer.
The complete second-order (e ) relativistic

Compton amplitude for the scattering of light, i.e. ,
the sum of the two Feynman diagrams shown in
Fig. 2, is proportional to M, where

P2kiP&, E'pj 2

The slashed quantities in Eq. (2) are the usual
four-dimensional dot products of vector quantities
with the conventional Dirac matrices, i.e. ,

If' = ~O'4 —ki ' & .
The scattering amplitude is obtained by taking ma-
trix element of I between plane-wave Dirac spin-
ors~

We remind the reader that the four-dimensional
matrix y explicitly contains the spin of the electron,
l. e. ,

We will be interested in terms including the first
nonrelativistic correction to the limiting low-energy
form of Eq. (2). The appropriate reduction is
simply achieved by first going to a two-dimensional
representation for the four-dimensional Dirac
matrices and then expanding all quantities in powers
of h &u, /mc . The result, to order K&u,/mc, for
the scattering amplitude is given by

M~g
——A5~g+iB O'N~, (4)

FIG. 1. Diagrammatic
representation of the Comp-
ton scattering from an elec-
tron in the solid. The solid
(wiggly) lines represent the
incoming and outgoing elec-
trons (photon), respectively.

FIG. 2. Lowest-order Feynman diagrams for the
Compton scattering amplitude.

where

&=-Q [(~g ~ ea) (~gx&))-a(p' p')(~, &«))

—(p 'x(p 'x (q, xq, ))) ]

The vector p is defined by

y = kg-ka .
The leading term in Eq. (4), i.e. , the quantity

A, gives the usual Thompson scattering cross sec-
tion. The term proportional to 8 leads to the spin-
dependent part of the scattering amplitude. For
arbitrary angles of scattering, the terms propor-
tional to the quantity 8, the spin-dependent terms,
are reduced from the leading spin-independent
terms by @co)/Btc For 5.0-keV x rays tins ls a
10% effect. In the limit where the initial electrons
momentum is small compared to the photons mo-
mentum it is the recoiling electron whose moment
couples to the radiation fieM.

To obtain the scattering amplitude from the ap-
proximate M [Eq. (4) ], we must take its expectation
value between two-dimensional Pauli spinors. The
cross section (aside from trivial density-of-states
factors) is proportional to the square of M. The
interference term between the large Thompson
term A and the small spin-dependent term 5 will
give the dominant relativistic modifications in the
scattering cross sections.

Consider the Compton scattering from a single
free electron with a definite initial spin. To obtain
the cross section we must square the matrix ele-
ment M and sum over all final states (spin included)
consistent with energy conservation. We find that

~, I& '
I M.a I f &I'

= &fI(A*f., —f8* o., )(A +f5 o., )If& . «)

The leading term in IBI, i.e. , the interference
term, is proportional to Im(A*B). For reef polar-
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ization vectors c& and c& this term vanishes. In
order to observe the leading correction terms in
the scattering cross section Eq. (8) implies that
one must have complex, i.e. , circularly polarized
radiation. The cross section for light circularly
polarized parallel (antiparallel) to the spin of a
single electron at rest is easily computed and is
given by

along the z axis. If we now circularly polarize the
incident photon, i. e. ,

e, = (u„+iu, ) / K2,

and take the difference of the cross section for the
two circular polarizations, we find that

1+cos8

M g
——p; [ A5„'8 + iB o~() ] & (10)

The cross section is easily computed (see Ref.
I). ~e take the absolute square of M, Eq. (10),
multiply by the energy conservation 0 function, sum
over final states assuming they are plane waves,
and obtain the cross section per particle per unit
volume of material. To leading order in B„

d du=

+ 2 [Im(A B,)][n-, —n;, ])
k k p dp

m (2~)' (»)
The z axis is the direction of magnetization in the
specimen, and

(12)

is the momentum distribution for a definite spin 0.
The interference term is proportional to the

difference (n&, -n~, ) which in turn is a measure
of the spin polarization in a magnetic solid. The
coefficient of proportionality [2 Im(A B, )] is a
simple product of the vectors k, kz, u„e, (e, ),
and e2 (Z, ). In order to simplify the results some-
what we consider the case where we average over

~A

the final polarization e2, and take the vector 0,

+ ' (cos9) (cos9—1))

The asymmetry of the cross section about 8= @

is due to the presence of the spin of the initial elec-
tron and the circular polarization of the incident
photon. This particular effect has been used by
several workers to measure the degree of circular
polarization of y rays in P-decay experiments.

If we are interested in learning something new
about electrons in magnetic solids or in complex
ma, gnetic molecules, we must consider the Comp-
ton scattering from many electrons. In the so-
called impulse approximation (IA) it is a simple
matter utilizing Eq. (4) to compute the scattering
cross section. ' We must sum, with the appro-
priate phase factors, the amplitude M over all the
electrons. In this case M becomes

where

14
k2 k p dsp

2m m (2v)~ '

(
Q

4 4@'~ e 2 2

cos8 (cos8 —1) (15)
dQ 0 mc' mc'

The states ( 0
~

are the atomic orbitals and the sum
over i in Eq. (16) is over those electrons localized
on a single magnetic site. The sum on the index n,
over different crystalline sites, is multiplied by a
+ sign depending on the orientation of the sublattice

and 8 is the scattering angle.
We could just as well have used unpolarized light

and measured the difference of the cross sections
for the two degrees of circular polarization of the
scattered photon. For arbitrary scattering angle
only (do/dQ)0 would change. In either case the
spin-dependent Compton experiment is difficult to
perform since neither polarized x-ray sources nor
polarization detectors are readily available.

To this point we have discussed the incoherent
Compton scattering from electrons in matter. We
would now like to investigate the coherent Bragg
scattering from electrons in solids.

Since the scattering amplitude depends on the spin
of the electrons, Bragg scattering utilizing x rays
uil/ reflect the magnetic structure of the lattice.
This is directly analogous to the situation that oc-
curs in neutron scattering. As in the case of neu-
trons such scattering does not require a polarized
x-ray beam. In the Compton effect we do not mea. —

sure the spin of the recoiling electron. In Bragg
scattering the electron has the same initial and final
polarization. In any spin-dependent scattering at
least two spins or polarizations must be specified
in order that there be an observable spin-dependent
modification of the cross section.

In order to compute the Bragg scattering cross
section, the matrix element, Eq. (9), is taken be-
tween the same initial and final electronic states.
The scattering is elastic and the momentum is
transferred, at the appropriate Bragg scattering
angles, to the lattice. For an insulating antiferro-
magnet the matrix element which depends on the
spin of the electrons is simply
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magnetization. It yields the Bragg peaks when the
momentum transfer coincides with the magnetic re-
ciprocal-lattice vector K„.

When spin-orbit coupling is negligible and all of
the magnetic electrons are in the same orbital (a
not uncommon situation} then Eq. (17) becomes

M = iB,F (k) 28, 5 (k —K„)

Here S, is the total spin on a single magnetic site
and F (k) is the Fourier transform of the single
atomic orbital of the outer magnetic electrons, i. e. ,

F" (k)= fe"'
~q

"~'d'r . (18)

In order to estimate the importance of the magnet-
ic Bragg scattering we choose to compare it to the
ordinary Bragg scattering. Since the Bragg scat-
tering is zero at the nero points of the magnetic lat-
tice the interference term in the cross section van-
ishes. It is the square R =—(B/A } which is relevant.
To within polarization factors this ratio is

F'(K„') N, -'

' F(K„')

The quantity N /N is the relative number of mag-
netic electrons and F(K) is the usual atomic form
factor.

It is well known that the form factor F (k) de-
creases rapidly with increasing k since it is only
the outer electrons which contribute to it. The
wave vector k must be of order a ' (a being a typical
atomic distance) in order that F "(k)=1. This in
turn implies (as for ordinary Bragg scattering) that
the scattering of hard 10-50-keg x rays must be
in the forward direction. In the forward direction

the dominant term in B is

~ =- - ( &e, /m ) ( ~, ~ ~, )k, x k, . (20)

If Eq. (20) is substituted into Eq. (19), it gives us a
relative scattering intensity at the magnetic Bragg
peak of

R =[(h/n c)K„F (K„)N /2NI (21)

In writing Eq. (21) we have assumed that the form
factor for Bragg scattering is unity. The ratio R in
Eq. (21) is independent of the incident energy. It
only depends on the momentum transfer K„, i. e. ,
the lattice geometry. In a specific experimental
situation the function K„F (K„)is slowly varying so
that there will always be several reciprocal-lattice
vectors where R is near its maximum value. The
optimum magnetic Bragg scattering angle, in any
given experiment, will depend almost exclusively on
the geometry of the reciprocal lattice. Under typical
conditions, however, R is approximately 10

Although R is a small quantity, it is a number
which is definitely within the range of observation.
The use of x rays to determine magnetic structures
would be interesting in itself, but useful because of
the fact that x-ray sources are easily available,
whereas more conventional neutron piles are
scarce.
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